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Panicum virgatum and Pennisetum alopecuroides, two non-food bioenergy
crops, were evaluated for their capacity to phyto-manage trace metals (Pb, Zn,
Ni, Fe, Mn, Co, Cr, andCu) frommunicipal solid waste digestate after its application
to a marginal soil. For that, 90-day vertical soil column mesocosm (columns with
0.6 × 0.2 m) experiments were carried out to assess 1) the impact of digestate
application on the health of marginal soil, 2) plant effect on digestate-borne trace
metals’ mobility along the soil profile (measuring total metal levels and
fractionation in different soil layers by atomic absorption spectroscopy, and 3)
plant growth performance and trace metal (Pb, Zn, and Cu) uptake capacity. The
results showed that tracemetals weremostly confined in the 0–0.2 m soil horizon
over the course of the experimental period, migrating from the digestate-
amended soil layer (0–0.1 m) to the layer underneath (0.1–0.2 m) within the
first 21 days and remaining stable afterward. No evidence of the trace metals’
mobility to deeper soil layers was detected. Migration of tracemetals was reduced
in the presence of P. virgatum and P. alopecuroides, suggesting a
phytoremediation (phytostabilization) effect. For both plant species, no trace
metal accumulation in the roots was observed (bioconcentration factor <1),
although both plants showed a potential for Zn translocation for aboveground
tissues (translocation factor >1). The growth of both plants was positively affected
by municipal solid waste digestate application, which also improved soil quality
(increased concentration of total organic carbon and available phosphorus, as well
as cation exchange capacity and water holding capacity).
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GRAPHICAL ABSTRACT

1 Introduction

The world’s population is expected to increase by nearly 2 billion
people in the next 30 years (UN 2022). This will lead to a
consumption of vast amounts of resources, production of billions
of tons of waste and wastewater (Kaza et al., 2018), and an
unprecedented demand for clean and affordable energy. At the
same time, demographic expansion, rising expectations of living
standards, and scarcity of natural resources have made soil
degradation a major issue now, posing a serious threat to human
wellbeing (FAO, 2019).

Anaerobic digestion (AD) has proven to be one of the most
economical and effective technologies capable of addressing not only
the increasing demand for improved waste treatment practices but
also immediate requirements for resource recovery and cleaner
energy production (Atelge et al., 2020). This technology is a
promising alternative, having the ability of turning a variety of
organic waste products, such as organic fraction from municipal
solid waste (MSW) into two potentially useful end products:
renewable bioenergy in the form of biogas and digested solids,
hereafter referred to as “digestate.” However, because of its
intrinsic benefits, AD is widely applied in Europe (Di Maria
et al., 2016) and large amounts of digestate are being produced.
Recycling and valorization of digestate through proper digestate
management practices is needed.

Digestate is an organic matter and nutrient-rich material that
can be applied to soils as fertilizer or soil improver
(Alburquerque et al., 2012; ITPS, 2015; M. E. Lee et al., 2021;
Monlau et al., 2015; W. Wang and Lee, 2021), which can mitigate
the overreliance on environmentally unsustainable chemical
fertilizers (Nkoa, 2014). These chemical fertilizers require a
high raw material and energy input for their production, and
their application can lead to nitrification and loss of soil carbon at
higher application rates (Nkoa, 2014; Cheong et al., 2020). In

addition, a fraction of the carbon contained in organic
amendments, such as digestate, can be sequestered and
stabilized in soil. So, land application of digestate could help
minimize greenhouse gas emission into the atmosphere (Paustian
et al., 2016).

Nonetheless, digestate application is not entirely harmless, as it
can contain variable concentrations of harmful chemical pollutants,
such as trace metals (TMs), and/or pathogenic microorganisms,
especially if it originates from non-separated municipal solid waste.
TMs, despite occurring at low concentrations (<1,000 mg kg−1), can
have a significant biological effect, either as essential nutrients or as
environmental contaminants (Robinson et al., 2009). These TMs
may originate from the feedstocks used in AD but can also be added
in digesters for optimizing the biogas production yield and rate
(Fermoso et al., 2015; Moestedt et al., 2015; Molaey et al., 2018).
TMs’ total concentrations are always higher in the digestate than in
the feedstock, being distributed between the digestate’s liquid and
solid fractions, but mostly accumulate in the digestate solid fraction
together with sulfide and phosphate ions and residual organic
fraction (Fermoso et al., 2015). TMs include both elements
essential for normal metabolic processes, called micronutrients
(e.g., Fe, Mn, Cu, Zn, and Mo), which can become extremely
toxic at high concentrations, and elements such as As, Hg, Pb, or
Cd, which when present at low concentrations are very noxious to
humans and animals, while affecting plant growth and development
to a lesser extent.

