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In this paper, we propose the copula-mixed frequency data sampling model
incorporating time-varying risk aversion (RA) (copula-MIDAS-RA model) to
investigate the impact of time-varying RA on the dynamic dependence
between crude oil futures and European Union allowance (EUA) futures
markets. An empirical analysis based on the daily data on the Brent crude oil
futures and EUA futures returns and the monthly data on the RA index shows that
the Student-t copula-MIDAS-RA model has better goodness-of-fit than other
copulas, suggesting that the tail dependence between crude oil futures and EUA
futures markets is symmetric and time-varying. More importantly, we observe that
the RA has a significantly positive impact on the dynamic dependence between
crude oil futures and EUA futures markets. That is, the dynamic dependence
between crude oil futures and EUA futures markets is expected to increase with
the level of RA increases. Moreover, we observe that the Student-t copula-MIDAS-
RA model improves the accuracy in risk management relative to other copula
models. Our findings have implication for hedging strategies and asset pricing.

KEYWORDS

crude oil futures, European Union allowance futures, dependence, time-varying risk
aversion, copula-MIDAS

1 Introduction

With the rapid development of the global economy, the burning of fossil energy has
produced a large amount of greenhouse gases, which has exacerbated global warming and
brought irreversible catastrophic consequences to the earth on which human beings depend
for survival and development. As a consequence, the global climate change that hinders
economic development, threatens human health and affects environmental improvement
has attracted more and more concerns of people (Han et al., 2019; Tol, 2020; Zhao et al.,
2020; Ahonen et al., 2022). In order to control greenhouse gas emissions, the United Nations
Framework Convention on Climate Change and the Kyoto Protocol have been proposed.
The Kyoto Protocol shows that on the basis of limiting the total amount of carbon emissions,
enterprises can purchase a certain amount of carbon allowances from enterprises with excess
carbon allowances to achieve their emission reduction targets. In this context, the European
Union established the earliest, largest and most active carbon emission trading market to
reduce the emission of greenhouse gas.(Bruninx et al., 2020). Furthermore, as a typical fossil
energy, crude oil combustion is one of the main sources of carbon emission. Therefore,
studying the dynamic conditional dependence between crude oil futures market and EUA
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futures market is of great importance for designing effective
strategies to reduce greenhouse gas emissions and to achieve the
goal of carbon neutralization.

However, in recent years, the EUA futures prices have
exprienced great fluctuations, which may be closely related to
crude oil prices (Liu et al., 2017; Dutta, 2018; Xia et al., 2019;
Krokida et al., 2020). Some scholar have further studied the
dependence between crude oil futures and EUA futures markets.
For instance, Yu et al. (2015) decompose the returns of the EUA
futures market and crude oil futures market in different time-scales,
and study the causal relationship between EUA futures market and
crude oil futures market by using a multi-scale analysis and causality
testing approach. They show that in a long time-scale, the long-term
trend of the two futures markets exhibits an obvious linear
relationship. Wang and Guo (2018) quantitatively study the
time-varying spillover effect between EUA futures market and
crude oil futures market by using the spillover index introduced
by Diebold and Yilmaz (2012) through the variance decomposition
of the prediction error, and reveal the asymmetric spillover effects
between two types of futures markets in return and volatility series.
Ma et al. (2021) propose a smooth transformation regression (STR)
model to study the correlation between crude oil futures market and
EUA futures market using the WTI futures and EUA futures prices,
and show that crude oil futures prices and EUA futures prices have a
mutual effect on each other, and there is a significant linear
correlation between the two markets. Zheng et al. (2021)
investigate the asymmetric relationship between oil prices shocks
and the carbon emission trading market in China by using the
nonlinear autoregressive distributed lag (NARDL) model, and show
that oil prices shocks have a long-term asymmetric effect on carbon
emission allowance prices, and the oil supply shocks are the main
factor causing carbon allowance prices changes. Ren et al. (2022a)
study the asymmetric relationship between different oil prices
shocks and EUA futures market from the perspective of supply,
demand and risk shocks. They show that the role of oil prices shocks
in affecting the inefficiency degree of the EUA futures market varies
depending on the source of the oil prices shocks. Ahonen et al.
(2022) use the dynamic correlation model combined with the
generalized spillover index proposed by Diebold and Yilmaz
(2012) to study the volatility spillover effect of the crude oil
futures market on the EUA futures market when the futures
price of West Texas Intermediate Crude Oil (WTI) was in a
negative period in 2020. Their empirical results show that when
the futures price of WTI was in a negative period, the spillover effect
of the crude oil futures market on the EUA futures market increased
significantly. Ren et al. (2022b) study the short-term, medium-term
and long-term effects of the crude oil futures prices on the EUA
futures prices by using the quantile Granger causality test and the
quantile-on-quantile regression methods, and show that the effects
of the crude oil futures prices on the EUA futures prices are different
in different time dimensions. In the short term, the crude oil futures
prices have a significantly negative impact on the EUA futures
prices, and have a significantly positive impact in the medium-term
and long-term. Although a large number of scholars have studied the
dependence between crude oil futures and EUA futures markets,
there is no consistent views.

