
Employing the agricultural
classification and estimation
service (ACES) for mapping
smallholder rice farms in Bhutan

Timothy Mayer1,2*, Biplov Bhandari1,2, Filoteo Gómez Martínez1,2,
Kaitlin Walker1,2, Stephanie A. Jiménez1,2, Meryl Kruskopf1,2,
Micky Maganini1,2, Aparna Phalke1,2, Tshering Wangchen3,
Loday Phuntsho4, Nidup Dorji5, Changa Tshering6 and
Wangdrak Dorji7

1Earth System Science Center, The University of Alabama Huntsville, Huntsville, AL, United States, 2SERVIR
Science Coordination Office, NASA Marshall Space Flight Center, Huntsville, AL, United States,
3Department of Agriculture, Thimphu, Bhutan, 4Agriculture Research and Development Centre,
Wengkhar, Monggar, 5National Plant Protection Center, Semtokha, Bhutan, 6Ugyen Wangchuck Institute
for Conservation and Environment Research Lamai Goempa, Bumthang, Bhutan, 7NASA DEVELOP
National Program, NASA Langley Research Center, Hampton, VA, United States

Creating annual crop type maps for enabling improved food security decision
making has remained a challenge in Bhutan. This is in part due to the level of effort
required for data collection, technicalmodel development, and reliability of an on-
the-ground application. Through focusing on advancing Science, Technology,
Engineering, and Mathematics (STEM) in Bhutan, an effort to co-develop a
geospatial application known as the Agricultural Classification and Estimation
Service (ACES) was created. This paper focuses on the co-development of an
Earth observation informed climate smart crop type framework which
incorporates both modeling and training sample collection. The ACES web
application and subsequent ACES modeling software package enables
stakeholders to more readily use Earth observation into their decision making
process. Additionally, this paper offers a transparent and replicable approach for
addressing and combating remote sensing limitations due to topography and
cloud cover, a common problem in Bhutan. Lastly, this approach resulted in a
Random Forest “LTE 555” model, from a set of 3,600 possible models, with an
overall test Accuracy of 85% and F-1 Score of .88 for 2020. The model was
independently validated resulting in an independent accuracy of 83% and F-1
Score of .45 for 2020. The insight into the model perturbation via hyperparameter
tuning and input features is key for future practitioners.
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1 Introduction

The unique vantage point of Earth observation (EO) data and their ability to provide
ubiquitous global coverage, a diverse range of information, as well as frequent revisit rates
has unlocked previously incomprehensible sources and avenues for addressing global
challenges and development goals, especially pertaining to food security (Griggs et al.,
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2013; Assembly, 2015; Dhu et al., 2017). To that, EO based
approaches have long been utilized as a key tool in crop type
mapping (McNairn and Brisco, 2004; Steele-Dunne et al., 2017).
Within recent years, more approaches are actively leveraging
analysis ready data (ARD) and pixel based classification
approaches (Orynbaikyzy et al., 2019; Tamiminia et al., 2020;
Yang et al., 2022).

However, with the access and availability of geospatial and EO
data rapidly increased, there has remained a gap for enabling end-
users to readily apply and make decisions using EO data (Giuliani
et al., 2017; Nativi et al., 2019; Gomes et al., 2020). In particular,
leveraging EO to address agriculture and food security issues in
geophysically complex locations, either due to terrain, cloud cover,
or sparse data, remains an obstacle for the remote sensing
community (Li et al., 2018; Flores-Anderson et al., 2019; Jiang
et al., 2021). Additionally, developing a robust and transparent
sampling approach and modeling framework to combat these
two issues remains a challenge (Stehman, 2005; Olofsson et al.,
2014; Bey et al., 2016).

As part of the “Advancing Science, Technology,
Engineering, and Mathematics in Bhutan through Increased
Earth Observation Capacity” initiative, our research team
enabled 1) the use of EO into the decision making process
with our Bhutan partners; 2) developed a geospatial web
application and software system known as Agricultural
Classification and Estimation Service (ACES) to combat the
various geophysical limitations and unique challenges within
Bhutan; and 3) co-developed and deployed a robust sampling
and modeling framework for the country-level ACES
application. This article will specifically outline the ACES
geospatial application’s climate smart approach and provide
a clear outline of the methodologies employed for future
implementation of the framework for end-users.

2 Materials and methods

2.1 Study area and time period

The 38,394 km2 Kingdom of Bhutan is predominantly a
mountainous country (Gilani et al., 2015; Bureau, 2022). Bhutan
is located between China and India amidst the Himalayan range, see
Figure 1, and is comprised of six ecological zones: alpine, cool
temperate, warm temperate, dry sub-tropical, humid-subtropical,
and wet sub-tropical (Agriculture, B. M. and Forests, 1992; Bureau,
2022). The elevation range of these zones are between 100 m to over
7,500 m moving on a latitudinal gradient south to north (Ohsawa,
1987; Katwal, 2013; Bruggeman et al., 2016; Hydrology, N. C. and
Meteorology, 2019). Across Bhutan, the country experiences a
variety of climactic conditions due to the topography, with the
following seasons: spring, summer, autumn, winter, and a Monsoon
season beginning in June and ending in September (Tobgay, 2006;
Chhogyel and Kumar, 2018; Hydrology, N. C. and Meteorology,
2020). A majority of the population resides in valleys and lowlands,
which is primarily where agriculture cultivation is located (Walcott,
2009).