Hence, one of the main obstacles in applying MSW digestate on
soils is related with the possibility of introducing excessive amounts
of TMs into the soil ecosystem (Jacobs, 1981; Adriano and Adriano,
2001; Kabata-Pendias and Pendias, 2001). In fact, there are strict
legislative norms regarding the maximum amounts of TMs that
could be incorporated into arable soil (Mininni et al., 2015;
European Commission, 2019). Consequently, for the MSW
digestate to be safely classified as a usable “product” rather than
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a hazardous “waste,” strategies to remove excessive TM
concentrations are needed.

The remediation of matrices contaminated with TMs is a
challenge because of their non-degradability (Kabata-Pendias and
Pendias, 2001; Kabata-Pendias, 2011). Conventional remediation
options commonly involve excavation, physicochemical treatments
(such as stabilization, soil washing, and chemical reduction/
oxidation), and off-site disposal to “secured” landfills. Such
remedial options are generally expensive, may produce adverse
effects on ecosystems, and often require appropriate methods for
waste disposal (Liu et al., 2018).

Phytoremediation is widely viewed as a green, cost-effective, and
ecologically responsible alternative to the environmentally
destructive physical–chemical remediation methods currently
practiced. Phytoremediation can be an in situ option to remove
excessive TM concentrations and lower TM bioavailability in soil
amended with MSW digestate (Tangahu et al., 2011; Awa and
Hadibarata, 2020). Phytoremediation of TM-contaminated
matrices is based on immobilization of TMs in the rhizosphere
soil and roots (phytostabilization) and on the mobilization, uptake,
and transfer of TMs into the aboveground plant organs
(phytoextraction) (Wei et al., 2021; Bhat et al., 2022). The
phytoremediation efficiency depends on multiple factors such as
TM speciation and bioavailability, solid matrix properties, and plant
species (Terry and Banuelos, 2000; Sayen et al., 2019; Qin et al.,
2022). Moreover, plants’ presence can further increase the organic
matter content in the soil. This organic matter can form water-
soluble and/or water-insoluble TM complexes (Zeng et al., 2011).
Through the formation of these complexes, organic matter can
dissolve, mobilize, and transport TMs in soils and/or accumulate
them in certain soil horizons. This can contribute to a reduction of
TM mobility toward other reservoirs, namely, living organisms or
groundwater.

Among phytoremediation mechanisms, phytoextraction is of
special interest due to the possibility of TM recovery. The
phytoextraction potential of any plant species is primarily driven
by two essential key factors: 1) shoot biomass and 2) total TM
concentration accumulated in shoot biomass (Hernández-Allica
et al., 2008). Hence, a crucial aspect in phytoremediation trials is
the choice of the most appropriate plant species to the conditions
and matrices to be remediated. Energy crops could be a suitable
option. In fact, these plants are typically grown because of their high-
rate biomass production, which can later be used to produce biofuels
or combusted to generate heat or electricity. Most of the dedicated
energy crops, besides offering the dual benefits of phytoremediation
and bioenergy production, easily adapt to unfavorable conditions
and are TM accumulators, sequestering exceptionally high amounts
of the absorbed TMs into their biomass (Tripathi et al., 2016). These
plants could be used for direct TM uptake from soils amended with
MSW digestate, while profiting from the fertilizing properties of the
digestate itself (Antonkiewicz et al., 2017; M.-S. Lee et al., 2021;
Mucha et al., 2019; Seleiman et al., 2012). Eventually, plants’ biomass
could afterward be used as a feedstock to re-introduce the TMs in the
AD process (Garuti et al., 2018), thus allowing it to close the material
loop. This is still a scarcely explored subject, and more research to
understand the phytoremediation mechanisms in these plants under
such conditions is needed. Furthermore, this would allow further

expansion of the quadruple task of waste management, soil
reclamation, resource recovery, and bioenergy production.