Dispite the fact that EUA futures market is found to be closely
related to crude oil futures market at the theoretical and empirical

level, most of existing literature that focues on the dependence
between crude oil futures and EUA futures markets ignores the
influence of exogenous variables, such as economic, political and
investor sentiment (Qadan and Nama, 2018; Zhang and Li, 2019;
Wang et al., 2021). Qadan and Nama (2018) study the influence of
investor sentiment on the crude oil futures market and find that
volatility shocks spill over from investor sentiment to the crude oil
futures market, leading to fluctuation in crude oil futures prices.
Zhang and Li (2019) study the influence of investor sentiment on the
risk of crude oil futures market by using wavelet analysis, and find
that investor sentiment leads to downside risk in the crude oil
futures market. Wang et al. (2021) find that investor sentiment is
closely related to crude oil futures market under extreme shocks.
Recently, Bams et al. (2017) document that investor sentiment is
highly correlated with the risk aversion. Guiso et al. (2018) find that
after the 2008–2009 global financial crisis, both the qualitative and
quantitative indicators of risk aversion increased significantly.
Demirer et al. (2022) explore the predictive ability of RA on the
crude oil futures volatility. However, to the best of our knowledge,
few authors have studied the influence of RA on the conditional
dependence between crude oil and EUA futures markets. Thus, this
paper main objective is to investigate the impact of RA on the
dynamic conditional dependence between crude oil futures and
EUA futures markets.

In order to empirically investigate the impact of RA on the
dynamic conditional dependence between crude oil futures and
EUA futures markets, we use the RA index recently developed by
Bekaert et al. (2021). The RA index is constructed based on a
dynamic arbitrage-free asset pricing model using six financial
instruments, including the term spread, credit spread, detrended
dividend yield, realized and risk-neutral equity return variance and
realized corporate bond yield variance, which takes into account the
impact of different economic environments on investor risk
aversion. Note that the RA index is low frequency monthly
variables with different frequencied from daily crude oil futures
and EUA futures data. In order to deal with the problem of mixed
frequency data, the copula-MIDAS framework proposed by Gong
et al. (2018) is employed in this papaer. The copula-MIDAS model
provides a convenient framework for describing the dependence
between financial assets that exhibits obvious time-varying
characteristics, which allows explanatory variables to be directly
included in the dependence structure (Jiang et al., 2020; Nguyen and
Javed, 2021; Gong et al., 2022; Shi et al., 2022; Wu et al., 2022).
However, the copula-MIDAS model fails to investigate the influence
of RA on the dependence between crude oil futures and EUA
futurres merkats. Furthermore, a large number of literature show
that it is useful for time-varying copula model to investigate the
dynamic dependence (Patton, 2006; Hussain and Li, 2018; Oh and
Patton, 2018; Yao and Sun, 2018).

Inspired by the above insights, in this paper we propose the
copula-MIDAS-RA model to study the impact of RA on the
dynamic dependence between crude oil futures and EUA futures
markets. For implementation, we first use the AR-GARCHmodel to
fit the marginal distributions of crude oil futures returns and EUA
futures returns, and then use the copula-MIDAS-RA model to
estimate the joint distributions of crude oil futures returns and
EUA futures returns and to explore the impact of RA on the
dynamic conditional dependence between crude oil futures
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market and EUA futures market. The empirical results show that the
RA have a significant positive impact on the dynamic dependence
between crude oil futures market and EUA futures market.

The main contributions of this paper are as follows. Firstly, the
dynamic dependence between crude oil futures market and EUA
futures market is studied from the perspective of RA. Secondly, the
time-varying copula-MIDAS-RA model is proposed to measure the
dynamic dependence between crude oil futures and EUA futures
markets. Thirdly, an empirical analysis based on the daily data on
the Brent crude oil futures and EUA futures returns and the monthly
data on the RA index confirms that the RA does have a significant
impact on the dynamic dependence between crude oil futures
market and EUA futures market. Finally, we provide evidence
that accounting for the impact of RA on the dependence between
crude oil futures and EUA futures can improve the accuracy in risk
management.

The remainder of the paper is organized as follows. In Section 2,
we introduce our methodology, including the marginal distribution
model, the copula-MIDAS-RAmodel and the estimationmethod. In
Section 3, we describes the data. Section 4 presents the empirical
results, and Section 5 concludes.

2 Methodology

We use the copula-MIDAS approach to investigate the
impact of RA on the dynamic dependence between crude oil
futures and EUA futures markets. For implementation, we first
model the margin of the return series using the AR-GARCH
model, and obtain the standardized residuals. We then apply the
(re-scaled) empirical cumulative distribution function to the
standardized residuals and estimate the copula-MIDAS-RA
model via the two-step maximum likelihood estimation
procedure.

