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Global lakes play an active role in releasing carbon into the atmosphere. However,
previous research was less focused on shallow tropical and sub-tropical lakes,
especially ecosystem respiration during the drawdown period. This study was
designed to determine the environmental factors that determine ecosystem
respiration during the drawdown period in a typical shallow sub-tropical lake,
Dongting Lake in China. Ecosystem respiration from the exposed mudflat and a
newly colonized meadow were investigated using a Li-8100 soil CO2 flux system
in situ. The soil water content soil organic carbon (SOC), dissolved organic carbon
(DOC), total nitrogen and soil C/N ratio were measured at 0–30 cm soil depth
layers. No difference was found among different soil depth layers for soil
properties, while the dissolved organic carbon value varied significantly among
different levels of the cumulative days of the mudflat exposed to the air (CDE).
Carex colonizing significantly increased soil organic carbon and DOC at the
surface soil layer. Exposure to the air and Carex colonizing together
strengthened the intensity of carbon dioxide (CO2) emission in the mudflat,
achieving 0.716 ± 0.114 μmol m-2s-1 and 2.240 ± 0.375 μmol m-2s-1,
respectively. Exposure to the air led mudflat to exceed other landscapes or
different vegetation types in Dongting Lake, becoming the most active area
releasing CO2 into the atmosphere, with the respiration flux reaching a peak
period at around 60 days after exposure, which was enormously reinforced by
Carex colonizing. Reducing the area and duration of mudflat exposure to the air
during the drawdown period might be useful in reducing CO2 emissions to the
atmosphere in shallow sub-tropical lakes.
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1 Introduction

Global wetlands store a large proportion of the global land carbon and can play a critical
role in the global carbon cycle (Mitra et al., 2005; Lal, 2008). In particular, wetlands account
for 20%–30% of the global soil organic carbon (SOC) pool (Bridgham et al., 2006), and have
been a net carbon sink in recent decades with an average net carbon retention rate of
118 g C m-2 yr-1 (Mitsch et al., 2013). However, changes in climate and wetland ecological
features could turn them from carbon sinks into carbon sources (Oechel et al., 1993; Hadden
and Grelle, 2016; Zhou et al., 2018). Freshwater bodies, such as streams, rivers and lakes, have
produced a large amount of CO2 (Schrier-Uijl et al., 2011; Wang et al., 2011). It is reported
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that global lakes alone emit 1943 Tg CO2 to the atmosphere every
year (Williamson et al., 2009). Nevertheless, most studies on wetland
carbon cycles mainly focus on boreal peatlands (Fan et al., 2013;
Wang et al., 2015; Karlsson et al., 2021), while research on the
carbon cycle of tropical and subtropical wetlands, especially of the
subtropical shallow lakes, is somewhat limited (Hu et al., 2015;
Amaral et al., 2020; Calamita et al., 2021; Paranaíba et al., 2021).

Many subtropical wetlands experience seasonal cycles of water
table (Carmignani and Roy, 2017). With the fluctuation of water
table, some parts of the wetland soils periodically shift between an
aerobic and anaerobic environment. This periodical water table
fluctuation can strongly impact soil properties and the processes
of subtropical wetland carbon cycle (Marcé et al., 2019; Keller et al.,
2020; Machado dos Santos Pinto et al., 2020). A high water table may
sustain the carbon stock of wetland by preventing aerobic
respiration, whilst exposure to the air under low water table can
greatly influence the CO2 emissions from the terrestrial ecosystem to
the atmosphere (Couwenberg et al., 2010; Swails et al., 2022).
However, the extent to which the water table fluctuation may
impact soil humidity, bulk density, soil carbon and the temporal
dynamics of ecosystem carbon exchanges, still remain obscure,
largely due to the lack of monitoring data. Moreover, with
climate change and enhanced anthropogenic activities, many
subtropical wetlands have experienced substantial land
transformations and land cover changes, and can permanently
alter the water table level (Zhao et al., 2002; Maertens et al.,
2022; Richardson et al., 2022). Such land cover changes and land
transformation-induced water table level alternation, together with
periodical water table cycle, have profound implications for wetland
carbon balances (Hu et al., 2015; Johnson et al., 2022). In particular,
ecosystem respiration, a key component of the carbon cycle, can
change dramatically in response to changes in land cover and water
table level (Zhou et al., 2014; Ma et al., 2022; Li et al., 2023a).
Quantifying the ecosystem respiration responses to water table
variations in lacustrine mudflats, therefore, is important for
understanding and predicting subtropical wetland carbon cycles.