Within Bhutan, rice plays a central role both culturally and as a
key driver for national food security (Tshewang et al., 2016). Rice is

the main food staple in the country. It is grown across the country
but predominantly cultivated in three dzongkhags (districts),
specifically Samtse, Punakha, and Sarpang, and national reporting
is provided at the gewog (sub-district) level (Bureau, 2022). Over the
past 3 decades, there has been minimal reported agricultural
expansion across Bhutan, with agriculture comprising only 2.8%
of the total area (Gilani et al., 2015; Uddin et al., 2021; Bureau, 2022).
Additionally, the majority of agriculture within Bhutan is dominated
by subsistence farming, and the average smallholder farm is 3 acres
per household (Statistics, N. B, 2012; Katwal, 2013). Due to the
extreme topography of Bhutan there are a range of rice cultivation
strategies, the two prevalent methods are: irrigated lowland paddy
fields (200–700 m above sea level) and upland terraced paddy fields
(Bureau, 2021) (700–1,600 m above sea level) which account for 80%
of the total national rice production (Ghimiray, 2012; Neuhoff et al.,
2014). In Bhutan, there are three main phases for rice cultivation
efforts consisting of nursery production, transplantation, and
harvest. These align with the 5 distinct stages of rice plant
develop: 1) growth of both tillers and leaves from the main stem;
2) stem development and elongation, both stages occurring in the
nursery production phase; 3) defined stems as known as tillering; 4)
leaf senescence, both stages in the transplantation phase; and 5)
panicle and grain development concluding with the harvesting
phase (Nelson et al., 2014). This is relevant as the modeling
effort aims to focus on rice production fields across these
phenological distinct stages through including a range of EO
indices to capture phenological characteristics as well as
observable cultivation practices during the key growing season of
rice (May-October) (Tobgay, 2006). The focus of this research and
paper was for the entire country of Bhutan, producing country wide
rice classification maps for the years 2016–2021.

2.2 Existing approaches

Pertaining to crop type mapping and rice classification
specifically previous studies have focused on course resolution,
500 m, wall to wall country or regional level maps (Gumma
et al., 2011) or finer resolution maps at 30 m, but only for
specific cultivation zones (Tashi, 2018). Building upon
applications using Landsat (Dong et al., 2016), Sentinel-2 (Ni
et al., 2021) and Sentinel-1 (Park et al., 2018; O’Shea et al.,
2020), The ACES platform leverages an array of spatial
resolutions to produce countrywide annual rice maps. This
platform’s seamless combination of EO data sets allows for rapid
implementation and classification at vast scales. Over the past
decade, crop type mapping methods have been rapidly
diversifying due to new data sources and scalable cloud
technologies. These methods include phenological response
mapping or temporal fitting (Xiao et al., 2006; Brown et al.,
2012), leveraging derived optical and radar indices (Oguro et al.,
2001; Nguyen et al., 2012; Chen et al., 2016), and algorithm
approaches such as object-oriented machine learning or deep
learning image analyses (Zhang et al., 2009; Lasko et al., 2018;
Singha et al., 2019; Poortinga et al., 2021). These advancements in
crop type mapping, specifically rice mapping and field extent
mapping methods, integrate traditional knowledge of crop
growth cycles with multi-source Earth observing data (Zhao
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et al., 2021). Through recent progress of cloud computing platforms
like Google Earth Engine (GEE), remote sensing and data analysis
tools are becoming increasingly centralized and more easy to
facilitate multi-source data techniques, large-scale analyses, and
the incorporation of auxiliary data sets for agricultural mapping
purposes (Gorelick, 2013; Dong et al., 2016; Carrasco et al., 2019;
Chong et al., 2021).

Due to the extreme terrain and remote nature of Bhutan,
developing an EO-informed framework that centralizes field and
training data collection, model generation of classified crop type, in
this case rice, and incorporates climatic data was critical for enabling
country-level decision making. This prompted the need to co-
develop a geospatial service. The SERVIR Service Planning
Toolkit was leveraged with partners at the Bhutan Department of
Agriculture, the National Plant Protection Center, the National
Statistics Bureau, and the Ugyen Wangchuck Institute for
Conservation and Environment to co-develop the ACES web
application and software package (Frankel-Reed, 2018; Searby
et al., 2019; Thapa et al., 2021).

2.3 Earth observation data

2.3.1 Optical
Optical EO were obtained using the GEE platform. The ACES

platform can leverage the following optical imagery: Landsat
8 Collection 2 Tier 1 calibrated top-of-atmosphere (TOA)
reflectance, Landsat 8 Operational Land Imager (OLI)/Thermal
Infrared Sensor (TIRS) Level 2 Collection 2, Landsat 7 Level 2,
Collection 2, Tier 1 Enhanced Thematic Mapper Plus (ETM+), and
Sentinel-2 (S-2) MultiSpectral Instrument (MSI) Level-2A imagery.