2.1 Models for marginal distributions

It has been well documented in the literature that financial
returns show some important stylized facts such as the
autocorrelation, conditional heteroscedasticity (time-varying
volatility) and volatility clustering. It is paramount to model such
features of the financial returns. A natural and simple model for the
financial returns is the AR-GARCH model. In this paper we adopt
the AR-GARCH model to model the margin of the crude oil futures
and EUA futures return series. The AR-GARCH models for
describing the return dynamics of the crude oil futures and EUA
futures can be written as.

ri,t � c0 + c1ri,t−1 + εi,t, i � oil, eua (1)
εi,t � σ i,tzi,t (2)

σ2i,t � ω + αε2i,t−1 + βσ2i,t−1 (3)

Where ri,t is the return series for the crude oil futures or EUA
futures, zi,t is the independently and identically distributed (i.i.d.)
random variable with zero mean and unit variance (standardized
residuals), and σ2i,t is the conditional variance of return series. We
impose the restrictions: ω > 0, α > 0, β > 0 and α + β < 1, which

ensure the non-negativity and stationarity of the conditional
variance process.

It has been documented in the literature that the empirical
results from the copula models are not sensitive to the choice of
GARCH specifications when the copula parameters are estimated
through the maximum likelihood, which is also adopted in this
paper (Aloui et al., 2013).

2.2 Copula functions

Copula introduced by Sklar (1959) has gained increasing
popularity in finance over the past decade. It provides a flexible
and efficient way to model correlated multivariate data. In fact,
copula is a multivariate distribution function with uniform margins,
which fully captures the dependence structure between the variables.
To investigate the interdependence between financial data, one can
simply construct a multivariate joint distribution by first specifying
marginal univariate distributions, and then choosing an appropriate
copula to examine the dependence structure between the variables.

Let Foil and Feua be the marginal distribution functions of zoil,t
and zeua,t, and F(zoil,t, zeua,t) the joint distribution function of zoil,t
and zeua,t. According to Sklar’s theorem, there exists a copula
function C: [0,1]2 → [0, 1] such that

F zoil,t, zeua,t( ) � C uoil,t, ueua,t|Θ( ) (4)
where uoil,t ≡ Foil(zoil,t), ueua,t ≡ Feua(zeua,t), and Θ is the parameter
vector of the copula function. It is clear that by the probability
integral transform a copula is a multivariate distribution function
that can be characterized by the uniform (0,1) margins and a
dependence (copula) function.

Compared to the traditional approaches that can only capture
the linear dependence between the variables, copula is able to
characterize more flexible dependence structure, such as the non-
linear and tail dependence. In particular, the lower tail dependence
coefficient λL and the upper tail dependence coefficient λU are
defined respectively as.

λL � lim
u→0+

Pr ueua,t ≤ u|uoil,t ≤ u[ ] � lim
u→0+

C u, u|Θ( )
u

(5)

λU � lim
u→1−

Pr ueua,t > u|uoil,t > u[ ] � lim
u→1−

1 − 2u + C u, u|Θ( )
1 − u

(6)

Where λL(λU) ∈ [0, 1]. If λL(λU) is positive, there exists lower (upper)
tail dependence. If λL = λU, there exists a symmetric tail dependence
between crude oil futures and EUA futures markets.

In the paper, we consider six popular copula functions: Gaussian
copula, Student-t copula, Gumbel copula, Clayton copula, Survival
Gumbel copula and Survival Clayton copula. They can be written as
follows.

Gaussian copula:

CGaussian u, v|θ( ) � ∫Φ−1 u( )

−∞
∫Φ−1 v( )

−∞
1

2π
�����
1 − θ2

√ exp −s
2 − 2θst + t2

2 1 − θ2( ){ }dsdt
(7)

where θ ∈ (−1, 1) and Φ−1(·) is the inverse of the standard normal
cumulative distribution function. The Gaussian copula does not
have tail dependence (zero tail dependence).
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Student-t copula:

CStudent−t u, v|θ, ]( ) � ∫t−1] u( )

−∞
∫t−1] v( )

−∞
1

2π
�����
1 − θ2

√ 1 + s2 − 2θst + t2

] 1 − θ2( )( )−]+2
2

dsdt

(8)
where θ ∈ (−1, 1), ] is the degree of freedom, and t−1] (·) denotes the
inverse of the standard Student-t distribution function. The Student-
t copula has symmetric tail dependence.

Gumbel copula:

CGumbel u, v|θ( ) � exp − −ln u( )θ + −ln v( )θ[ ]1/θ{ } (9)

where θ ∈ (1, + ∞). The Gumbel copula has upper tail dependence.
Clayton copula:

CClayton u, v|θ( ) � u−θ + v−θ − 1( )−1/θ (10)

where θ ∈ (0, + ∞). The Clayton copula has lower tail dependence.
Survival Gumbel copula:

CSurvivalGumbel u, v|θ( ) � u + v − 1 + CGumbel 1 − u, 1 − v|θ( ) (11)
where θ ∈ (1, + ∞). The Survival Gumbel copula has lower tail
dependence.

Survival Clayton copula:

CSurvivalClayton u, v|θ( ) � u + v − 1 + CClayton 1 − u, 1 − v|θ( ) (12)
where θ ∈ (0, + ∞). The Survival Clayton copula has upper tail
dependence.

