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An accurate economic loss assessment for natural hazards is vital for planning,
mitigation, and actuarial purposes. The widespread and costly nature of flood
hazards, with the economically disadvantaged disproportionately victimized
population, makes flood risk assessment particularly important. Here, flood risk
is assessed as incurred by the homeowner vs. the flood insurer for insured U.S.
properties through the derivation of average annual loss (AAL). AAL is estimated
and partitioned using Monte Carlo simulation at the individual home scale,
considering insurance coverage and deductible, and the first-floor height
(i.e., height of the first floor above the ground), to determine the AAL
proportion of homeowners (i.e., apportionment factor) for building and
contents, distinguished from that borne by the insurer. In general, AAL
estimates suggest that a large portion of the U.S. property flood risk is borne
by the flood insurer. The flood insurance policy deductible directly influences the
apportionment factor, whereby higher deductibles leave homeowners with a
higher annual risk; however, the apportionment factor remains relatively
insensitive to coverage values, especially for higher coverage amounts. The
homeowner’s flood risk is further reduced by freeboard, with AAL, following an
exponential decay trend as freeboard increases. These results reveal new
perspectives about how flood insurance protects homeowners from flood risk.
In general, the results enhance the proactive decision-making process that allows
homeowners to self-assess their degree of preparation and vulnerability to the
devastating economic impacts of flood.
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1 Introduction

Flooding is among the costliest natural hazards in the U.S. and
globally, in terms of loss of life and property, with impacts felt
disproportionately by the economically disadvantaged (United
Nations, 2004). Flooding affected 99% of U.S. counties between
1996 and 2019 (FEMA, 2021). The 36 flood events in the U.S. from
1980 to 2021 that each caused over $1 billion (consumer price index-
(CPI-) adjusted to 2020$) in damage generated a total of more than
$173.7 billion (CPI-adjusted) (National Oceanic and Atmospheric
Administration (NOAA) 2022) on impact. Even worse, flood
vulnerability in the U.S. is likely much greater than that currently
realized as Wing et al. (2018) found that FEMA flood maps may
undercount populations who live in the 100-year floodplain by as
much as 300%, with 41 million being a likely number.

The quantification of flood losses is important for monitoring
and mitigating flood hazards across space and time (Mostafiz et al.,
2022a). Flood losses have recently been quantified using
socioeconomic factors for individual households (Mohor et al.,
2021) and communities (Nofal and van de Lindt, 2020; 2021). In
light of the ever-increasing value of property at risk, policymakers
are increasingly adopting the approach of integrated flood risk
management, which includes the engagement of households in
flood insurance and structural flood protection measures at the
micro-level (Merz et al., 2010; Bubeck et al., 2012; Ward et al., 2013).
The availability of high-resolution spatio-temporal data and
computational advancement in recent years has also provided an
opportunity to enhance flood hazard modeling (Sampson et al.,
2015; Winsemius et al., 2016; Wing et al., 2017; Backes et al., 2019).
However, these efforts are challenged by continually increasing flood
impacts as the population in flood-vulnerable areas increases
(Hallegatte et al., 2013; Neumann et al., 2015). Climate change
effects are also considered agents of the changing flood risk (Aerts
and Botzen, 2011; Pryce and Chen, 2011; Hirabayashi et al., 2013;
Crick et al., 2018; Hudson et al., 2019; Nofal and van de Lindt, 2021)
that make quantification difficult. Consecutively, the changing flood
risk may demand that flood insurance coverage be augmented,
particularly as warming is expected to exacerbate the severity and
frequency of hydrometeorological events (Intergovernmental Panel
on Climate Change (IPCC), 2012; Hirabayashi et al., 2013;
Hattermann et al., 2014; Kundzewicz et al., 2014; Hattermann
et al., 2016; Arnell and Gosling, 2016; Löschner et al., 2017). The
extent to which insurance and homeowners pay for the impacts of
flood losses has not been well-established (Rahim et al., 2021).

Existing research tends to emphasize the quantification of total
flood loss rather than the direct economic impact on homeowners.
Most research studies on flood loss that include the economic
impact of flood insurance focus on the premium setting. Hsu
et al. (2011) applied an integrated flood risk assessment model,
where the average annual loss (AAL) and risk tolerance are
considered when setting the premium. In the first macro-scale
quantification of risk-based premiums for residences prone to
either storm surge or inland flooding, Michel-Kerjan et al. (2015)
used commercially developed probabilistic catastrophe models to
conclude that the National Flood Insurance Program (NFIP) may
overcharge or undercharge homeowners relative to the expected loss
that a representative private insurer could offer. Zhao et al. (2016)
examined the affordability of flood insurance under the Biggert-Waters