When applying in situ TM phytoremediation techniques to the
MSW digestate-amended soil, it is essential to follow changes in the
TM behavior in the presence of plants. To our knowledge, there is a
lack of studies focusing on the effects of MSW digestate
contaminated with TMs on the soil, namely, on TM mobility
through the soil profile and on the plants’ influence on their
behavior. Therefore, the present work aimed to evaluate the
potential of two dedicated perennial bioenergy crops for the
phytomanagement of MSW digestate, contaminated with TMs,
after its application to a poor soil, the plants’ influence on TM
mobility, and how the soil and plants could benefit from the
amendment properties of MSW digestate. The selected plant
species, switchgrass (Panicum virgatum) and fountain grass
(Pennisetum alopecuroides), have been identified as promising
species for TM phytoremediation and bioenergy production.
Previous studies have reported the capacity of P. virgatum to
phytoremediate Cd, Cr, Zn, and Pb from contaminated soils
(Chen et al., 2012; Guo et al., 2019), whereas P. alopecuroides has
been recently identified as an effective Cr phytoremediator for the
first time (Jia et al., 2022). Both plant species are potential bioenergy
feedstocks (McLaughlin and Adams Kszos, 2005; Fairley, 2011;
Tripathi et al., 2016; Zhang et al., 2016).

We hypothesize that the MSW digestate will improve a marginal
soil’s health and that any TM contamination from the MSW
digestate will be tackled by plants through phytoremediation
processes, preventing soil contamination and giving a new value
to the TM-contaminated MSW digestate. For that, a series of 90-day
vertical soil column mesocosm (0.6 × 0.2 m) experiments were
performed to assess the effects of the application of the MSW
digestate on the quality of a marginal soil and evaluate
phytoremediation processes of P. virgatum and P. alopecuroides
over time in terms of 1) plant effects on TM mobility along the soil
profile (through the assessment of total metal concentration and
BCR sequential extraction at different soil layers), 2) plant growth
performance, and 3) plants’ TM uptake capacity.

2 Materials and methods

2.1 Soil, digestate, and plants

Soil samples were collected from the vicinity of a construction
field in Ermesinde in the municipality of Valongo, North Portugal
(41°12′25.7″ N, 8°32′26.7″ W). The soil was identified through the
European Soil Database (Hiederer, 2013). Data were complemented
with INFOSOLO, the Portuguese online database for soil profile data
(Ramos et al., 2017), following the procedure described by
Baldasso et al. (2023). The soil was classified as an Entisol
deriving from schist, a medium-grade metamorphic rock, with a
soil texture ranging from loamy to clayey.

This soil was selected as a good candidate for soil reclamation as
it displays poor agronomic qualities (low OM, available nutrients,
and water holding capacity (WHC) (Supplementary Table S1)) and
low TM content (see Results), ideal to follow the mobility of TMs
initially present in the contaminated digestate.
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The solid fraction of MSW digestate used in these experiments
was collected from the mesophilic full-scale anaerobic digestion
plant of Tratolixo, a Portuguese company located in the
municipality of Mafra, Portugal, that treats the non-source
separated organic fraction of MSW at the end of the solid–liquid
separation process, specifically after centrifugation.

The physical and chemical characterization of the soil, MSW
digestate, and MSW digestate-amended soil is included in
Supplementary Material (Supplementary Table S1).

Two energy crops, P. virgatum and P. alopecuroides, were
selected for this study. Plants were selected according to pre-
established criteria, considering the following standards: metal
(Cr, Mn, Fe, Co, Cd, Ni, Cu, Zn, and Pb) uptake capacity; ability
to produce a large volume of biomass; high energy potential; ability
to be grown inmarginal soils; non-edible; non-invasive behavior and
of low-cost maintenance (Chen et al., 2012; Jia et al., 2022;
McLaughlin and Adams Kszos, 2005; Shrestha et al., 2019; M.
Zhang et al., 2016). One-month-old plants were obtained from a
greenhouse located in Vigo, Galicia, Spain, where they were
germinated and grown in a commercial substrate at 22oC ± 2°C.

2.1.1 Initial sample analysis
Elemental composition (Ca, K, Mg, and P) analysis was

performed using XRF on the ground sample using ED-XRF
SPECTRO XEPOS, XEP05 (SPECTRO Analytical Instruments,
AMETEK, France).