The Dongting Lake in Hunan Province, China, is a typical
subtropical ephemeral lake located in the middle of the Yangtze
River Basin. As one of the last two large Yangtze-connected lakes,
the average monthly water level of the Dongting Lake fluctuates
between 20.19 and 30.24 m (Shi et al., 2012). Consequently, the
littoral areas are completely inundated in summer flood season,
but are exposed to the air in autumn–winter with an annual
drawdown period lasting about 4–6 months. In recent decades,
due to the water volume control of the Three Gorges Dam, the
hydro-condition of downstream wetlands has greatly changed
(Feng et al., 2013), resulting in even longer winter drawdown
periods in Dongting Lake (Lai et al., 2013). During the drawdown
periods, littoral plants, such as Carex, extensively emerge and
grow continuously almost throughout the drawdown period,
turning mudflats into meadows (Lei et al., 2014). This
mudflat-to-meadow shift during the drawdown period suggests
that autotrophic respiration may also substantially contribute to
the total ecosystem respiration, which has been scarcely
investigated to date. The main objective of this study,
therefore, is to measure and understand ecosystem respiration
from both mudflats and meadows in the Dongting Lake wetlands
during the winter drawdown period. The dynamics of ecosystem

respiration (including both plant autotrophic respiration (Rp)
and soil respiration (Rs)) can be influenced by varied biotic and
abiotic factors, such as vegetation activity (Urbanova et al., 2012;
Ives et al., 2013; Wang et al., 2021), the quantity and quality of
soil properties (Fan et al., 2013) and soil moisture (Zhou et al.,
2014). To understand how these factors may influence ecosystem
respiration, we also measured soil and climate factors, including
soil water content (SWC), SOC, dissolved organic carbon (DOC),
total nitrogen (TN), temperature at 5 cm soil depth (T5) and air
temperature in the meantime.

2 Materials and methods

2.1 Site description and site selection

Dongting Lake is the second largest freshwater lake in China
located in the north of Hunan Province in central-southern China.
Dongting Lake drains into the Yangtze River and is characterized
with a continental subtropical monsoon humid climate. It has four
distinct seasons featuring a warm and humid summer and a cold and
dry winter. The long-term (1950–2012) annual mean temperature is
16.6°C–17.0°C, while the annual average precipitation is
1,200–1,400 mm (Lei et al., 2014).

We collected soil samples and measured fluxes of ecosystem
respiration from 9 mudflat-sites close to the area of freshwater
body during the drawdown period (Figure 1). As the area of
mudflat and the spatial locations of the 9 sites vary greatly, we
sampled different plots among the sites (Table 1). We collected
the daily data of water level in Dongting Lake (data from website
of Yangtze River hydrology, http://www.cjh.com.cn/pages/sssq.
html) to determine the time of each sampling plot being exposed
to the air (above the water level), and the cumulated days of
exposure (CDE) at each plot were calculated. All 23 sampling
plots can be divided into 3 categories based on their CDE,
i.e., <30, ≈60 and >90 days. In addition, we also sampled soils
and measured ecosystem respiration for seven meadow plots at
the sites TED, XXH, CF and HQH (Table 1). All meadow plots
were placed close to a mudflat plot, constructing one-to-one
comparisons.

2.2 Ecosystem respiration measurements

Ecosystem respiration was measured on sunny days in
January 2015 using a Li-8100 soil CO2 flux system with an
opaque chamber (LI-COR Inc., Lincoln, NE, United States of
America). We set a 20-m-long sampling line for each sampling
plot, and placed three PVC collar (20cm diameter; 15 cm height)
equal-distance along each sampling line with the collars installed
2–3 cm above ground. The collars were installed at least 3 days
before the measurement to minimize human disturbances. Each
measurement lasted 2 min, meanwhile CO2 flux is calculated
using linear fit. T5 and air temperature were measured adjacent to
each respiration collar with a portable temperature probe
provided with the Li-8100. SWC at 5 cm depth was also
measured with a portable probe provided with the Li-8100 at a
point close to each chamber.
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2.3 Soil properties

We also collected soil samples at 0–10, 10–20 and 20–30 cm
depth at each sampling plot close to the middle collar in January
2015. In order to fully assess the impact of soil properties on
ecosystem respiration, we measured the following soil properties:
SWC, TN, DOC, SOC and C/N. Soil samples were divided into three
sets. The first set of soil was air dried for TN and SOC
measurements. The SOC of dried samples was measured with a
potassium-dichromate oxidation procedure after H2SO4–HClO4

digestion (Semenov et al., 2010). Additionally, the TN of dried
samples was measured using a flow injection analyzer
(Star5000,FOSS, Denmark). The second set of soil was remained
fresh for DOC measurements. The DOC of the fresh samples was
measured with an Organic Carbon Analyzer (TOC-vwp,
SHIMADZU, Japan). The third set of soil samples was weighed
in the field, and then dried to a constant weight. The difference
between the two weights is the weight of water, and SWC was
calculated as the ratio of the weight of water content to the constant
weight of the dry soil sample.