The above copulas capture different patterns of tail dependence.
Table 1 summarizes the tail dependence of the above copulas.

2.3 Copula-MIDAS-RA model

This paper aims to study the impact of RA on the dependence
between crude oil futures and EUA futures markets. Nevertheless,
the traditional copula models do not allow us to link the dynamics
dependence to exogenous explanatory variables such as the RA. To
overcome this problem, we employ the copula-MIDAS approach,
which allows to directly incorporate RA into the dynamic
dependence structure. The copula-MIDAS model with RA
(copula-MIDAS-RA) can be written as.

uoil,t, ueua,t( ) ~ C uoil,t, ueua,t|θt, ]( ), θt � Ψ λt( ) (13)

λt � cτ + βcλt−1 + αc
1
S
∑S
s�1

Φ−1 ut−s( )Φ−1 vt−s( )[ ] (14)

cτ � �c + γ∑Kc

k�1
ϕk ωc( )RAτ−k (15)

Where θt is the time-varying parameter, which is assumed to be
driven by the latent dynamic process λt satisfying θt = Ψ(λt), ] is the
time-invariant parameter (for the Student-t copula), Ψ(·) is a
appropriate transformation to ensure that θt remains in its domain,
and Φ(·) is the standard normal cumulative distribution function. We
assume that |βc|< 1, which ensures that λt is a stationary process. S is the
lag order, which is determined by the Akaike information criterion
(AIC) and Schwarz information criterion (SC) criteria.

In the copula-MIDAS-RAmodel, cτ is referred to as the long-run
dependence, which is assumed to be time-varying, and is specified by
smoothing (monthly) RA in the spirit of MIDAS approach. It is clear
that γ captures the impact of the RA on the long-run dependence.
ϕk(·) is the Beta weighting function, which can be written as

ϕk ωc( ) � 1 − i/Kc( )ωc−1

∑Kc
i�1 1 − i/Kc( )ωc−1 (16)

where ωc is the weight coefficient, Kc is the number of MIDAS lags,
and ∑Kc

k�1ϕk(ωc) � 1.
The copula-MIDAS-RAmodel is flexible to capture the dynamic

dependence, and allows us to examine the impact of the RA on the
long-run dependence. Moreover, it includes the time-varying copula
model without incorporating explanatory variable as a special case
when γ = 0 (cτ � �c).

2.4 Estimation

We denote the marginal density of ri,t as fi(ri,t, Θi) with Θi = (c0, c1,
ω, α, β)′ for i = oil, eua andΘC � (αc, βc, �c, γ,ωc, v)′ is the parameter of
the copula dependence structure. Thus, we can obtain the parameter
Θ � (Θoil′ ,Θeua′ ;ΘC′ )′. According to Sklar’s theorem, the loglikelihood
function can be decomposed into the marginal distribution and the
copula structure. The log-likelihood function can be writen as

L roil,t, reua,t;Θ( ) � ∑T
t�1

log roil,1, reua,1, . . . , roil,t , reua,t;Θ( )
� ∑T

t�1
log foil roil,t;Θoil( )feua reua,t;Θeua( )c uoil,t , ueua,t;ΘC( ){ }

� Lroil Θoil( ) + Lreua Θeua( ) + LC ΘC( )
(17)

where uoil,t and uoil,t are marginal distribution.
According to Eq. 17, we can estimate the copula-MIDAS-RA

model using the two-step maximum likelihood estimation
procedure, which is also known as the inference functions for
margins (IFM). Notably, the IFM approach is computationally
less intensive relative to the one-step full maximum likelihood.
Moreover, Joe and Xu (1996) and Chen and Fan (2006) show
that the IFM method is highly efficient compared to the
maximum likelihood method.

In the first step, we estimate the parameters of the marginal
distribution models (AR-GARCH) through maximizing the
marginal likelihood:

TABLE 1 Tail dependence of the copulas.

λL λU

Gaussian copula 0 0

Student-t copula 2 − 2t]+1(
���
v+1√ ���

1−θ√���
1+θ√ ) 2 − 2t]+1(

���
v+1√ ���

1−θ√���
1+θ√ )

Gumbel copula 0 2–21/θ

Clayton copula 2–1/θ 0

Survival Gumbel copula 2–21/θ 0

Survival Clayton copula 0 2–1/θ
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Θ̂oil � argmax
Θoil

Lroil Θoil( ) (18)

Θ̂eua � argmax
Θeua

Lreua Θeua( ) (19)

Where Lroil(Θoil) and Lreua(Θeua) are the likelihood of the
margins, which are given by.

Lroil Θoil( ) � −1
2
∑T
t�1

ln 2 π + ln σ2oil,t + z2oil,t[ ] (20)

Lreua Θeua( ) � −1
2
∑T
t�1

ln 2 π + ln σ2eua,t + z2eua,t[ ] (21)

Once the marginal models (AR-GARCH) are estimated for the
crude oil and EUA futures returns, we extract the filtered residuals
zoil,t and zeua,t and construct their marginal distributions Foil and Feua
nonparametrically via the following (re-scaled) empirical
cumulative distribution functions.