The carbon (C), hydrogen (H), nitrogen (N), and sulfur (S)
content in soil was determined using a 2400 CHNS Organic
Elemental Analyzer 100 V (PerkinElmer, MA, USA). Total
carbon (TC) content was also obtained through the CHNS analysis.

Dry weight (DW) and water content (WC) were measured
according to the oven drying method (ISO: 2720, 1973). The volatile

dry weight and volatile organic matter content were determined using
the loss on ignition (LOI) approach (Nelson and Sommers, 1996).

The cation exchange capacity (CEC) was determined using the
cobalt hexamine method in triplicate for each sample (Ciesielski
et al., 1997). The pH value was obtained following the normalized
ISO 10390:2005 method, in a 1:5 soil/H2O solution.

The water holding capacity was determined in accordance with
the modified funnel method provided by Bernard (1963).

The particle density was measured using the pycnometer method
according to Blake and Hartge (1986). The wet bulk density was
determined following the volumetric cylinder standard method
(Blake and Hartge, 1986). Porosity was calculated from particle and
bulk densities as described in Flint and Flint (2002).

X-ray diffraction (XRD) patterns of the initial soil were
recorded. An analysis was conducted using a Bruker
D8 ADVANCE diffractometer (Bruker, MA, USA) at the Cu–Kα
wavelength (λKα = 0.1541 nm), between 2° and 60° 2θ, with a 0.02°

2θ step and a counting time of 1 s/step and rotating sample holder
(15 rpm). Prior to XRD, the sample was gently ground using a non-
amorphized ball mill in zirconium oxide (Pulverisette 23, Fritsch).
The obtained XRD patterns were processed using EVA software
(Bruker). Fourier-transform infrared spectroscopy (FTIR)-ATR
(attenuated total reflectance) measurements were performed
using an FTIR spectrometer (PerkinElmer, MA, USA) operating
in the attenuated total reflectance mode in the middle infrared
(MIR) region (4,000–600 cm−1) at a 2 cm−1 resolution for 15 scans.

2.2 Experimental design

Experiments were performed in vertical soil columns. Three
treatment conditions, each with two replicates, were assembled: T0

FIGURE 1
Schematic of phytoremediation experiments in soil column mesocosms. T3 and T4 are control columns with no digestate amendment. Figure
created using BioRender.com. License agreement number: VT254U6HT3.
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(soil + MSW digestate), T1 (soil + MSW digestate + P. virgatum),
and T2 (soil + MSW digestate + P. alopecuroides) (Figure 1). One
control column for each plant species, with the soil but no MSW
digestate, was also assembled to evaluate both the plant growth and
plant natural TM content in the absence of the MSW digestate. A
total of eight columns were assembled.

Soil columns consisted of rigid PVC columns (0.2 m
diameter × 0.6 m height) with five sampling ports including a
hole at the bottom, with a tap, for leachate collection, whenever
needed (Figure 1). The lower 0.02 m of each column was filled
with inert pebbles (to avoid soil loss and allow water drainage),
followed by addition of the homogenized marginal land soil
(9.5 L), previously sieved to <2 mm. To avoid positive
preferential flows through the soil, the columns were filled
without air gaps, enabling an equal level of homogeneity.
Finally, the soil was slightly compacted. A thoroughly
manually mixed MSW digestate–soil mixture (proportion 1:
1 v/v and 2 L each, to simulate digestate incorporation in the
agriculture soil) was placed at the top of the uncontaminated soil
in a 0.15-m layer, which is approximately equal to the depth of
digestate incorporation on agricultural fields (0.1–0.2 m)
(Alburquerque et al., 2012).

Next, the soil present in the columns was saturated by adding a
total of 5 L of deionized H2O. During the experiment (90 days), the
soil columns were regularly irrigated to maintain 80% of the water
holding capacity, which required adding 200 mL of deionized H2O
weekly. The columns were fully covered with aluminum foil to avoid
sunlight interferences.

After 1 week of acclimation (day 7), ten 1-month-old seedlings
of P. virgatum and P. alopecuroides, with similar sizes, were
transplanted into the respective column and irrigated with
deionized water according to plant requirement, always
maintaining a selected WHC. The plants were grown for 83 days,
with the total time of the experiment being 90 days.

The experiments were carried out in a semi-open environment,
inside of the building of the Faculty of Sciences of the University of
Porto, Portugal, with a natural day/night regime and at room
temperature (21°C ± 1°C).