FIGURE 1
Distribution of sampling zones in Dongting Lake. The dark area shows the area of water body during the drawdown period, while the white area
shows the mudflat and meadow exposing after water retreating.

TABLE 1 The replications description and the cumulated days of exposure (CDE)of sampling sites.

Name BBH DBT XG XJW YJHK TED XXH CF HQH

Mudflat plots 3 1 2 5 1 4 2 2 3

CDE 21 103 99 98 96 27 66 65 67

Meadow plots - - - - - 2 1 2 2

CDE - - - - - 27 66 65 67
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2.4 Statistical analyses

All the statistical analyses were conducted with the SPSS
program version 18.0. Non-parametric statistics were used if the

data failed the test for normality. The impacts of soil depth and CDE
on soil properties were analyzed with two-way ANOVA. We used
the Kruskal–Wallis test and Dunn’s multiple comparison test to
check the change in soil properties among different soil layers and

TABLE 2 Impacts of soil depth and CDE on soil properties.

Factors SWC (%) SOC (%) DOC (mg/kg)

df F P df F P df F P

CDE 2 1.104 0.338 2 1.180 0.314 2 7.534 0.001p

Depth 2 0.973 0.384 2 2.507 0.090 2 0.071 0.931

Depth × CDE 2 0.518 0.723 2 2.333 0.066 2 1.592 0.188

Factors TN (%) C/N

df F P df F P

CDE 2 2.223 0.117 2 1.535 0.224

Depth 2 3.019 0.056 2 0.961 0.388

Depth × CDE 2 2.045 0.099 2 1.874 0.127

Bold value show significant impact of CDE on DOC.

FIGURE 2
Soil properties (mean ± SE) at 3 layers of soil depth. The values of each soil property with the same lowercase letter do not differ significantly (p >
0.05) based on Dunn’s multiple comparison test.
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different CDE levels. We also applied the Wilcoxon signed rank test
to check the differences of soil properties and ecosystem respirations
between mudflats and meadows. The differences of ecosystem
respiration among different CDE levels were also tested using
Dunn’s multiple comparison test. It is reported that soil CO2 flux
significantly correlates with soil properties of surface soil (Liu et al.,
2013a), while deep soil seldom determines soil CO2 flux (Luan et al.,
2011; Zhou et al., 2014). Thus, we applied a stepwise regression
model to determine important surface soil properties and other
environmental factors, including T5, air temperature and CDE in
controlling ecosystem respiration. The statistical relationships
between the natural logarithm of ecosystem respiration and T5

from the meadow, and the ecosystem respiration and DOC from
the mudflat, were examined with linear regression analyses.

3 Results

3.1 Soil properties

A two-way ANOVA test showed that the soil depth and the
interaction between soil depth and CDE do not significantly

influence soil properties, while CDE only significantly influences
DOC (Table 2).

No significant differences were found among the values of soil
properties at different soil layers (Figure 2). Only DOC at the highest
CDE level (>90 days) was significantly higher than that of lower
CDE levels (<30 days and ≈60 days) (Dunn’s multiple comparison
test; p < 0.01 and p < 0.01, respectively) (Figure 3).

Between the paired mudflat–meadow plots, the values of SWC,
SOC, DOC, TN and C/N showed no significant differences at soil
layers deeper than 10 cm, while the values of SOC, DOC and C/N
were significantly higher in meadows than in mudflats at the
0–10cm soil depth (Wilcoxon signed rank test; p = 0.04, p =
0.01 and p = 0.01, respectively) (Figure 4).