ûoil ≡ F̂oil z( ) � 1
T + 1

∑T
t�1

1 zoil,t < z{ } (22)

ûeua ≡ F̂eua z( ) � 1
T + 1

∑T
t�1

1 zeua,t < z{ } (23)

Where 1{·} denotes the indicative function.
In the second step, we estimate the unknown parameter vector

ΘC of the copula as

Θ̂C � argmax
ΘC

LC ΘC( ) (24)

where LC(ΘC) � ∑T
t�1 ln c(ûoil,t, ûeua,t|Θ) is the copula likelihood.

It is clear that the IFM method separately estimates the
parameters of the marginal distributions and the copula
functions, which is flexible and can reduce the computational
burden.

3 Data

For our empirical analysis, we use the daily (log) return data on
the Brent crude oil futures and EUA futures and themonthly data on
the RA index. The Brent crude oil is chosen as it dominates the oil
market, and most oil is priced using Brent crude oil as the
benchmark. The daily (log) returns are calculated as ri,t =
log(pi,t) − log(pi,t−1), where pi,t is the closing price on day t and
i = oil, eua. The daily return data for the Brent crude oil futures and
EUA futures are obtained from the Wind Database of China for the
period from 2 January 2008 to 31 December 2021, resulting in a total
of 3,606 daily observations. The monthly RA data are obtained from
the website https://www.nancyxu.net/risk-aversion-index, for the
period from January 2008 to December 2021, resulting in a total
of 168 monthly observations. Figure 1 presents the time-series plots
of daily Brent crude oil futures returns and EUA futures returns. It
can be seen from the figure that both the returns series exhibit well-
known behaviors of time-varying volatility and volatility clustering.
Figure 2 presents the time-series plot of the monthly RA index. As
can be seen from the figure, during the periods of 2008–2009 global
financial crisis and COVID-19 outbreak, RA reaches very high
levels.

Table 2 reports the summary statistics of the daily Brent crude
oil futures returns (roil) and EUA futures returns (reua) as well as the
monthly RA index. We can observe that the EUA futures returns is
more volatile than the Brent crude oil futures returns, since it has
higher standard deviation. In addition, we find that both the Brent
crude oil futures and EUA futures returns exhibit negative skewness
and excess kurtosis, which deviate significantly from the normal
distribution in terms of the Jarque-Bera statistics. Furthermore, the
Ljung-Box statistics of Q(20) reveals the existence of autocorrelation
and heteroscedasticity of the return series. Therefore, it is reasonable
to apply AR-GARCH model to fit the returns series.

4 Empirical results

In this section, we first present the estimation results for the
marginal AR-GARCH models for the Brent crude oil futures and
EUA futures returns. Then, we report the estimation results for the
static copula models and time-varying copula models. Finally, we
assess the economic significance of accounting for the impact of RA
on the dynamic dependence between crude oil futures and EUA
futures markets from a risk management point of view.

4.1 Marginal model estimation

To use the copula approach to explore the dependence between
crude oil futures and EUA futures markets, we need first to
estimate the marginal models for the Brent crude oil futures
and EUA futures returns, and then construct the marginal
distributions. Table 3 reports the estimation results for the
marginal AR-GARCH models for the Brent crude oil futures
and EUA futures returns. As can be seen from the table, the
volatility persistence coefficient α + β is estimated to be close to
one, suggesting that the volatility process of the Brent crude oil
futures and EUA futures returns is highly persistent. Once the AR-
GARCH models are estimated, we can obtain the standardized
residuals (zoil, zeua), which are presented in Figure 3. The QQ plots
of the standardized residuals presented in Figure 4 show that the
standardized residuals obviously deviate from the standard normal
distribution. Using Eqs 22, 23, we can construct the (re-scaled)
empirical cumulative distribution functions (ûoil, ûeua). The copula
model requires the marginal distributions (ûoil, ûeua) have a
uniform distribution on (0,1). The Kolmogorov-Smirnow test
results reported in Table 3 suggest the null hypothesis that the
marginal model is correctly specified (marginal distributions have
a uniform distribution on (0,1)) can not be rejected. Thus, the
marginal AR-GARCH models we employ in this paper can fit the
non-normal and heteroscedastic crude oil futures and EUA futures
returns data well.

4.2 Static copula estimation

After appropriately constructing the marginal distributions, we
need to select an appropriate copula function to describe the
dependence between crude oil futures and EUA futures markets.
We consider six static copulas described in Section 2.2, including the
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Gaussian, Student-t, Gumbel, Survival Gumbel, Clayton and
Survival Clayton. The estimation results for the six static copulas
are presented in Table 4. As can be seen from the table, the
dependence parameter θ for all copulas is estimated to be
positive and highly significant, which indicates the existence of
the dependence between crude oil futures and EUA futures
markets. The reason for the result is because the rapid
development of the economy will lead to an increase in the use
of crude oil, thereby increasing the demand for crude oil, increasing
the price of crude oil, and crude oil combustion will also increase
greenhouse gas emissions, thus increasing the demand for carbon
allowances, thereby increasing EUA prices. In particular, we observe
that the Student-t copula achieves the highest log-likelihood values
and the lowest AIC values, followed by the Gaussian copula, which

suggests that the Student-t copula has better goodness-of-fit than
other copulas. This finding implies that the tail dependence between
crude oil futures and EUA futures markets is symmetric.