Flood Insurance Reform Act. Ermolieva et al. (2016) modeled
residential insurance premiums using a well-integrated catastrophe
risk management model that considers a range of offerings from the
insurer, involvement of individuals, and the complex interplay between
multivariate spatially and temporally explicit probability distributions of
flood losses and risk exposures of the stakeholders. Ermolieva et al.
(2016) found this technique to be advantageous over the traditional
AAL-based approach because of the integration of spatially explicit
financial arrangements for sharing flood losses, which guarantees the
program’s solvency under all relevant flood scenarios rather than one
average event. However, Ermolieva et al. (2016) did not apportion the
flood risk between the homeowner and insurer. Similarly, research that
focuses on the cost-benefit analysis of flood mitigation techniques
through the reduction of flood AAL either does not specifically
consider the homeowner’s benefit (de Moel et al., 2014; Ward et al.,
2017; de Ruig et al., 2020) or considers that the entire AAL is borne by
the homeowner (Foster, 1976; Xian et al., 2017; Zarekarizi et al., 2020).
Agent-based modeling approaches have also been used to enhance the
understanding of flood insurance decision-making, particularly the role
of public–private partnerships in the United Kingdom (Dubbelboer
et al., 2017) and the interactive relationships between costs, premiums,
and housing prices in the U.S. (de Koning et al., 2019). However, little
attention has been given to the role of insurance coverage and
deductible choices and their effects on the homeowner flood risk.

The literature that focuses on the effects of coverage on the
owner economic experience of flooding typically does so
qualitatively or in a limited fashion. Dávila et al. (2014) noted
the effectiveness of withholding of coverage as a means of
restricting development in flood-vulnerable areas in Europe.
Sandink et al. (2016) called for increased awareness at the
household level in Canada, regarding the specifics of flood
insurance coverage and an increased share of the expense
through risk-based insurance pricing and conditions.
Thistlethwaite et al. (2020) agreed that Canadians have limited
knowledge of flood insurance coverage that they tend to view
insurance and individual-level protection measures as mutually
exclusive and that they depend on governments for fund flood
recovery. Davies (2016) also lamented the prevailing tendency for
Canadians to rely on governmental disaster assistance and
recommended wider private insurance coverage and increased
premiums for public flood insurance. Although Song and Wang
(2020) and Zhao et al. (2020) developed a framework for relating
catastrophe insurance to the community recovery process
qualitatively, the model was not developed specifically for
flooding. Kousky (2019) summarized the role of insurance
coverage in the existing literature by noting its enhancement of
recovery outcomes (also supported by Mitsova et al. (2019) for
hurricane outcomes) and its lesser impacts on risk reduction. Miškić
et al. (2017) seemed to somewhat disagree, arguing that the policy
can stimulate insurance coverage, which can, in turn, reduce the risk.
A key point is that these conclusions were reached for natural
hazards in general; there remains a dearth of research that links flood
insurance coverage in the U.S. quantitatively to flood recovery
outcomes.

This research study generates single-family home flood risk
estimates to derive apportionment factors (i.e., homeowners’
proportion of AAL). Flood loss events are modeled at the
individual building level using Monte Carlo simulation (Rahman
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et al., 2002; Brodie, 2013; Qi et al., 2013; Yu et al., 2013; Hennequin
et al., 2018; Kind et al., 2020; Gnan et al., 2022a; 2022b; Rahim et al.,
2022), in which the flood hazard is characterized by the Gumbel
extreme value distribution function (Singh et al., 2018; Bhat et al.,
2019; Prasanchum et al., 2020; Kim and Lee, 2021; Manfreda et al.,
2021; Al Assi et al., 2022a; 2022b; 2023; Mostafiz et al., 2022b; Gnan
et al., 2022c; Mostafiz et al., 2022c; Mostafiz et al., 2022d; Friedland
et al., 2023). A depth-damage function (DDF) from the
United States Army Corps of Engineers (USACE, 2000) is used
to estimate the loss of each flood event. The losses are apportioned to
the homeowner or the insurer based on the insurance parameters
(i.e., coverage and deductible). The homeowner or insurer AAL
portion and the apportionment factor are calculated by averaging
the homeowner or insurer loss for all flood events and dividing the
homeowner AAL portion by the total AAL, respectively. Two case
studies are presented here to demonstrate the methodology. The first
case study is conducted with a hypothetical one-story home located
in Metairie, Louisiana. The second case study includes the spatial
heterogeneity in building analysis where the buildings located in the
special flood hazard area (SFHA) are considered. For both cases, the
apportionment factors are estimated using different coverage,
deductible, and freeboard (i.e., elevation of the first floor above
the base flood elevation) scenarios. The effect of coverage and
deductible on the apportionment factor is examined.
Furthermore, the effect of freeboard on the estimated AAL is also
evaluated.

The contribution of this paper is the novel characterization of
apportionment factors for homeowner-borne annual flood risk based
on flood insurance deductible and coverage values. Researchers will find
utility from this method to better estimate the impacts of floods
experienced by homeowners. The results from this work will greatly
enhance webtools and education/outreach materials for the general
public, realtors, homebuilders, and community leaders. Educational
information derived from this research will assist individual
homeowners in making more informed decisions regarding the
purchase of flood insurance, and the selection of insurance coverage
and the associated deductible.