As part of the ARD ingestion process on the GEE platform, the
Landsat 8 collection was computed to top-of-atmosphere resulting
in a pre-processed Landsat 8 Collection 2 Tier 1 calibrated TOA
reflectance data set (Chander et al., 2009). Additionally, the Landsat
8 collection has been pre-processed to surface reflectance using the
Land Surface Reflectance Code (LaSRC) algorithm (Landsat, 2022).
The Landsat 7 ETM + surface reflectance was created using the
Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) algorithm (Schmidt et al., 2013). The S-2 MSI was
pre-processed using sen2cor to create the surface reflectance
(Main-Knorn et al., 2017). All the aforementioned data sets are
available in GEE as ARD image collections to then be utilized by
ACES software system.

Landsat imagery is managed by and can be alternately accessed
from the National Aeronautics and Space Administration (NASA)
and the United States Geological Survey (USGS). The Landsat
mission offers imagery at 30 m spatial resolution for blue, green,
red, Near-Infrared (NIR), and Short-Wave Infrared 1 and 2 (SWIR
1 and 2) bands on a 16-day repeat cycle. While the European Space
Agency (ESA) provides the S-2 sensor data which operates at a 10 m
spatial resolution for the blue, green, red, and NIR bands, and at a
20 m resolution for the SWIR 1 and 2 bands. S-2 has the advantage
of a 5–10-day repeat cycle when both of the two sensors are used.
With moderate to high spatial resolutions and repeat cycles, Landsat
and S-2 are suitable for cropmapping. Relying on the ACES software
system, all optical image collections were further pre-processed in
GEE to remove shadows and clouds using the QA pixels bands,

methods and examples available in the Supporting Material section.
Optical indices were then derived on the cloud free images, using the
ACES system.

2.3.2 Sentinel-1
Sentinel-1 (S-1), an active Synthetic Aperture Radar (SAR)

C-band sensor, was used in this framework. This sensor has the
ability to collect data in distinct polarizations and operate inmultiple
acquisition modes at various ground sampling distances (GSD)
(Mayer et al., 2021). The S-1 provides Level-1 Interferometric
Wide Swath (IW) mode and Ground Range Detected (GRD)
data set with a spatial resolution of 10 m (Potin et al., 2012). The
S-1 GRD image collection available in GEE was ingested and pre-
processed using the Sentinel-1 SNAP7 Toolbox (Sentinel
Application Platform, http://step.esa.int/main/toolboxes/snap/).
Wherein GRD border noise reduction, thermal noise reduction,
and radiometric calibration were then performed, followed by a
geometric terrain correction using the Shuttle Radar Topography
Mission (STRM) to produce a standard radar backscatter data set in
dB units as the final image collection available in GEE (Farr et al.,
2007).

The SAR imagery was then further pre-processed using the
ACES system. A Radiometric Terrain Flattening Algorithm (Small,
2011; Reiche, 2015; Vollrath et al., 2020) was applied, followed by a
Lee-sigma speckle filtering (Lee et al., 2008; Huang C. et al., 2018)
approach to reduce noise. The S-1 image collection was then filtered
for IW Swath mode and sorted into ascending and descending
Vertical-Vertical VV) and Vertical-Horizontal (VH) transmitter-
receiver polarizations data sets resulting in the final pre-processed S-
1 SAR image collection, all of which is done automatically using
ACES. Like S-2, S-1 is provided by ESA. S-1 provides 10 m spatial
resolution and a 6–10-day repeat cycle when both S-1 A and S-1 B
sensors are combined.

2.3.3 Additional data sets
High-resolution imagery available through Norway’s

International Climate and Forests Initiative (NICFI) provides
monthly and biannual Planet imagery mosaics of the tropics.
Planet and NICFI Basemaps for Tropical Forest Monitoring were
used in the training data collection and independent model
validation steps. The NICFI Basemaps are available at
approximately 5 m spatial resolution, with new maps produced
on a monthly and biannual basis (Team, 2017). The PlanetScope
Dove satellite system, used for these steps, is equipped with spectral
bands including Blue (455–515 nm), Green (500–590 nm), Red
(590–670 nm), and NIR (780–860 nm) (Lemajic and Åstrand,
2018). This NICFI imagery was accessed via GEE. The imagery
was imported into the Collect Earth Online (CEO) (Saah et al., 2019)
platform for the training data collection and independent model
validation efforts. Additionally, the Digital Elevation Model (DEM)
30 m data from the Shuttle Radar Topography Mission (SRTM)
(Farr et al., 2007) was also used. Specifically, the elevation and
derived slope were used as input features. The SRTM DEM data set
is available in GEE as an existing image.