4.3 Time-varying copulas estimation

This paper aims to study the impact of RA on the dynamic
dependence between crude oil futures and EUA futures markets.
To do so, we use the two best-performing static copulas to
construct the corresponding time-varying copula models,
namely the time-varying Gaussian copula-MIDAS-RA model
and the time-varying Student-t copula-MIDAS-RA model. The
time-varying Gaussian copula-MIDAS-RA model focuses on the
linear correlation between crude oil futures and EUA futures
without tail dependence, while the time-varying Student-t

FIGURE 1
Time-series plots of daily Brent crude oil futures returns (roil) and EUA futures returns (reua). Source: Authors.

FIGURE 2
Time-series plot of monthly RA index. Source: Authors.

TABLE 2 Summary statistics.

roil reua RA

Mean −0.0001 0.0003 3.1603

Min −0.2798 −0.4347 2.4954

Max 0.1908 0.2405 8.0302

Std 0.0240 0.0315 0.9086

Skewness −0.6935 −0.8273 3.2366

Kurtosis 17.6057 18.0902 14.6302

Jarque-Bera 32323.5600 34606.0032 1240.1478

Q(20) 47.8501 89.2272 347.1557

ARCH(10) 406.4897 135.2191 115.8843

Note: Q(20) is the Ljung-Box statistic for autocorrelation up to 20 lags. Source: Authors.
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copula-MIDAS-RA model focuses on the symmetric tail
dependence between crude oil futures and EUA futures. In
contrast to the traditional copulas, the time-varying Gaussian

copula-MIDAS-RA and time-varying Student-t copula-MIDAS-
RA models are able to capture the impact of RA on the dynamic
dependence between crude oil futures and EUA futures markets.

TABLE 3 Estimation results of marginal AR-GARCH models.

c0 c1 ω α β Log-lik K-S

roil 0.0004 −0.0263 6.6063E-06 0.0997 0.8938 9.0598E+03 2.7739E-04

(0.0003) (0.0186) (1.1362E-06) (0.0046) (0.0055) (1.0000)

reua 0.0010 −0.0260 1.4610E-05 0.1253 0.8692 7.9120E+03 2.7739E-04

(0.0004) (0.0170) (1.7742E-06) (0.0069) (0.0070) (1.0000)

Note: Log-lik is the log-likelihood, and K-S is the Kolmogorov-Smirnov test statistics. Source: Authors.

FIGURE 3
Standardized residuals for Brent crude oil futures and EUA futures returns. Source: Authors.

FIGURE 4
QQ plots of standardized residuals for Brent crude oil futures and EUA futures returns. Source: Authors.
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The estimation results for the time-varying Gaussian copula-
MIDAS-RA and time-varying Student-t copula-MIDAS-RA models
are presented in Table 5. For the purpose of comparison, we also
report the estimation results for the time-varying Gaussian copula
and time-varying Student-t copula models without incorporating
RA in Table 5. It can be seen from the table that the estimated values
of αc are positive and significant in all cases, suggesting that the
dependence between crude oil futures and EUA futures is time-
varying and the static copula models may not be adequate for
describing the dynamic dependence between crude oil futures
and EUA futures markets. Furthermore, the estimates of βc are
statistically significantly negative in all cases, implying that the
dependence between crude oil futures and EUA futures exhibits
negative autocorrelation. The reason for this result is because, in the
short-term, rising crude oil prices will reduce the use of fossil energy,
thereby reducing greenhouse gas emissions, thereby reducing the

demand for carbon emission allowances, thereby reducing the price
of the EUA. It is interesting to note that the estimated γ is positive
and significant, which indicates that the RA has a significantly
positive impact on the dependence between crude oil futures and
EUA futures markets. Crude oil futures and EUA futures have
investment value and crude oil futures can be used as hedging
products for EUA futures, so RA can affect correlation by affecting
investor sentiment.

In terms of the log-likelihood and AIC values, the time-varying
Student-t copula-MIDAS-RA model has the best goodness-of-fit
performance. This result demonstrates that the tail dependence
between crude oil futures and EUA futures returns is not only
symmetric, but also displays short-run fluctuations and a long-run
trend. The outperformance of the time-varying Student-t copula-
MIDAS-RA model relative to the time-varying Student-t copula
model highlights the importance of accounting for the RA in

TABLE 4 Estimation results of static copulas.