2 Method

The method consists of characterizing the flood hazard at a
defined location using the Gumbel extreme value distribution and
estimating flood AAL usingMonte Carlo simulation. The simulation
generates random flood event probabilities, and the corresponding
losses are calculated using an appropriate DDF, with the damage
apportioned to either the homeowner or the flood insurer for each
flood event based on insurance coverage and deductible scenarios.
The apportioned losses are averaged over all flood events to estimate
AAL for the homeowner and flood insurer.

2.1 Flood hazard parameters

To estimate the annual flood hazard occurrence probability at
the individual building level, the Gumbel extreme value distribution
function is used, with special attention given to the location (u) and
scale (α) parameters. The cumulative distribution function (CDF) is

the annual probability that a stochastic variable X is less than or
equal to a flood event of depth D (annual non-exceedance
probability) and is written as follows:

F D( ) � P X≤D( ) � exp −exp − D − u

α
( )[ ]{ } (1)

Solving the CDF yields the quantile of the distribution as follows:

D � F−1 F D( )( ) � u − α ln −ln p( )[ ]{ } (2)
where p � P(X≤D). The annual exceedance probability (AEP)
describing the likelihood of a flood event occurring with depth D
is (1 − p).

The method used for the Gumbel parameter (u and α)
estimation in this paper is a modified version of that
described in Mostafiz et al. (2022d), who proposed an area-
specific Gumbel parameter estimation method, in contrast to
the present research that calculates building-specific (i.e., point-
based) parameters. The Gumbel distribution is fit for using
available flood depth data for a building. A linear least-square
regression is performed to identify the relationship between
depth and the double natural logarithm transformation of a
non-exceedance probability to estimate the parameters in Eq.
2. The Gumbel parameters u and α are the intercept and slope
values of the regression line, respectively, as shown in Figure 1.
Figure 1 also shows the 100-year return period flood event (rp100)
and corresponding depth D100.

For most residential buildings, the u value should be
negative as positive flood depths for lower return period
floods would only be possible for waterlogged terrains. The
site-specific u and α are corrected as needed to ensure the u
parameter is negative (Mostafiz, 2022c; Mostafiz et al., 2022d).
For locations where the u value is positive, a 2-year return
period flood depth threshold value of -0.1 feet is incorporated
with other flood depth data. Because the double logarithmic
transformation is used, 2 years is the lowest return period
considered to prevent an undefined result. The Gumbel
distribution is again fit using the additional 2-year return
period flood depth data, and the u value is checked. If the u
value is still positive, the threshold value is decreased by
increments of -0.1 feet until u becomes negative.

FIGURE 1
Gumbel quantile function showing the location (u) and scale (α)
parameters for a building.
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2.2 Depth-damage function

Flood depths are converted to loss values using DDF. DDFs have
been developed based on insurance claim data, post-flood surveys,
and expert solicitation (USACE, 2015). The USACE (2000) DDF is
considered one of the empirical sources of DDF in the U.S. (Mostafiz
et al., 2021a; 2021b; Gnan et al., 2022a). A DDF shows the
relationship between flood depth (D) above the building’s first
floor height (FFH), named DS (Eq. 3) and the loss relative to
the building replacement value (L(%)). The associated relative loss is
multiplied by the building replacement value to determine flood loss
in dollars.

DS � D − FFH (3)
The USACE (2000) DDF is used in this study to convert DS to

corresponding flood losses (Figure 2). The DDF points are fitted
using polynomial regression to obtain functional forms. The
building (R2 = 0.9971) and content (R2 = 0.9979) loss functions
are provided in Eqs 4, 5, respectively. It should be noted that Eqs 4, 5
are negative at DS � −2 and are, therefore, truncated in their
implementation to ignore the negative values.

L %( )B � 0.0015 DS( )3 − 0.3373 DS( )2 + 9.0339 DS( ) + 15.413 (4)
L %( )C � 0.0014 DS( )3 − 0.2105 DS( )2 + 4.9117 DS( ) + 8.9651 (5)

where DS represents the flood depth above a building’s FFH; D
represents the flood depth above the ground.

2.3 Flood risk estimation

AAL is estimated as the mean of the loss vs. annual exceedance
probability distribution (Gnan et al., 2022a; 2022b) and forms the
basis for flood risk quantification and evaluation of risk mitigation
measures (Dalezios, 2017). It is generally calculated for loss type F
(e.g., building and contents) by integrating the flood loss function
L(P) across a range of flood probabilities (Eq. 6).

AALF � ∫Pmax

Pmin

LF P( )dP (6)

where P min corresponds to the lowest AEP (a flood event with a
longer return period) and Pmax corresponds to the highest AEP (a
flood event with a shorter return period). In Eq. 6, AAL is expressed
generally and has been calculated in relative (i.e., percentage of the
building replacement value) or absolute (i.e., dollar value) terms.

This study approximates the integral solution using Monte
Carlo simulation of N flood events, with the simulation
generating a random annual exceedance probability (p̂) value
between 0 and 1 for each run i, such that

p̂i � random 0, 1( ) (7)
Using the simulated probability from Eq. 7, the flood depth for

each event (D̂i) is estimated using Eq. 2. The simulated depth above
the first floor for simulation i (D̂Si) is then calculated using the
relationship expressed in Eq. 8.