3.2 Ecosystem respiration

The mean value of ecosystem respiration for air-exposed
mudflats in Dongting Lake is 0.716 ± 0.114 μmol m-2s-1, while it
is a much higher value of 2.240 ± 0.375 μmol m-2s-1 for meadows. A
further Wilcoxon signed rank test for the paired mudflat-meadow
ecosystem respiration comparison confirms that ecosystem

FIGURE 3
Soil properties at 3 categories of CDE. The values of each soil property with the same lowercase letter do not differ significantly (p > 0.05) based on
Dunn’s multiple comparison test.
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respiration at meadow plots are significantly higher than that at
mudflat plots (Wilcoxon signed rank test, p = 0.01).

3.3 Environmental impact on ecosystem
respiration

With the CDE increasing, the flux of ecosystem respiration from
the mudflat first increases (for about 2 months) and then decreases,
but without significant difference found among fluxes at different
CDE levels (Figure 5).

The stepwise regression analysis shows that only DOC
significantly influences the ecosystem respiration of mudflats in
Dongting Lake (Figure 6A,y = 0.010x+0.309,N = 23,R2 = 0.280,p <
0.01), and only T5 significantly influences the ecosystem respiration
of meadows (Figure 6B, y = 0.358x-3.470,N = 7,R2 = 0.780,p < 0.01).

4 Discussion

The sampling zones in this study were located close to the open
water body during the drawdown period. With the water level
fluctuating in Dongting Lake all the time, sampling zones exposed
to the air were usually saturated during the drawdown period, which
induced SWCat the surface soil that was almost same as that at the deep
soil depth (Figure 2). Stable SWC among three layers of soil led to
somewhat stable SOC and DOC between the surface and deep soil. It
was reported that the decomposition of SOC is greatly reduced in
anaerobic environments, such as marsh and swampland (Luo and
Zhou, 2006). A higher value of SWC creates a more anaerobic
environment, restraining soil respiration and advancing carbon

FIGURE 4
The differences of soil properties between meadow and mudflat. The values of each soil property with the same lowercase letter do not differ
significantly (p > 0.05) based on the Wilcoxon signed rank test.

FIGURE 5
The differences of ecosystem respiration among different CDE
levels. The values of fluxes with the same lowercase letter do not differ
significantly (p > 0.05) based on Dunn’s multiple comparison test.
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sequestration in soil (Hudson, 1994). However, SWC showed the trend
of a lower value at the surface soil, which is not related to the slightly
higher SOC value at 0–10 cm depth soil in this study (Figure 2).
Consequently, it is concluded that sedimentation during the flooded
period brings external organic matter to the surface soil (Dai et al.,
2005). Using the system of Surface elevation table, the height of the lake
basin in the Dongting Lake area was monitored. The average annual
sedimentation in the past 5 years is approximately 7–8cm (personal
communication), confirming the influence of exogenous organicmatter
on the surface soil. TN also showed the trend of a higher value at the
surface layer than the deep layer due to the deposition of exogenous
nitrogen during the drawdown period.

The content of SOC and TN in the soil was positively correlated
with the time of mudflat exposure in the short term due to the
supplementation of exogenous organic matter. With the
intensification of CO2 producing a reaction, nitrification and
denitrification, the contents of SOC and TN (Gu et al., 2004)
began to decline in the long term (Figure 3).

The value of C/N is one of the most important factors which
determine themineralization rate in soil. In this study, the C/N value
was around nine, not significantly influenced by soil depth and CDE,
which reflected that nitrogen is not the limit factor for soil
mineralization in Dongting Lake. With the emergence of mudflat,
soil microbial metabolic activities gradually increased, resulting in a
significant increase in soil DOC content with the increase in
exposure time (Figure 3).

It is believed that water content, temperature and other
environmental parameters interact to determine the CO2 release
from the soil (Juszczak et al., 2013; Keller et al., 2020). In this study,
only DOC was found to be significantly correlated with soil respiration
at themudflat, mostly due to organic carbon dissolved in the surface soil
supplying a substrate for CO2 production. When soil was saturated at
the mudflats in Dongting Lake during the drawdown period, the
mechanism of the CO2 cycle was limited by the amount of active
substrate that could be estimated by the DOC value.