Gaussian Student-t Gumbel Survival gumbel Clayton Survival clayton

θ 0.2200 0.2196 1.1299 1.1424 0.2502 0.2135

(0.0155) (0.0064) (0.0133) (0.0133) (0.0229) (0.0226)

ν 40.1364

(0.0101)

Log-lik 88.7301 89.7573 65.6379 81.9847 76.9568 56.1011

AIC −175.4603 −175.5146 −129.2758 −161.9695 −151.9135 −110.2022

Note: Log-lik is the log-likelihood, AIC is the Akaike information criterion. Source: Authors.

TABLE 5 Estimation results of time-varying copula models.

Time-varying Time-varying Time-varying Gaussian Time-varying student-t

Gaussian copula Student-t copula Copula-MIDAS-RA Copula-MIDAS-RA

αc 0.2777 0.2319 0.1500 0.1238

(0.0458) (0.0139) (0.0517) (0.0152)

βc −0.6840 −0.7748 −0.1942 −0.1893

(0.0558) (0.0184) (0.0665) (0.0246)

�c 0.5731 0.5538 −0.1394 −0.1480

(0.0307) (0.0118) (0.0611) (0.0310)

γ 0.5275 0.5324

(0.0538) (0.0294)

ωc 39.9983 39.96384

(2.4074) (2.2365)

] 3.6898 3.7328

(0.0012) (0.0019)

Log-lik 91.3286 92.4276 96.9634 97.9376

AIC −176.6571 −178.8553 −183.8868 −185.8752

Note: Log-lik is the log-likelihood, and AIC is the Akaike information criterion. Source: Authors.

Frontiers in Environmental Science frontiersin.org08

Wu and Zhu 10.3389/fenvs.2023.1152761

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1152761


explaining the dynamic dependence between crude oil futures and
EUA futures markets.

Figure 5 plots the estimated dynamic dependence between crude
oil futures and EUA futures based on the time-varying Gaussian

copula model and time-varying Gaussian copula-MIDAS-RA
model. Figure 6 plots the dynamic dependence between crude oil
futures and EUA futures based on the Student-t copula and Student-
t copula-MIDAS-RA models. We can find from Figures 5, 6 that the

FIGURE 5
Dynamic dependence between crude oil futures and EUA futures markets from the time-varying Gaussian copula-MIDAS-RA model. Source:
Authors.

FIGURE 6
Dynamic dependence between crude oil futures and EUA futures markets from the time-varying Student-t copula-MIDAS-RA model. Source:
Authors.
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dynamic dependence between crude oil futures and EUA futures
increases obviously when RA reaches high levels during the periods
of 2008–2009 global financial crisis and 2020 COVID-19 outbreak,
suggesting that the time-varying copula-MIDAS-RA models help us
to understanding the dependence structure between crude oil
futures and EUA futures markets and to explore more useful
information than other copulas without RA on the dependence
between crude oil futures and EUA futures markets.

4.4 Risk analysis

In this section, we assess the economic significance of
accounting for the impact of RA on the dynamic dependence
between crude oil futures and EUA futures markets from a risk
management point of view. In a world characterized by fast changes,
uncertainties and large fluctuations, risk measurement and
management have become an imperative task as well as an

FIGURE 7
VaR results of the time-varying Student-t copula model. Source: Authors.

FIGURE 8
VaR results of the time-varying Student-t copula-MIDAS-RA model. Source: Authors.

Frontiers in Environmental Science frontiersin.org10

Wu and Zhu 10.3389/fenvs.2023.1152761

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1152761


integral part of the operations of banking and financial institutions.
The recent financial crisis has also definitively emphasized the need
for a better understanding of risk and its quantification. To measure
the portfolio risk, we use the popular Value-at-Risk (VaR).

4.4.1 VaR model
VaRmeasures the maximum possible loss of financial assets held

by investors within a given period under a given confidence level,

such as 99% and 95%. VaR was first proposed by J.P Morgan, which
has become a standard tool for measuring and managing market
risk. Different from traditional risk measurement methods such as
the standard deviation, VaR is a useful risk measurement tool that
focuses on more sensitive downside risk of assets.

Let X be a loss variable and FX the distribution function of X. For
a given confidence level, p, the VaRp is defined as the p − quantile of
the distribution, FX:

FIGURE 9
VaR results of the time-varying Gaussian copula model. Source: Authors.

FIGURE 10
VaR results of the time-varying Gaussian copula-MIDAS-RA model. Source: Authors.
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VaRp X( ) � F−1
X p( ) (25)

In this section, we use Monte Carlo simulation method to
calculate the VaR of portfolio. To be specific, we follow Jiang
et al., 2020 and rely on the following four-step procedure to
measure the portfolio risk.

Step 1: Based on the cumulative distribution function obtained
by the optimal time-varying copula models, we can generate random
numbers ui (i = oil, eua).

Step 2: We transform the random numbers obtained from Step
1 into residual series via the inverse of probability integral
transformation and apply AR-GARCH model to obtain simulated
daily returns of financial assets ri (i = oil, eua).

Step 3: We calculate the resulting portfolio returns R = woilroil +
weuareua, where 0≤ woil, weua ≤ 1, and woil + weua = 1. In order to
simplify the analysis, we assume equal-weight portfolio, that is, we
consider woil = weua = 0.5.