Soil samples from T0, T1, and T2 columns were collected on
days 0, 7, 21, 35, and 90 at the following depths: 0–0.1 m; 0.1–0.2 m;
0.2–0.3 m; and 0.3–0.4 m using the sampling ports (at each sampling
time, one sample at each depth per duplicate columns) (Figure 1).
Soil-column leachates were also collected (when available). All the
samples were stored at 4°C in polyethylene tubes for subsequent
analyses of total metal contents and metal fractionation.

At the end of the experiment, plants from T1, T2 (three plant
replicates per duplicate column from each treatment), T3, and T4
(three plant replicates per single column from each treatment) were
harvested to assess plant growth and metal content in plant tissues
and to estimate the plant metal uptake.

2.3 Metal analysis for total content and
fractionation

The metal (Zn, Cu, Pb, Cr, Ni, Mn, Co, Cd, and Fe) content was
determined in initial samples (soil, MSW digestate, and MSW
digestate-amended soil, each in triplicates), in the soil layer

samples collected over time (in duplicates considering the two
columns for each treatment), in leachates (when available), and
in different plant tissues, with the plants being collected at the end of
the experimental period. For each plant tissue, triplicate samples
from each column were prepared and analyzed, after homogenizing
the total amount of plant tissue from the respective column.

All solid samples mentioned previously were initially dried (at
room temperature until constant weight). Leachates were acidified
with HNO3 (at 1%) and stored at 4°C until analysis.

TM levels were measured by atomic absorption spectroscopy
(AAS), either with flame (PerkinElmer, AAnalyst 200) or
electrothermal atomization (PerkinElmer, PinAAcle 900Z,
coupled to an AS 900 autosampler), depending on metal levels,
after high-pressure digestion in a microwave apparatus (ETHOS 1,
Milestone Inc. (Shelton, CT, USA)) following the US EPA
3052 protocol with concentrated HNO3 (69%) and H2O2 (30%),
except the leachate samples that were analyzed directly. To quantify
TMs in different plant structures, ca. 0.5 g of plant tissues was
weighed in a microwave Teflon vial and 1 mL of HNO3 (69%) and
5 mL of H2O2 (30%) were added. The same procedure was used for
the MSW digestate and samples collected from the 0–0.1 m layer
over time from MSW-digestate-amended columns (T0, T1, and T2)
with ca. 0.5 g of each sample being placed in microwave Teflon
vials. For the initial soil sample and samples from 0.1–0.4 m
layers from the MSW-digestate-amended columns (T0, T1, and
T2), only 5 mL of concentrated HNO3 for ca. 0.25 g of the sample
was used. The total running time for the microwave digestion was
25 min: 5 min at 250 W, 5 min at 400 W and 5 min at 500 W, and
10 min at 0 W. The vessels were then allowed to cool at room
temperature, and the samples were transferred to 50-mL tubes
with the addition of deionized H2O (up to 20 mL). The solutions
were stored at 4°C until AAS analysis. The aforementioned
procedures were previously validated in the laboratory
(Almeida et al., 2004). Metal quantification was carried out by
external calibration with aqueous metal standard solutions. For
that, working metal standard solutions were prepared by
appropriate dilutions of stock standard solutions with
deionized water. Triplicate samples were run to ensure the
precision of quantitative results.

Metal fractionation in initial samples (soil, MSW digestate, and
MSW digestate-amended soil, each in triplicate) and soil layer
samples collected over time from soil columns (in duplicates
considering the two columns for each treatment) was estimated
by sequential extraction according to the BCR procedure described
by Rauret et al. (1999), including minor modifications, as
previously reported (Almeida et al., 2004). Three fractions were
prepared: 1) exchangeable and bound to carbonates (more
bioavailable); 2) reducible and bound to Fe and Mn (hydro)
oxides; 3) oxidizable and bound to the organic material and
sulfide plus the residual (the less bioavailable). For this purpose,
the samples (ca. 0.5 g) were extracted successively with 20 mL of a
0.11 M CH3COOH solution (exchangeable fraction) and 20 mL of
a 0.5 M NH2OH.HCl solution (fraction bound to Fe and Mn
oxyhydroxides). The extractions were carried out using an end-
over-end shaker (Unitronic Reciprocating Shaking Bath, JP
Selecta) at room temperature. TM concentrations in these
solutions were measured by AAS, as described previously. The
metal in the third fraction was calculated based on the difference
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between the total metal content and the sum of the metal content
in the two extraction solutions mentioned previously.