D̂Si � D̂i − FFH (8)
The D̂Si value is then used as the input to the loss functions

(Eqs 4, 5) to estimate flood loss as a percentage of the building
replacement value for simulation i (L(%)Fi). This loss percentage
for loss type F (Eq. 9) is multiplied by the building replacement
value (BRV($)) to yield the replacement dollar value of the flood
loss (L($)Fi). BRV is estimated for a particular building by
multiplying the habitable area of the building by the unit
replacement cost. The values from N runs are then averaged
to calculate the total AAL for both the building and contents
(Eq. 10).

L $( )Fi � L %( )FipBRV $( ) (9)

AALFT �
1
N

∑
N

i�1
L $( )Fi (10)

2.4 Homeowner AAL apportionment

To evaluate the effect of coverage and deductible on loss
apportionment factors, an array of coverage and deductible values
and their combinations are considered for multiple scenarios. The

FIGURE 2
USACE (2000) DDF for a one-story home without basement: (A) building and (B) contents.
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values for insurance coverage and deductible in the scenario under
consideration are input so that L($)Fi is partitioned into the cost borne
by the homeowner (L($)FiH) vs. that assigned to the flood insurer
(L($)FiI). Three decision rules are used to allocate the flood loss
between the homeowner and the flood insurer. Specifically,

1) If the loss does not exceed the deductible, then the
homeowner bears the entire loss and the flood insurer’s
share is zero;

2) If the loss exceeds the deductible but not the insurance coverage,
the homeowner’s portion of the loss is considered to be the

FIGURE 3
AAL estimation process using Monte Carlo simulation.

FIGURE 4
Effect of coverage and deductible on the homeowner apportionment factor: (A) change in the apportionment factor with building coverage for each
deductible, (B) change in the apportionment factor with content coverage for each deductible, (C) change in the apportionment factor with the building
deductible where each point represents a coverage, and (D) change in the apportionment factor with content deductible where each point represents a
coverage.
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deductible and the flood insurer’s portion is the difference
between the loss and the deductible; and

3) If the loss exceeds the insurance coverage, the homeowner’s
portion of the loss is equal to the deductible plus the difference
between the loss and the coverage, and the flood insurer portion
of the loss is the difference between the coverage and the
deductible.

The values from N runs are then averaged to calculate the
portion of AAL that would be expected to be borne by the
homeowner (AALFH, Eq. 11) and by the flood insurer (AALFI,
Eq. 12). The homeowner proportion of the total AAL (i.e., the
homeowner apportionment factor, AFH) is calculated using Eq.
13. Although not expressed mathematically, the expected
insurer portion of the annual flood risk is the complement
of AFFH.

AALFH � 1
N

∑N

i�1L $( )FiH (11)

AALFI �
1
N

∑N

i�1L $( )FiI (12)

AFFH � AALFH

AALFT

(13)

2.5 Freeboard effects

The effect of freeboard is considered by increasing FFH
incrementally in Eq. 8 and repeating the calculation of each
scenario using Eqs 7–13.

3 Case study

3.1 Single building analysis

A one-story, single-family home with 2,500 square feet of
living area in Metairie, Louisiana, a suburb of New Orleans, is
selected for analysis. The ground elevation is -7.0 feet

NAVD88 and the base flood elevation (BFE; i.e., the 100-year
flood elevation) is -4 feet NAVD88, giving a minimum FFH of
3 feet. Freeboards of 0, +1, +2, +3, and +4 feet above the BFE
were considered to evaluate the effect of freeboard on
apportionment factors. The unit replacement cost of a single-
family residence in the New Orleans area is $110 per square foot
(Doheny, 2021), which yields an estimated BRV of $275,000.

Flood depth grids for this site are developed by FEMA through
its Risk MAP (FEMA, 2022) program. Flood depths for 10-, 50-,
100-, and 500-year return periods, with 0.1, 0.02, 0.01, and
0.002 AEPs, are 2.3, 2.8, 3.1, and 3.6 feet above the local ground,
respectively. As the building is located in a levee-protected area, the
flood depths are relatively large.

Monte Carlo simulation is run for 50,000 flood events. Random
AEPs are generated for each flood event. The AEP is converted to
flood depth using u and α (Eq. 2). The corresponding loss percentage
from the USACE (2000) building and content loss functions (Eqs. 4,
5) is then multiplied by BRV to obtain the simulation loss in dollars
(Eq. 9) and the total AAL (Eq. 10).

For single-family homes, $60,000 is the basic building coverage
and $25,000 is the basic contents coverage, with maximum limits of
$250,000 for the building and $100,000 for contents (NFIP, 2021).

FIGURE 5
Effect of freeboard on the homeowner AAL apportionment factor: (A) change in the apportionment factor with a freeboard for each building
deductible and (B) change in the apportionment factor with a freeboard for each content deductible.