During the drawdown period in Dongting Lake, the surface soil is
almost fully exposed to the CO2 reaction and consumption of DOC,
making DOC at the surface soil slightly lower than in the deep soil
(Figure 2). With the increase in the exposure time of the mudflat, the
consumption of DOC could significantly decrease the respiratory flux

from the mudflat. However, no significant correlation was found
between CDE and the respiratory flux from the mudflat, which is
derived from the increasing DOC induced by the organic matter
deposition during the flooded period and the enhancement of
microbial metabolism in the soil after mudflat exposure (Vonk
et al., 2017). At the deeper soil, the DOC content increased with the
increase in CDE (Figure 7), continuously supplying DOC for ecosystem
respiration. Consequently, the substrate for ecosystem respiration is
sufficient, intensifying ecosystem respiration shortly after exposure,
then resulting in a gradual decrease in DOC at the surface soil
depth after a short-term increase (Figure 7). Therefore, due to the
accumulation of exogenous organic matter and the increase in soil
microbial metabolism, the respiration substrate of the soil increased
with the increase in CDE in the short term, resulting in a gradual
increase in the respiration intensity of the sediment, which reached a
high value at around 60 days. Followed by the continuous consumption
of DOC, the respiratory intensity decreased gradually (Figure 5). How
DOC determines the respiration process was also reflected by the

FIGURE 6
The correlation between ecosystem respiration and soil properties. (A) the correlation between ecosystem respiration from mudflat and DOC; (B)
the correlation between natural logarithm of ecosystem respiration from meadow and T5 temperature.

FIGURE 7
DOC value at different soil layers and CDE levels. The values of
DOC with the same lowercase letter do not differ significantly (p >
0.05) based on Dunn’s multiple comparison test.
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significant correlation between respiration flux and DOC value
(Figure 6).

When vegetation colonized, the root system interspersed,
squeezed, divided the soil and absorbed soil moisture, creating a
more aerobic environment at the surface soil layer. In Dongting
Lake, no significantly difference was found between the soil
properties from the meadow and the mudflat at the deeper soil
layer, also suggesting that vegetation colonizing only impacts soil
properties at the surface layer during the drawdown period by
changing the aeration and generating more external organic
matter (Jobbágy and Jackson, 2000; Tuo et al., 2018). The values
of SOC, DOC and C/N at the surface layer were significantly higher
in the meadow than the mudflat, reflecting the fact that the
dominant Carex produces more organic carbon by
photosynthesis and maintains aerobic environment advancing
respiration. Thus, organic carbon was not the limit factor for
respiration, which was merely determined by the soil temperature
instead in the meadow (Figure 6). Furthermore, due to the lower
value of C/N in Dongting Lake, SOC could be consumed as a
substrate for soil respiration and root respiration in the short term.
Consequently, it was found that the ecosystem respiration flux from
the meadow was three times greater than that from mudflat.

Due to the exposure of the mudflat and the improvement of soil
ventilation, the mean value of the respiratory flux from the mudflat
of Dongting Lake in this study was 0.716 ± 0.114 μmol m-2s-1. This
was far higher than the CO2 flux of 0.2 μmol m-2s-1 in maximum
from the terrestrial–aquatic interface in Chinese subtropical shallow
lakes (Liu et al., 2013b; Xiao, 2014; Xiao et al., 2020; Li et al., 2023b).
It is concluded that more SOC in the lake basin is involved in the
respiration process after exposure to the air, significantly emitting
more CO2 into the atmosphere.

A previous study stated that fluxes from poplars, reeds and
farmlands in Dongting Lake during the drawdown period were 0.70,
0.56 and 0.45 μmol m-2s-1, respectively (Tang, 2011), much lower than
that from the Carex meadow and slightly lower than that from the
exposedmudflat, and this is the opposite in the flooding season. During
the flooding season, fluxes from poplars, reeds and farmlands in
Dongting Lake were 4.80, 8.21 and 1.27 μmol m-2s-1, respectively,
significantly higher than the flux from the terrestrial–aquatic
interface and the flux from water surface. Consequently, the exposed
mudflat, instead of poplar, reed or farmland, became the most active
area of CO2 emissions during the drawdown period. The intensity of
respiration flux was strengthened after Carex colonizing. Reducing the
area and duration of mudflat without littoral plants exposure to the air
by manual control may be conducive to reducing CO2 emissions to the
atmosphere.

5 Conclusion

With CDE increasing during the drawdown period in
Dongting Lake, exposure to the air and Carex colonizing
together increased the soil DOC value in exposed mudflat,
strengthening the intensity of ecosystem respiration. DOC
was the limit factor of ecosystem respiration that reached a

peak period around 60 days after exposure of the mudflat, while
only soil temperature determined respiration in the newly
colonized meadow with a sufficient supply of organic carbon.
The ecosystem respiration value reached 0.716 ± 0.114 μmol m-

2s-1 and 2.240 ± 0.375 μmol m-2s-1 in the exposed mudflat and
newly colonized meadow, respectively, both of which became
the most active areas of CO2 emissions during the drawdown
period.
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