2.3.4 Indices
Band indices from optical and SAR imagery can improve the

detection or quantification of specific surface characteristics. The
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Normalized Difference Vegetation Index (NDVI) and Soil-
Adjusted Vegetation Index (SAVI) are well-established
indices calculated from optical imagery used in vegetation
monitoring. The number of publications using NDVI for
vegetation monitoring has been increasing and has been
shown to be informative for detecting focal vegetation or
agriculture classes (Rouse Jr et al., 1973; Huang et al., 2021).
Similarly, the SAVI is sensitive to vegetation, but adjusts for
soil-vegetation interactions (Huete, 1988). The Normalized
Difference Water Index (NDWI) and the Modified
Normalized Difference Water Index (MNDWI) exploit the
differences between reflectance in the green and the NIR and
SWIR 1 bands, respectively, highlighting the presence of water
or flooded fields (McFeeters, 1996; Xu, 2006). The Normalized
Difference Moisture Index (NDMI) index is used to quantify
vegetation water content and can also signify the presence of
vegetation. Previous studies have used NDMI, often alongside
SAR, to quantify soil moisture or discriminate crops for
agricultural applications (Kyere et al., 2020; Tripathi and
Tiwari, 2022). Additionally, tasseled caps indices, using
Landsat 8 EO optical TOA imagery, produced brightness,
greenness, wetness, fourth, fifth, and sixth indices which
were calculated using bandwise computations, outlined in
Table 1. All computations and generation of indices were
performed using the ACES system in GEE (Kauth and
Thomas, 1976; Crist and Kauth, 1986; Baig et al., 2014).

However, optical sensors like Landsat are limited by cloud cover
and heavy rainfall. SAR bypasses issues of cloud cover and adds
information about the structure of the land surface (Flores-
Anderson et al., 2019). SAR indices not only complement optical
imagery by filling in these information gaps but can also be
important predictors of rice presence in studies implementing
similar modeling efforts (O’Shea et al., 2020). The structure of
both lowland and upland rice fields in Bhutan are generally
arranged linearly within a field, where transplanted rice crops
display a vertical structure during the growing season. This
vertical structure exhibits volume scattering and double bounce
scattering properties; these scattering types are considered relatively
sensitive to VV and VH polarizations (Flores-Anderson et al., 2019).
For this reason, SAR indices such as the (VV)/(VH) ratio and the
normalized difference ratio have been used to effectively distinguish
the unique structural signature of rice in Asia (Brisco et al., 2011;
Chen et al., 2016; Lasko et al., 2018). Overall the integration of
optical and SAR data has been shown to enhance the accuracy of rice
mapping (Choudhury, 2004; Zhao et al., 2021).

Data was acquired according to availability within the study
period and the phenology of rice. Landsat 7 was not used for the
following analysis; however, the ACES platform allows end-users to
leverage this sensor for future historical analyses. For Landsat 8, S-2,
and S-1, a median composite for the growing season months May-
October was utilized to derive the input features. Lastly, a DEM and
derived elevation and slope products were used as input features. In

TABLE 1 Set of 28 EO derived features used for model inputs in the ACES system.

Sensor Input feature Formula

Landsat 8 and Sentinel-2

NDVI (NIR - Red)/(NIR + Red) Rouse et al. (1973); Huang et al. (2021)

NDWI (Green - NIR)/(Green + NIR) McFeeters, (1996)

MNDWI (Green - SWIR1)/(Green + SWIR1) Xu, (2006)

SAVI 1.5*(NIR - Red)/(NIR + Red +0.5) Huete, (1988)

NDMI (NIR - SWIR1)/(NIR + SWIR1) Kyere et al. (2020); Tripathi and
Tiwari, (2022)

NDBI (SWIR1 - NIR)/(SWIR1 + SWIR1) Zha et al. (2003)

Landsat 8

Brightness bandwise coefficients 0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872

(Kauth and Thomas, 1976)

Greenness bandwise coefficients −0.2941, −0.243, −0.5424, 0.7276, 0.0713, −0.1608

(Crist and Kauth, 1986)

Wetness bandwise coefficients 0.1511, 0.1973, 0.3283, 0.3407, −0.7117, −0.4559

(Baig et al., 2014)

Fourth bandwise coefficients −0.8239, 0.0849, 0.4396, −0.058, 0.2013, −0.2773

Fifth bandwise coefficients −0.3294, 0.0557, 0.1056, 0.1855, −0.4349, 0.8085

Sixth bandwise coefficients −0.1079, −0.9023, 0.4119, 0.0575, −0.0259, 0.0252

Sentinel-1

VV Ascending and Descending VV

VH Ascending and Descending VH

VV and VH Ratio VV)/(VH) O’Shea et al. (2020)

VV and VH Normalized Difference Ratio (VV - VH)/(VV + VH) Brisco et al. (2011); Huang et al. (2018b)

NASA SRTM Digital Elevation 30 m Farr et al. (2007)
Elevation -

Slope -
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total, 28 EO features were employed as model inputs, all of which are
displayed in Table 1.