TABLE 1 Average apportionment factors for the building and contents by a
deductible and freeboard.

Deductible Freeboard

0 feet +1 foot +2 feet +3 feet +4 feet

$1,000 0.05, 0.11 0.06, 0.11 0.06, 0.11 0.06, 0.12 0.05, 0.12

$1,500 0.08, 0.16 0.08, 0.16 0.08, 0.16 0.08, 0.17 0.08, 0.17

$2,000 0.1, 0.2 0.11, 0.21 0.11, 0.2 0.11, 0.21 0.11, 0.21

$3,000 0.15, 0.27 0.16, 0.29 0.16, 0.28 0.16, 0.29 0.15, 0.29

$5,000 0.24, 0.41 0.25, 0.42 0.25, 0.42 0.25, 0.42 0.23, 0.4

$7,000 0.32, 0.52 0.33, 0.54 0.33, 0.54 0.33, 0.54 0.3, 0.5

$10,000 0.42, 0.65 0.44, 0.66 0.44, 0.66 0.43, 0.66 0.39, 0.65
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NFIP (2021) requires a minimum and maximum deductible of
$1,000 and $10,000, respectively, for the building and contents.
For these reasons, building coverage of $60,000, $75,000, $100,000,
$125,000, $150,000, $175,000, $200,000, $225,000, and $250,000;
content coverage of $25,000, $50,000, $75,000, and $100,000; and
building and content deductibles of $1,000, $1,500, $2,000, $3,000,
$5,000, $7,000, and $10,000 were selected for Monte Carlo
simulation. Thus, for the building and contents, 315 and
140 scenarios, respectively, of coverage, deductible, and freeboard
were considered. For each scenario, Monte Carlo simulation is run
and the partitioned AALs and the homeowner apportionment
factors are estimated using Eqs 11–13.

3.2 Analysis with spatial heterogeneity

As the buildings are located in the SFHA, base flood depth
(BFD) will exceed zero. Substituting p for the 100-year return period,
for which base flood depth (BFD) is assumed to exceed zero in the
SFHA (Eq. 14), into Eq. 2 yields Eq. 15:

BFD � u − α ln −ln 1 − 1
100

( )( )( ) (14)
u � BFD − 4.6*α (15)

The α parameter, which represents the scale parameter,
should exceed zero. Here, a range of the α parameter is

selected where the starting value of α is 0.05 and it increases
incrementally with an increment of 0.05 up to 1.5. The
corresponding u parameters are estimated using Eq. 8. As long
as the building conforms to the minimum BFE elevation
requirement, the BFD value does not matter and does not
impact the AAL values. Regarding insurance parameters, the
coverage values are considered in increments of $25,000, starting
from $75,000 and ending at $250,000. Deductible values are taken
in increments of $1,500, starting from $1,000 and ending at
$10,000. The assumed habitable area of the building is $2,000.
The replacement costs for building units are considered in
increments of $25, ranging from $100 to $200. Using the
combination of u, α, FFH, building replacement value, and
insurance parameters, Monte Carlo simulation is performed
for each scenario and AAL borne by the homeowner and the
insurer and apportionment factors are estimated.

4 Results

4.1 Flood risk estimation

For each combination of coverage, deductible, and freeboard,
homeowner building and content AAL and associated
apportionment factors are estimated through Monte Carlo
simulation. Figure 3 shows an excerpt of the building AAL
estimation process for the “no freeboard” scenario with
building coverage and deductible values of $175,000 and
$1,500, respectively.

4.2 Single building analysis

4.2.1 Flood hazard parameters
Given the high magnitude of flood depths, the Gumbel

parameter estimation requires several iterations to achieve a
negative value for u. The final Gumbel parameters are estimated
as u �–0.0475 and α � 0.6658.

TABLE 2 Total building and content AAL for each freeboard scenario.

Freeboard AALBT AALCT

0 feet $2,068 $1,302

+1 foot $479 $304

+2 feet $106 $67

+3 feet $22 $14

+4 feet $4 $3

FIGURE 6
Effect of freeboard on the AAL: (A) exponential decay trend of the total and homeowner’s building AAL and (B) exponential decay trend of the total
and homeowner’s content AAL.
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4.2.2 Homeowner AAL apportionment
By definition, the apportionment factor is 1.0 for uninsured

homes, meaning the homeowner is accountable for the total
flood risk. The effect of deductible and coverage on the
apportionment factor is shown in Figure 4 for the no
freeboard scenario. When the building and content coverage
exceed $100,000 and $50,000, respectively, the homeowner
apportionment factor appears relatively insensitive to the
coverage amount for a given deductible (Figures 4A, B). The
results show that for a deductible value of $1,500, AFBH is
0.10 for the basic building coverage of $60,000, whereas it
decreases with increasing coverage and becomes stable at
0.08 when the building coverage exceeds $100,000. Similarly,
AFCH is 20% for the basic content coverage of $25,000 and
decreases to a steady value of 14% when the content coverage
exceeds $50,000.