For the initial soil, digestate, and digestate-amended soil samples,
fractionation was carried out for Fe, Mn, Zn, Cu, Pb, and Cr. For the
samples collected during the soil column experiment, fractionation
analysis was carried out only for Zn, Cu, Pb, and Cr.

All the material used in sample preparation was washed with
deionized water, placed in a nitric acid solution (20%, v/v) overnight,
and washed thoroughly again with deionized water.

2.4 Plant biomass yield and morphological
traits

Three young leaves (approximately 7 cm in length) from each
column were selected at the beginning of the phytoremediation
experiment (day 7) and their height was measured over time (day
21, 35, and 90) to assess the growth dynamics until the end of the
experiment, an average was calculated for each treatment and for each
time point. At the end of the experiment plants were harvested
separately from each column and homogenized, three replicates of
each plant tissue (leaves and roots) were taken separately from each
column homogenized samples. Both roots and leaves were dried at
room temperature (25 ± 2oC), until a constant weight was reached, to
obtain dry weight value, an average for each treatment was calculated.

2.5 Metal accumulation in plants

To evaluate metal accumulation in plants, the bioaccumulation
coefficient factor (BCF) and translocation factor (TF) were
calculated with concentrations determined in soils and plants at
the end of the experiment. The BCF is the ratio of the metal
concentration in the root to that in the soil, and the TF is the
ratio of the metal concentration in the shoot to that in the root. The
BCF and TF were calculated with the formula mentioned as follows,
previously reported by Yoon et al. (2006):

• BCF = Croot/Csoil
• TF = Cshoot/Croot

Here, Croot is the metal concentration in the plant root (mg
kg−1), Csoil is the metal concentration in the soil (mg kg−1), and
Cshoot is the metal concentration in the plant shoot (mg kg−1).

Csoil was calculated as the average of the metal concentration
in the two initial soil layers, the 0–0.1 m layer (the MSW
digestate-amended soil) and the 0.1–0.2 m layer (the soil layer
beneath the MSW digestate-amended soil), as at the end of the
experiment (90 days), the plant roots were in contact with both
soil layers.

2.6 Statistical analysis

The samples’ mean, standard deviation, and maximum and
minimum values were analyzed using Microsoft Excel 2019.
Statistical tests were performed using SPSS Statistics software
(version 26.0).

The Shapiro–Wilk test was used to test if the distribution of the
datasets deviates from a comparable normal distribution. The null
hypothesis was rejected if p <0.05.

Significant differences among soil column samples collected
over time and depth were evaluated through a parametric one-
way analysis of variance (ANOVA). The same procedure was
followed to evaluate significant differences between metal
concentrations in different plant tissues. Two-way ANOVA was
used to evaluate the differences in the total metal and metal fraction
concentrations between different conditions. The dependent
variable was metal concentration in all cases. The variables were
defined as continuous.

Significant differences (p <0.05) were detected by a Tukey’s
Honestly Significant Difference (HSD) post hoc test.

Principal component analysis (PCA) and Pearson’s correlation
were used to identify the potential interrelation among total TM
concentrations, and with depth, pH, and presence/absence of the
plants, in T0, T1, and T2 columns. Pearson’s correlation was tested
at 99% confidence level. For the PCA, data were log-transformed
and eigenvalues >1 were extracted through a varimax rotation. The
analysis were performed using SPSS Statistics (version 26.0) and
RStudio (version 4.3.0).

3 Results and discussion

3.1 Initial soil, MSW digestate, and MSW
digestate-amended soil characterization

Soil, MSW digestate, and MSW digestate-amended soil (1:1 v/v
soil + MSW digestate) were initially characterized. The results are
presented in Supplementary Material Supplementary Figure S2,
Supplementary Figure S3, and Supplementary Table S1.

X-ray diffraction and attenuated total reflection–Fourier-
transform infrared spectroscopy analysis of the soil–solid phase
revealed a clay mineral composition of mainly quartz, associated
to phyllosilicates such as kaolinite and muscovite (Supplementary
Figure S2). Traces of carbonates (<0.5%) were inferred from CHNS
analysis before and after acid treatment, and the results are in
accordance with weak carbonate band observed on ATR spectra.