2.4 Training sample design

To effectively detect the focal class of rice using a machine
learning approach, the model must be provided with a supervised
training data set (Talukdar et al., 2020). Preparing and generating a
high quality EO-oriented training data set to facilitate the model
learning process requires a rigorous sampling design. Within
Bhutan, forest is the dominant landcover class currently
comprising 71% of the total area and Bhutan is mandated to
remain 60% forest in the future (Gilani et al., 2015; Bureau,
2022). To that, agriculture, at 2%–4% of the landscape, remains a
sparse class, and developing a sampling design to capture this limited
class was needed. The primary sampling domains were uniform 10
kha areas centered on major rice-growing Dzongkhags of Bhutan.
There were a total of five primary sampling domains, covering the
Dzongkhags of Paro, Punakha, Samtse, Sarpang, and Wangdue
Phodrang. A total of 100 uniform 10 ha secondary sampling units
were then randomly distributed within each of these five primary
sampling units. Within each secondary sampling unit, 30 m × 30 m
assessment plots were distributed using a stratified random sampling
approach. The strata used to place these samples were agriculture
and non-agriculture land cover classes as defined by the SERVIR
2018 Regional Land Cover Monitoring System (RLCMS), an open-

source land cover product covering the Hindu Kush-Himalaya
region (Uddin et al., 2021). For further detail and access, explore
International Centre for Integrated Mountain Development’s
(ICIMOD) Regional Database System. The assessment plot area
was selected as it corresponded to the spatial resolution of the most
coarse EO data, Landsat 8.1,001 30 × 30 m assessment plots were
placed across the 100 secondary plot units for each of the five
primary sampling units, resulting in a total of 5,005 assessment
plots. The training sampling designed is outlined in Figure 2.

Interpretation of high-resolution NICFI imagery was used to
categorize each 30 × 30 m assessment plot as either rice or non-rice
(Woodward et al., 2018). The open source software CEO (Saah et al.,
2019) allows users to inspect high and very high-resolution data
anywhere in the world enabling customized sampling surveys. For
all 5,005 assessment plots, a survey within CEO was designed
wherein nine equidistant points were bounded within the 30 ×
30 m plot to aid the data collection team in categorizing the plot.
Each point represented 1/9 of the assessment plot area and required
a categorization of rice/non-rice for the survey, resulting in a total of
45,045 responses. Plots that did not have sufficient imagery (e.g.,
cloud cover) were “flagged” in CEO. Only 1 plot was flagged,
resulting in a total of 5,004 usable plots. A team of data
collectors classified each assessment unit as either rice or non-
rice utilizing the following decision tree approach shown in Figure 3.

Preliminary testing of 5,004 assessment plots and subsequent
45,036 points was conducted to identify the plot level binary
threshold at distinct ratios. When considering an entire 30 ×

FIGURE 1
Study area map of the Kingdom of Bhutan.
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FIGURE 2
Agricultural classification and estimation service (ACES) workflow.

FIGURE 3
Training Sample Design leveraging Google Earth Engine, Collect Earth Online, and SERVIR’s Regional Land Cover Monitoring System.
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30 m assessment plot as rice or non-rice various thresholds starting
with less than or equal to (LTE) 2 of the 9 equidistant points were
reported as rice were applied. A total of six distinct thresholded
training data sets, 2/9, 3/9, 4/9, 5/9, 6/9, and 7/9, where the ratio of
mixed focal class was perturbed were investigated.

2.4.1 Independent model validation sample design
To independently assess the performance of the produced

models, an additional random stratified sample across Bhutan
was employed. This stratification was performed based on the
output of the final model for the years 2019 and 2020. Thus,
there were two strata for each year, predicted rice and predicted
non-rice. For each year, 300 points were randomly generated within
each strata resulting in a total of 1,200 points generated. Of these
1,200 plots, 1 was removed due to insufficient imagery for the
necessary time period, resulting in a total of 1,199 points used in the
independent validation.

Similar to the training sample design aforementioned, Planet
NICFI imagery was interpreted using CEO for all 1,199 points. The
same dimensions of a 30 × 30 m plot were used for the
interpretation. However, in this case, interpreters were instructed
to categorize a plot as rice if over 50% of the assessment plot was
interpreted to be rice. This data set was leveraged only for the
independent model assessment.

2.5 Model

A Random Forest (Breiman, 2001) supervised machine learning
model was used for classifying rice. Specifically, this Random Forest
algorithm utilized the smileRandomForest function available within
GEE and as a method in the ACES system. The Random Forest
algorithm is an ensemble-based method where “n” number of
decision trees are used to make the final prediction. Random
Forest has both classification and regression modes. For the
classification mode, the class is determined by the majority of
decisions from the ensemble, and for regression the average of
the predictions is used. The classification mode was used for this
analysis as a binary rice/non-rice output was produced.

2.5.1 Preliminary model testing
A series of preliminary testing efforts were conducted to evaluate

the sensitivity and influence of data set inputs and Random Forest
model parameters to develop the most robust model by perturbing
the following model constituents: Input data, Bag Fraction, Min Leaf
Population, Number of Trees, and Variables Per Split.

As aforementioned, the six LTE distinct rice/non-rice
thresholds were defined at the plot level, and are referred to as
LTE2, LTE3, LTE4, LTE5, LTE6, and LTE7. The bag fraction
hyperparameter ranged from 0.5 to 1 at increments of 0.1,
resulting in six unique settings. The minimum leaf population
ranged from one to five, thus resulting in five unique settings in the
preliminary phase. The number of trees ranged from 30–120 at
increments of 10, producing 10 unique settings. Finally, the model
was set to enable variable splits between null (i.e., no limit) and the
total number of input feature bands, in this case 28. As this was a
binary state, only two unique settings were produced for these
components.