Figures 4C, D show the effect of deductibles on the
apportionment factor for the building and contents, respectively.
The deductible value is a statistically significant (p < 0.05)
explanatory variable for the apportionment factor, the latter of
which increases with the increasing deductible (Supplementary
Table S1). For example, the average AFBH (averaged across
building coverage for each deductible) is 0.05 for a
$1,000 deductible, which increases to 0.42 when the deductible
value increases to $10,000. Similarly, the average AFCH (averaged
across contents coverage for each deductible) is 0.11 for a
$1,000 deductible, which increases to 0.65 when the deductible
value increases to $10,000.

4.2.3 Freeboard effects
Figures 5A, B show the effect of a freeboard on the homeowner

apportionment factor with the increasing freeboard for the building
and contents, respectively, where the apportionment factors are

FIGURE 7
Scatterplots of (A) total AAL ($), (B) homeowner AAL ($), and (C)
apportionment factor (AF) with the α-parameter.

FIGURE 8
Scatterplots of (A) total AAL ($), (B) homeowner AAL ($), and (C)
apportionment factor (AF) with a freeboard.
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averaged over coverage values for each deductible. The homeowner
apportionment factor appears to be relatively insensitive to
freeboard. For example, the results show that for a
$1,500 deductible, AFBH is approximately 0.08 and AFCH is
approximately 0.16 for all freeboard scenarios. A full list of
apportionment factors by a deductible and freeboard is given in
Table 1.

Table 2 provides the total AAL values for the building (AALBT)
and contents (AALCT) for each freeboard scenario, which are shown
graphically in Figure 6. AAL follows an exponential decay
distribution with the R2 value exceeding 0.99 for both the
building and content cases. For both cases, AAL approaches
minimal values at or above 2 feet of freeboard. A 1-foot
freeboard reduces AAL by approximately 77%, where adding an
additional foot of freeboard decreases the total AAL by
approximately 95%.

Figure 6 also shows the trend of the homeowner portion of AAL
for the building (AALBH) and contents (AALCH), averaged over all
freeboard scenarios. The homeowner portion of AAL also decreases
exponentially (R2 value greater than 0.99) and approaches aminimal
value at or above 2 feet of freeboard for both building and content
cases.

4.3 Spatial heterogeneity analysis

4.3.1 Exploratory data analysis
Before fitting any models, exploratory data analysis (EDA) is

conducted to gain visual insights and understand the relationships
within the data. One of the steps is to prepare scatterplots, which

FIGURE 9
Scatterplots of (A) total AAL ($), (B) homeowner AAL ($), and (C)
apportionment factor (AF) with coverage values.

FIGURE 10
Scatterplots of (A) total AAL ($), (B) homeowner AAL ($), and (C)
apportionment factor (AF) with deductible values. This figure explores
the influence of the deductible parameter on homeowner AAL ($)
and AF.
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provide visual representations of the data, allowing for the
examination of the effects of hazard parameters, insurance
parameters, and the building’s unit replacement cost.

Figure 7 shows scatterplots depicting the relationship
between three variables, total AAL ($), homeowner AAL ($),
and the apportionment factor (AF), with respect to the α-
parameter. The plots with respect to the u-parameter are
shown in Supplementary Figure S1. The total AAL ($)
represents the total flood risk of a building, the homeowner
AAL ($) indicates the portion of the risk borne by the
homeowner, and AF represents the proportion of the risk
borne by the homeowner. The total AAL ($) value decreases
as the α-parameter increases. Interestingly, the homeowner AAL
($) remains constant for lower α-values and only starts to

decrease after surpassing a certain threshold. Additionally, the
homeowner AAL ($) values for these α-values happen to be equal
to the deductible values. This suggests that for extremely low α-
values, the homeowner’s portion of the risk is determined solely
by the deductible. Examining AF in the same scatterplots, it is
apparent that a trend increases initially as the α-parameter
increases, but after a certain point, it starts to decrease. This
indicates that the proportion of the risk borne by the homeowner
initially rises but then begins to decline as the α-value continues
to increase. Figure 8 shows the same scatterplots with freeboard
parameter. The total and homeowner AAL values decrease
exponentially with increasing freeboard and approach zero at
2 feet of freeboard. The AF increases for 1 foot and 2 feet of
freeboard and then decreases.

Figure 9 focuses on the effect of the coverage parameter. The
scatterplots suggest that the coverage value does not appear to have
any significant impact on the total AAL ($), homeowner AAL ($), or
AF. Regardless of the coverage amount, these variables remain
relatively stable. Figure 10 shows the effect of the deductible
parameter. The scatterplots clearly illustrate that the deductible
has a considerable influence on the estimation of the homeowner
AAL ($) and subsequently the AF. As the deductible value increases,
homeowner AAL ($) also increases, indicating that a higher
deductible results in a greater portion of the loss, and
subsequently, the risk is borne by the homeowner. So, the AF
value also increases.