The loss on ignition of soil was 2.4% ± 0.1% (Supplementary
Table S1), hence considered a poor clayey soil (Brady et al., 2008).
This was expected as this was a marginal soil originating from a
construction site. The application of MSW digestate, which had an
LOI of 22.0% ± 0.8%, substantially increased (p <0.05) the soil LOI
to 6.5% ± 0.1%. This is in accordance with what has been previously
reported regarding biosolids’, such as anaerobic digestate or sewage
sludge, ability to increase the soil organic matter content (Gerzabek
et al., 2001; Parat et al., 2005; Carabassa et al., 2020). The application
of MSW digestate to the soil also increased the soil organic carbon
(SOC), the major component of soil organic matter content, from
0.20% ± 0.05% to 4.4% ± 0.7%. Similarly, Tambone et al. (2009)
reported a high concentration of organic carbon in the organic
municipal solid waste (OFMSW) digestate.

Initial soil pH agrees with the soil mineralogical
composition, that is, slightly basic, due to traces of
carbonates (Supplementary Table S1). Addition of MSW
digestate slightly enhanced the soil pH, from 7.9 ± 0.2 to
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8.4 ± 0.1 (p <0.05). This could be explained by the alkaline
nature of MSW digestate (8.8 ± 0.4). Furthermore, there could
be an increase of negatively charged functional groups in the

soil, coming from the MSW digestate-borne organic matter,
such as carboxyl (-COOH), phenolic (-OH), and amino (-NH2)
groups (Adusei-Gyamfi et al., 2019).

FIGURE 2
Total metal (Pb, Zn, Ni, Fe, Mn, Co, Cr, and Cu) concentration (μg g-1) (+SD) of the initial samples (soil, MSW digestate, and MSW digestate-amended
soil). Error bars indicate the standard error of the mean of three measurements (n = 3). * Values in the MSW digestate-amended soil are significantly
different than that in the unamended soil at the 0.05 level of significance assessed by Tukey’s multiple comparison test.

Frontiers in Environmental Science frontiersin.org07

Bonet-Garcia et al. 10.3389/fenvs.2023.1267463

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1267463


There was also a significant increase (p <0.05) in the cation
exchange capacity in the soil amended with MSW digestate (from
4.4 ± 0.2 to 15.2 ± 2 cmol (+)/kg) (Supplementary Table S1),
probably induced by the higher amount of negatively charged
sites, as previously mentioned. Overall, this would increase the
capacity of the soil to hold positively charged ions. The increase
of the CEC in organic component-amended soil has also been
previously reported (Panuccio et al., 2021). The CEC of MSW
digestate was 40 ± 3 cmol (+)/kg, which is similar to the values
found in literature (20.3%–53.4%) (Teglia et al., 2011a; 2011b). It is
worth mentioning that the increase of the CEC of soils is of
particular interest in the context of soil improvement, for
example, an increased CEC has been proven to reduce the entry
of nutrient loads into groundwater systems (Bargmann et al., 2014).

The application of MSW digestate also increased the levels of
available P (P2O5) in the soil from 0.1% ± 0.02% to 0.78% ± 0.03%
(Supplementary Table S1), similarly to what was observed by
Bachmann et al. (2014), Hupfauf et al. (2016), and Tan et al.
(2021). These studies showed that the application of the digestate
increased the content of plant-available P in the soil to the same
extent as highly soluble mineral P fertilizer and undigested dairy
slurry, so the digestate could be a suitable substitute for inorganic
fertilizers. Ultimately, these changes can promote plant growth and
yield. The contents of total nitrogen (TN) in soil also increased after
MSW digestate application. These results were consistent with the
previous findings, showing that organic matter, N, and P in the
digestate improved both plant biomass and chemical properties of
the soil (Garg et al., 2005; Arthurson, 2009; Głowacka et al., 2020).

Soil calcium (CaO) and magnesium (MgO) also increased
(p <0.05) with MSW digestate amendment, from 1.3% ± 0.6% to
8.0% ± 0.4% and from 0.30 ± 0.08% to 2.6% ± 0.9%, respectively
(Supplementary Table S1). High values have been found in
digestate-amended soils (Doyeni et al., 2021). CaO and MgO are
important adsorbents of TMs in soils. They are binders that can
react with TM salts, and hence induce TM precipitation
(i.e., insoluble complex compounds or hydroxides) due to their
alkaline nature (Spence and Shi, 2004).