With the series of preliminary tests, a total of 3,600 unique
models were generated (Input Data: 6 X Bag fraction: 6 X Min Leaf
Population: 5 X Number of Trees: 10 X Variables Per Split X 2).
Figure 7 provides a pairwise model performance comparison for
each LTE threshold set to each hyperparameter tuning approach.
For each of the 3,600 models, 75% of input data was used for model
training, and the remaining 25%were separated for testing purposes.
These splits were kept the same for each of the 3,600 iterations.
Following this series of trials, the best-performing model for each set
of LTE iterations are shown in Table 2 in the results section.

2.6 Post-processing

An additional post-processing step outlined in Figure 4 was
added to remove the erroneous model prediction for the final ACES
web application portal. Specifically, predicted rice pixels classified as
either glacier, bare soil, or bare rock from the corresponding annual
RLCMS map were removed as these were evident model over-
predictions. Lastly, in GEE, a connected pixel filter set to 30 m
was used to remove disconnected or non-contiguous predictions
thereby removing clear misclassifications for the final application.

2.7 Accuracy assessment

The following metrics were used to evaluate the cadre of models
and perform the independent model evaluation: Overall Accuracy
(Eq. 1) Precision (Eq. 2), Recall (Eq 3), F1-score (Eq. 4), and Cohen’s
Kappa (Eq. 5).

Using a standard confusion matrix, overall accuracy, precision,
and recall are produced. Overall accuracy is the summed number of
correctly classified observations divided by the total number of
observations. Precision is the ratio of correctly predicted positive
observations to the total predicted positive observations, while recall
is the ratio of correctly predicted positive observations to all the
observations in the focal class. This is often referred to as sensitivity.
The F-1 Score (Van Rijsbergen, 1979; Chicco and Jurman, 2020) is
then calculated using precision and recall and is the harmonic mean
of precision and recall, taking into account both the false positives
and false negatives. Cohen’s kappa (Cohen, 1960; Artstein and
Poesio, 2008) measures inter-annotator agreement. Kappa is
based on the confusion matrix and computes a score that
expresses the level of agreement between two annotators.

OverallAccuracy � TP + TN/TP + TN + FP + FN (1)
Precision � TP/TP + FP (2)
Recall � TP/TP + FN (3)

F1Score � 2* Recall*Precision( )/ Recall*Precision( ) (4)
Kappa K( ) � po − pe( )/ 1 − pe( ) (5)

Where:
Positive in this case is the presence of rice while Negative refers

to a non-rice classification.
TP is the True Positives, when the actual class and the predicted

class are both positive.
TN is the True Negatives, when the actual and predicted class are

both negative.
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FP is the False Positives, when the actual class is negative
whereas the predicted class is positive.

FN is the False Negative, when the actual class is positive, but the
predicted class is negative.

po is the probability of agreement for the focal class
pe is the expected agreement between both classes when labels

are randomly assigned.

3 Results

3.1 Model trials

All of the evaluation metrics were used in ranking and selecting
the best-performing model from the set of preliminary trials. For
each LTE model set, the best-performing models are displayed in

TABLE 2 Reported highest overall accuracy and kappa scores for each LTE model set.

LTE Bag fraction Min leaf population Number of trees Variables per split Test accuracy Test precision

2 1 1 50 No restriction 0.85 0.69

3 0.6 2 50 No restriction 0.85 0.66

4 0.7 4 50 28 0.85 0.69

5 0.6 5 80 No restriction 0.81 0.61

6 0.8 5 40 No restriction 0.81 0.61

7 0.8 2 90 No restriction 0.81 0.63

FIGURE 4
Image interpretation decision tree used to categorize assessment plots when collecting training and validation data using Collect Earth Online.
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Table 2. From that array of six training LTE data sets, the
LTE2 models outperformed the other five data sets. As displayed
in Figure 5, and Figure 7 both LTE2 and LTE4 observed overall high
median accuracies. However, LTE4 displayed more outliers and thus
lower evaluation metrics. Additionally, LTE data sets 5 through

7 displayed lower median accuracies and a wide range of variability.
Comparing all 3,600 models collectively through ranking all
evaluation metrics, model 555 displayed the highest testing
metrics: Overal Accuracy: 85.09%, Precision: 88, Recall: 88, F-1
score: 88, Kappa: 68. Specifically, model 555 was parameterized with

FIGURE 5
LTE2 555 model variable importance.

FIGURE 6
Distribution evaluation of the 3,600 model outputs by LTE model sets comparing test accuracies.
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the following settings: number of trees: 120, variables per split: no
restriction, minimum leaf population: 3, bag fraction: 0.8, and
utilized the LTE2 data set for training. This “LTE2 555” model
was used for all future analyses. Elevation, S2 MNDWI, and VH
ascending were the top three highest important input variables, for
the LTE 555 model, as displayed in Figure 6.

For each of the hyperparameter turning model constituents
outlined in Figure 7 which displays a high range of variability in
test accuracy when investigating bag fraction. The setting of
.08 displayed a relatively tighter distribution especially for the
LTE2-LTE4 data sets. In general, we observed that an increasing
number of trees resulted in improved accuracies most evident in
LET 2 and LTE 4. For both the minimum leaf population and
variables per split for the 3,600 models and each of the LTE data sets
we did not observe a clear advantage for perturbing these model as
the test accuracies distributions were consistently expansive.