Finally, Figure 11 shows the impact of the unit replacement cost
(UC). The scatterplots demonstrate that UC has a notable effect on
the estimation of the total AAL ($) and, consequently, the AF. As UC
increases, the total AAL ($) also increases. However, it is worth
noting that the homeowner AAL ($) remains unchanged despite the
variations in UC. As the total AAL ($) increases but the homeowner
AAL ($) does not change, the AF value decreases with
increasing UC.

4.3.2 Model analysis
When running regression models, it is generally recommended

to start with simpler models before progressing to more complex
models. This approach helps save computational time and storage
space if a simple model provides a satisfactory fit. The analysis
initially used a simpler model of multiple linear regression (MLR),
using the α-parameter, coverage, deductible, and UC parameter as
the independent variable and AF as the response variable. To assess
the model’s performance, the dataset is divided into training and
testing datasets, allocating a test size of 0.25. An analysis of variance
(ANOVA) is conducted, revealing that the MLR model is
statistically significant with a p-value of the F-test less than
0.0001. Furthermore, all the variables exhibit statistical
significance, with p-values less than 0.0001. The root-mean-
square error (RMSE) value is 0.103. On the training data, the
coefficient of determination (R2) is 0.654, and on the testing data,
R2 is 0.673. Although this simpler MLR model performed well, the
R2 value is still relatively low for practical applications.

Given the limitations to the MLR model in capturing the non-
linear behavior of the data, more advanced Machine Learning (ML)
models are considered next. Considering the unsatisfactory fit of the
MLR model, an ML model is applied, starting with a less complex
model, the Classification and Regression Tree (CART) model. The

FIGURE 11
Scatterplots of (A) total AAL ($), (B) homeowner AAL ($), and (C)
apportionment factor (AF) with the unit replacement cost (UC)
parameter. This figure explores the effect of UC on total AAL ($)
and AF.
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CART model is a decision tree-based model commonly used in ML.
Before fitting any ML model, MinMaxScaler from the sklearn
package is used to scale the data. Using the scaled training data,
the CART model is trained and used subsequently to make
predictions using the scaled testing data. The CART model yields
promising results with an RMSE value of 0.0056 and an R2 value of
0.999. This considerable improvement in performance is
noteworthy, especially considering that the CART model has
fewer complexes in the realm of ML. With the performance
value achieved with the CART model, no additional models are
fit. The feature importance values are shown in Supplementary
Figure S2, where it shows that the deductible is the most important
feature.

5 Discussion

5.1 Single building

The case study revealed that AF, the proportion of AAL that
homeowners incur, increases with the increasing deductible. This
means that with a higher deductible, the homeowner assumes a
greater proportion of the flood risk, although higher deductibles
will reduce the insurance premium. For smaller deductibles, the
insurance premium will be greater but the homeowner assumes
less flood risk, and a larger portion of AAL will be borne by the
flood insurer. The AFs initially decrease with the coverage
increase ($60,000– $100,000 for building and

$25,000–$500,000 for contents), but above $100,000 for the
building and $50,000 for contents, they become relatively
insensitive to changes in coverage.

Total AAL scales with the building replacement value.
Therefore, as the construction costs rise, the total AAL
proportionately increases as a function of cost. However, since
coverage and deductible values are expressed in fixed values of
absolute currency, the apportioned homeowner and insurer shares
will change with the rising building replacement value. To
understand the effect of greater construction costs, the case study
analysis was again completed using a UC of $220 per square foot,
which doubles the BRV used in the case study. Figure 12 shows the
building and content AFs considering no freeboard scenario. AF
shows a similar trend with the coverage and deductible values when
compared with the results in Figure 4. AFs sharply decrease when
the coverage value increases from the basic coverage amount to
$100,000 for the building and $50,000 for contents, beyond which
the AF becomes stable and relatively insensitive to the coverage
amount for a given deductible (Figures 4A, B). The deductible has a
linearly increasing relationship with the AFs.

5.2 Spatial heterogeneity

The scatterplot provides valuable insights into the relationships
between various parameters and outcome variables. It reveals that
the α-parameter has a substantial impact on the total AAL ($),
homeowner AAL ($), and AF. As α increases, the total AAL ($)

FIGURE 12
Effect of greater unit replacement cost (220 $/square foot) with coverage (A,B) and deductible (C,D) on the homeowner apportionment factor for
the building and contents, respectively.
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decreases, while the homeowner AAL ($) remains constant for
extremely lower α-values before decreasing. This suggests that the
deductible value plays a crucial role in determining the homeowner’s
portion of the risk. AF initially increases with α but eventually
decreases, indicating changes in the distribution of risks between the
homeowner and the insurer.

The effects of coverage, deductible, and UC are also examined.
The coverage parameter has no significant impact on the total AAL
($), homeowner AAL ($), or AF. In contrast, the deductible has a
substantial influence on the homeowner AAL ($) and AF. Higher
deductibles result in higher homeowner AAL ($), leading to an
increased proportion of the risk borne by the homeowner. The UC
has a notable effect on the total AAL ($), affecting AF as well. As UC
increases, the total AAL ($) increases, while the homeowner AAL ($)
remains unchanged, resulting in a decrease in AF.