Step 4: We repeat the above steps 5,000 times, and calculate
the VaR.

4.4.2 Backtesting
To evaluate the accuracy of VaR estimates, we employ the

backtesting approach. To be specific, we adopt the failure ratio
(FR) test proposed by Kupiec (1995) to examines whether the
number of exceptions is consistent with the given confidence
level. Further, considering the null hypothesis which is expressed
asH0: FR � F̂R � N/T, where F̂R is the observed (empirical) FR, N
is the number of exceptions and T is the number of total
observations. To formally test the null hypothesis, the likelihood
rate (LR) statistic is given by

LR � −2 ln 1 − p( )T−NpN[ ] + 2 ln 1 −N/T( )T−N N/T( )N[ ] (26)

where LR follows χ2 distribution with degree of freedom one. For the
LR test, the null hypothesis is that the risk model can produce
accurate risk measurement.

4.4.3 VaR results
For comparison purpose, we calculate the VaR for time-

varying Student-t copula, time-varying Gaussian copula, time-
varying Student-t copula-MIDAS-RA and time-varying
Gaussian copula-MIDAS-RA models for three different

significance levels: 0.01, 0.05, and 0.10, corresponding to 99%,
95% and 90% confidence levels. Figures 7–10 present the VaR
estimates for the time-varying Student-t copula, time-varying
Student-t copula-MIDAS-RA, time-varying Gaussian copula
and time-varying Gaussian copula-MIDAS-RA models,
respectively. To evaluate the effectiveness of different models,
we conduct the backtesting of VaR-based portfolio. The results
are reported in Table 6. We observe that the copulas
incorporating RA generally perform better than those without
RA in terms of FR and LR tests. In particular, we find that the
time-varying Student-t Copula-MIDAS-RA model consistently
exhibits optimal VaR results as the FR of the time-varying
Student-t copula-MIDAS-RA model is closer to the
corresponding VaR significance level (10%, 5% or 1%) than
that of other models (time-varying Gaussian copula, time-
varying Student-t copula, time-varying Gaussian copula-
MIDAS-RA). Moreover, we find that the time-varying
Student-t copula-MIDAS-RA model passes the LR test in all
cases, while the time-varying Gaussian copula-MIDAS-RA and
time-varying Gaussian copula models do not pass the LR test for
1% VaR. Overall, the time-varying Student-t copula-MIDAS-RA
model can better measure the extreme risk than other copula
models, and incorporating RA can significantly improve the
accuracy of VaR estimates.

5 Conclusion and discussion

In this paper, we propose the time-varying copula-MIDAS-
RA model to investigate the impact of RA on the dynamic
dependence between crude oil futures and EUA futures
markets. Our empirical results show that the tail dependence
between the crude oil futures and EUA futures markets is
symmetric and time-varying, and the Student-t copula-
MIDAS-RA model has better goodness-of-fit than other
copulas. Moreover, we observe that the RA has a significantly
positive impact on the dynamic dependence between crude oil
futures and EUA futures markets. That is, with the increase of the
level of RA, the dynamic dependence between crude oil futures
and EUA futures markets is expected to increase. Furthermore,
we assess the economic significance of accounting for the impact

TABLE 6 Back-testing results of VaR-based portfolio.

p Time-varying Time-varying student-t Time-varying Time-varying Gaussian

Student-t copula Copula-MIDAS-RA Gaussian copula Copula-MIDAS-RA

0.10 FR 0.0927 0.0941 0.0893 0.0891

LR 2.1972 1.4375 4.6979 4.9501

0.05 FR 0.0491 0.0499 0.0486 0.0491

LR 0.0602 0.0002 0.1594 0.0602

0.01 FR 0.0144 0.0142 0.0178 0.0175

LR 6.2794 5.5568 17.8041 16.6559

Note: FR is the failure ratio, and LR is the likelihood ratio test statistics. Source: Authors.
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of RA on the dynamic dependence between crude oil futures and
EUA futures markets from a risk management point of view. Our
empirical results show that the time-varying Student-t copula-
MIDAS-RA model can improve the accuracy in risk management
relative to other copulas which has important theoretical and
practical significance for financial market risk management and
control.

According to the research results, we put forward the
following suggestions: First, for investors, crude oil futures
and EUA futures can be attractive investment asset in the
financial market as well. Constructing a portfolio including
EUA futures and crude oil futures can effectively reduce the
investment risk of investors. Second, the government should
formulate the trade mechanism of the EUA futures market
and enhance EUA futures stability to increase investors
confidence. Third, the government should make relevant
policies to assist relevant enterprises to reduce greenhouse gas
emission. This paper proposed the copula-MIDAS-RA model to
investigate the impact of RA on the dynamic dependence between
crude oil futures and EUA futures, which is of great importance
for policymakers and investors.

It is worth noting that this paper can be further studied. Firstly,
we can further investigate the influence of multiple variables on
dynamic dependence between crude oil futures and EUA futures,
Secondly, we can investigate the spillover effect. Finally, it is also
meaningful to study the dynamic dependence by using the stochastic
copula model.
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