3.2 Independent validation results

An independent validation was conducted utilizing the LTE2
555 model. This effort leverages 1,199 independent validation points
with the independently observed rice plots: 62, 98, and non-rice 537,
502, for 2019 and 2020 respectively. Reported metrics for the LTE2
555 model are provided in Table 3 and the confusion matrices for
2019, 2020, and collectively are reported in Figure 8. As evident in
Figure 9 and in the reported Table 3, the Precision, Recall, F-1, and
Kappa metrics for both 2019 and 2020 were relatively low. The
independent validation class balance between rice and non-rice plot
was greatly skewed to non-rice. This is a symptom of agriculture
being a sparse class, and a 50% threshold for the independent
validation at the assessment plot level. Figure 9 displays country
level rice prediction for 2020 and outlines the spatial distribution of
the independent validation data used for the analysis.

3.3 Application and implementation

Leveraging the methodology available in the ACES software
system outlined above, rice extent classification was performed for

the growing season (May-October) for the years of 2016–2021, using
the LTE2 555 model. These layers are hosted as a Google Cloud
Asset along with the geospatial ACES tool to enable end-users and
practitioners to query and interact with the data via a web browser.
This application allows end-users to visualize 5 years of rice crop
extent for the entire country of Bhutan and seamlessly filter by
district and sub-district regions. ACES summarizes the predicted
annual rice area extent by the filtered region and incorporates the
rice statistics reported by Department of Agriculture and the
National Statistics Bureau of Bhutan, allowing for direct
comparison within the dashboard. Predicted annual rice area
gain and/or loss are plotted for all years to evaluate the crop
rotation dynamics by a given region. In addition, the ACES
application has a dedicated climate and phenology-focused
information panel, displaying soil moisture, accumulated
precipitation, air temperature at 2 m above the surface, and the
median NDVI for the user-selected regions and years as shown
Supplementary Figure S2. Both the soil moisture and precipitation
data sets are acquired from the University of Idaho TerraClimate
group (Abatzoglou et al., 2018). The temperature data set is from the
European Centre for Medium-Range Weather Forecasts (ECMWF)
European ReAnalysis 5 (ERA5) project (Muñoz-Sabater et al., 2021).
Lastly, the median NDVI is derived using the same process outlined
in 2.3. Each of these data sets are available in GEE and these EO and
model data sets were co-designed as they are relevant climactic and
phenological indicators for informing crop condition.

FIGURE 7
Independent validation classification results.

TABLE 3 Independent Validation reported metrics for 2019 and 2020 LTE2
555 model output.

Metric 2019 2020

N 599 600

Overall Accuracy 0.89 0.83

Precision 0.55 0.43

Recall 0.48 0.46

F-1 Score 0.51 0.45

Cohen’s Kappa 0.45 0.34
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Due to the co-developed nature of the ACES tool, it has the ability
to complement decision-makers’ efforts by providing consistent,
efficient metrics for reporting at the sub-district level. ACES

provides key agriculturally relevant data quantification as well as
climate smart and streamlined EO solutions into a single dashboard to
inform a more resilient food security planning process. The focus on

FIGURE 8
Independent validation ACES model output 2020.

FIGURE 9
Agricultural Classification and Estimation Service (ACES) web application interface outlining crop type classifications, tool functionality, interactive
statistics and analysis panel, and finally climate smart visualization interface.
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developing geospatial capacity and co-development of
platforms aligns with the nation’s intent and drive to go
digital, and at the same time the application provides option
for data triangulation. Lastly, the ACES web application and
software package are both open source and freely available and
the partners are working to integrate the ACES system into the
Renewable Natural Resources (RNR) statistics and by the Policy
and Planning Division (PPD) for direct use.

4 Discussion

The creation and co-development of a geospatial application, when
well designed, has the ability to enable users to leverage previously
esoteric and inaccessible data sources and solutions. Specifically, a
geospatial service well positioned within an organization’s decision-
making process has the ability to drastically improve efficiency be that
by creating centralized databases, moving previous tabular data into a
spatial context and data structure, or integrating an array of data
sources, such as climactic or biogeophysical information. With a
lower barrier for making data-informed decisions, from a co-
developed service, institutions and organizations are more well
positioned to combat existing and future environmental challenges.
As the ACES application and software are available, significant
monitoring, evaluation, and learning (MEL) will be required to
assess the impact stemming from this climate-smart tailored
geospatial application.

As part of the co-creation of theACES system, crucial data processing
steps, limitations, and caveats were identified. Specifically, Bhutan is a
country that experiences a high percentage of cloud cover, which in turn
may affect the quantity and quality of the optical imagery employed for
the modeling efforts during the growing season. From the set of
3,600 preliminary model Elevation, S2 MNDWI, and VH Ascending
were consistently reported as the highest percent contribution for all
28 input features to the model, with elevation being the most important
input variable for all LTE sets. The S2 MNDWI optical imagery input
variable remained a consistently important variable indicating that the
median compositing approach for the growing season helped to alleviate
the reduced number of observations due to cloudy conditions.
Additionally, significant pre-processing of S-1 was required to combat
the common topographic errors when employing the S-1 GRD products.
These additional steps significantly increased the processing and technical
data manipulation. However, this resulted in a vastly improved data set,
as VH Ascending was consistently an important variable in the LTE sets.
We would recommend researchers and practitioners to pursue this level
of additional S-1 pre-processing, especially in extremely mountainous
terrain such as Bhutan.