The findings from the EDA enhance the subsequent model
analysis. Initially, a MLR model is applied, which provides
reasonable results. However, considering the limitations to the
MLR model in capturing the non-linear behavior of the data, a
more advanced ML model, specifically the CART model, is used.
The CART model shows remarkable improvement in performance,
achieving a substantially lower RMSE and a high R2 value.

In both cases, freeboard decreases AAL and homeowner AAL
exponentially. This exponential decrease in total and homeowner
building AAL with the increasing freeboard attests to the
importance of a freeboard in reducing the flood risk for buildings
and homeowners. The AAL approaches minimal values at or above
2 feet of freeboard in the case study, where 2 feet of freeboard reduces
the total and homeowners AAL by 95% for both building and content
cases. The combination of flood insurance and a freeboard diminishes a
building’s flood risk for homeowners to a great extent.

The present research takes an initial step toward understanding
the allocation of homeowner and flood insurer shares of the
residential flood risk. Thus, these results will be of interest to
homeowners, insurance companies, and lending institutions as all
seek to minimize the risk and optimize the cost-benefit ratio in the
pursuit of economic sustainability, vis-à-vis the most important
investment that most will ever make.

6 Conclusion

The aim of this research is to assess the flood risk for the
individual homeowner and examine the effect of insurance coverage,
deductible, and home freeboard. Flood risk for an individual
building is modeled using the Monte Carlo approach, with the
annual flood hazard occurrence probability represented by the
Gumbel extreme value distribution function. Based on the
insurance coverage, deductible, and freeboard, the
homeowner and flood insurer shares of the AAL are
determined. The case study shows the substantial impacts of
flood insurance and freeboard in reducing the flood risk borne by
the homeowner.

The specific findings of the single building case study are as follows:

• The homeowner is accountable to bear the overall building
and content AAL for uninsured homes, but for insured homes,
a large portion of AAL is borne by the flood insurer,

particularly for building loss, which translates into a lower
flood risk associated with homeowners.

• For all combinations of coverage and deductible, the
homeowner building AF is less than 50%, while at low
values of flood deductible (e.g., $1,000), the homeowner
building AF is approximately 5% for all coverage levels.

• For all combinations of coverage and deductible, the
homeowner content AF is less than 70%, while at low
values of flood deductible (e.g., $1,000), the homeowner
content AF is approximately 10% for all coverage levels.

• The AFs are relatively insensitive to coverage, especially for
higher coverage values. The AF for each deductible decreases
when the coverage value increases from the basic coverage
amount and remains essentially constant for coverage values
exceeding $100,000 and $50,000 for the building and contents,
respectively.

• The deductible is a statistically significant (p < 0.05)
explanatory variable for the AF, with a higher deductible
resulting in higher homeowner building and content AFs.

• The AF is relatively insensitive to a freeboard. However,
freeboard decreases the total (building and contents) and
homeowner AAL exponentially. Both the total and
homeowner portions of AAL approach minimal values with
a freeboard of 2 feet and above.

The specific findings of the spatial heterogeneity case study are
as follows:

• The flood hazard parameter (α) has a significant impact on the
total AAL ($), homeowner AAL ($), and AF. Extremely lower
α-values align with deductible values, influencing the
homeowner’s portion of the risk.

• The results show a limited impact of coverage on AAL and AF
values, a significant influence of deductibles on the homeowner
AAL and AF, and the effect of UC on the total AAL and AF.

• The MLR model provides reasonable results but struggles to
capture non-linear behavior.

• The CART model provides significant improvement in
performance.

The results from this research support further evaluation of how
floods directly impact homeowners, including freeboardmitigation, and
how the homeowner flood risk varies with the changes in insurance
coverage and deductible levels. It should be noted that in this analysis,
only the direct losses to the structure (e.g., removal and replacement of
flooring and drywall) and losses to building contents (e.g., furniture,
vehicles, and clothing) are considered. Items of sentimental value and
indirect losses (e.g., time unemployed and hotel expenses incurred
during renovation) are not considered.

In future work, the methodology can be expanded to include
some or all of these indirect losses if the relevant loss functions are
known. Additionally, life-cycle cost analysis should be undertaken to
evaluate the cost of flood insurance premiums with the changing
coverage and deductible to identify the choices that may be most
economically advantageous to homeowners based on their risk
tolerance. Although AF was insensitive to change for higher
coverage values for this specific case study, future research
should focus on locations with different flood hazard
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characteristics to determine how flood characteristics might change
this finding.

The findings of this research are very promising as a subsequent
study might reveal that the homeowner AAL proportion can be
reasonably pre-calculated and applied to the total AAL value, which
is relatively straightforward to calculate. This capability would
facilitate the estimation of flood losses experienced by
homeowners, particularly if the uncertainty can be incorporated
(Zarekarizi et al., 2020), supporting research that attempts to
understand adaptive strategies in flood risk management (Davids
and Thaler, 2021) and factors affecting flood loss recovery and
mitigation decisions in their proper context (Rufat et al., 2020).
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