A standardized sampling protocol for surveying and collecting
training data was also developed. The sampling protocol, utilizing
CEO, is a system that will enable stakeholders to replicate surveys
for annual data collection. See the Supporting Material for an
example CEO standardized survey. As part of the preliminary
testing, a significant focus of the analysis centered on evaluating
inherently heterogeneous 30 × 30 m assessment plots. As
Bhutan has extremely complex terrain, terraced fields are
especially challenging when modeling due to the constrained
field sizes and mixed land cover classes within plots. The
evaluation of each of the LTE sets allowed a clearer

understanding regarding the heterogeneity tolerance level at
the plots. With LTE2 555 being outlined as the best reported
heterogeneity split, where at least two of the nine equidistant
points were observed as rice, this suggests a greater preference
for class balance over homogeneous plots. More testing with
varied plot sizes and/or greater survey population size will
better elucidate this trend in future research. However, this
flexibility in the sampling design enables end-users to moderate
their own heterogeneity tolerance threshold at the plot level,
which is critical in extremely mountainous and diverse
landscapes. This standardized framework for field data
collection is critical in that it greatly reduces the level of
effort needed for generating remote sensing-oriented field
collections and systematizes the spatial data for reporting
and further analysis.

Lastly, a robust model was developed through a rigorous series of
preliminary testing and independent validation. The series of
hyperparameter testing conducted in the preliminary trials helped
to elucidate the most optimized parameterization and lended useful
insight as to the most impactful tuning approaches on model
performance. Specifically the hyperparameter bag fraction and
number of trees model settings were identified as the most
informative settings. Specifically a bag fraction at 0.8 for the LTE
2 data set displayed the lowest test accuracy variability and is a
recommended tuning setting for future implementations using ACES.
Additionally, we observed the correlation between the increased
number of trees and increasing test accuracies thereby we conclude
employing a high number of trees for training purposes when
leveraging the ACES system. The other model hyperparameter,
minimum leaf population and variables per split, did not offer a
clear accuracy distinction.

From this robust preliminary model trial effort, the best
performing model was identified: LTE2 555. This random forest
model provided 2020 evaluation metrics for Overall Accuracy: 85%,
83%; Precision: .88, .43; Recall: .88, .46; F-1 score: .88, .45; and
Kappa: .68 .34 for test and independent validation respectively. The
accuracy remained relatively high between the testing and the
independent validation phases. However there was a reduction of
Precision, Recall, F-1 score, and Kappa between these two distinct
phases. We surmise that these decreased evaluation metrics stem
from the independent validation rice/non-rice imbalance. For
instance, for 2020 of the 600 distributed plots 453 were
interpreted as non-rice seen in Figure 7. This imbalance can
greatly affect the utility of the final maps. Specifically, the
independent evaluation metrics support that the model is very
accurate, however this accuracy is most telling for detecting non-
rice instances due to the lack of independent validation rice
observations and thereby lower evaluation metrics. Therefore
future independent validation approaches will look to also utilize
the nine equidistant assessment plot interpretation approach, as a
threshold of 50% as identified through the LTE trials is unsuitable
for the complex terrain of Bhutan. With future work planned to
incorporate a more balanced independent validation approach we
expect metrics like Precision, Recall, F-1, and Kappa to improve for
this distinct phase. As outlined in the paper, the methodologies
employed for testing and developing the LTE2 555 Random Forest
model will enable stakeholders, researchers, and practitioners to
leverage the classification framework for future rice mapping efforts.
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With this clear description of the modeling framework, we hope that
this will greatly reduce the barrier to future applications leveraging
the software package ACES.

4.1 Future work

Developing a MEL assessment to evaluate the impact of the
ACES application will be critical in the coming years. Specifically,
exploring the value of this framework from the stakeholder
perspective will allow for future iterations and an improved
ACES application coupled with geospatial capacity-building efforts.

In future studies, we will investigate the data collection team
agreement strategy for scaled data collection, especially surrounding
independent validation efforts. Due to a small number of
misinterpreted training points, we will further stress a greater
rigor for future training sampling collection efforts. Additionally,
we recommend future CEO data collection efforts to specifically
incorporate more locations with glaciers and/or perennial snow as
these were observed sparse classes. This increased incorporation of
landscape diversity in the training data set could strengthen the
model performance. Additionally for future preliminary model
testing we will explore perturbing the number of trees far beyond
the highest setting of 120. Identifying the test accuracy performance
peak is warranted in future implementations of the ACES system.

As the ACES application focuses solely on rice classification, as it
was considered the highest priority by partners, all development focused
on this key species. However, the ACES software package is highly
flexible and has the ability to be redeployed geographically and/or
adjusted to focus on a different focal crop type. Exploring the sensitivity
of the LTE2 555 model settings both in different geographies and on
new crop typeswill be a future step for this research group. Additionally,
partners will plan to use the ACES application for ground thruthing to
assess the tool, as part of their annual field surveys.
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