Both the bulk and particle density were lower in the soil
amended with MSW digestate, decreasing from 2.2 ± 0.3 and
2.54 ± 0.01 g mL-1 to 1.3 ± 0.2 (p <0.05) and 1.8 ± 0.9 g mL-1

(p >0.05), respectively (Supplementary Table S1). Organic matter
found in the digestate can make clay soils less dense and heavy
(Pagliai et al., 1981; Pagliai and Antisari, 1993). A field experiment
by Garg et al. (2005) showed that the amendment of soils with liquid
digestate from agricultural waste reduced the bulk density and
increased the saturated hydraulic conductivity and moisture
retention capacity of soils.

These findings corroborate the results on the amending
properties of typical anaerobic digestate, and they suggest that
MSW digestate could be considered an effective organic
amendment material. These changes in soil characteristics could
influence the TM content, distribution, bioavailability, and,
ultimately, toxicity (Adriano and Adriano, 2001; Kabata-Pendias
and Pendias, 2001) and influence plants’ development and of soil
microbial communities. Nevertheless, it is worth noting that these
results were obtained after the recent amendment of the soil, and
long-term experiments should be conducted to determine the
MSW-digestate effects in the soil over an extended timeframe.

3.2 Total and fractionation metal content in
the soil, MSW digestate, and MSW digestate-
amended soil

The total concentrations of TMs in the soil, MSW digestate, and
MSWdigestate-amended soil are given in Figure 2. Cd was below the
limit of quantification (LOQ) (0.5 μg g-1) in all samples; therefore,
this metal was not considered for further analysis. Cr and Ni
concentrations in the MSW digestate were below the limit values
stated in Portuguese (Decree Law No 73/2011, 2011) and European
((EU) 2019/1,009 (European Commission, 2019)) regulations for
Class III (soil for plant crops not intended for human and animal
food), whereas Pb, Zn, and Cu exceeded values stipulated in the
Portuguese regulation (Supplementary Table S2). No limit values for
Mn and Fe were found in the legislations.

Overall, MSW digestate amendment markedly increased
(p <0.05) the concentrations of Pb, Zn, Ni, Mn, and Cu in the
soil. The increase of total TM concentrations in the top soil after the
application of biosolid fertilizers has been extensively reported
(Koutroubas et al., 2014; Latare et al., 2014; Lloret et al., 2016;

FIGURE 3
Percentage of selected metals (Fe, Mn, Zn, Pb, Cu, and Cr) in different fractions (exchangeable, reducible, and residual + oxidizable) in the initial
samples (soil, MSW digestate, and MSW digestate-amended soil). Exchangeable (acid-soluble and bound to carbonates); reducible (bound to Fe and Mn
oxides); residual + oxidizable (bound to the soil matrix and organic matter). Error bars are not illustrated in the figure; the standard error of the mean of
three measurements (n = 3) are indicated in Supplementary Table S4.

Frontiers in Environmental Science frontiersin.org08

Bonet-Garcia et al. 10.3389/fenvs.2023.1267463

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1267463


Marguí et al., 2016; Dragicevic et al., 2018). However, for Fe, an
opposite trend was observed as the Fe content was much higher in
the soil than in MSW digestate-amended soil (p <0.05). No
significant differences (p >0.05) were observed in concentrations
of Cr and Co between the soil and the MSW digestate-amended soil,
although Cr concentration tends to be higher in MSW digestate.

A modified BCR sequential extraction protocol (Rauret et al.,
1999) was carried out to evaluate TM availability changes upon soil
amendment with the MSW digestate for Fe, Mn, Cu, Zn, Pb, and
Cr (Figure 3). For Cd, Co, and Ni, no metal fractionation was
carried out, as their levels in the initial matrices were low. The
sequential extraction method identifies TMs in the MSW

FIGURE 4
Total metal (Zn, Cu, Cr, Pb, Ni, Mn, and Fe) concentration in soil solid phase along soil depth; layers (1, 0–0.1 m; 2, 0.1–0.2 m; 3, 0.2–0.3 m; 4,
0.3–0.4 m) in soil columnswith andwithout plants over time (days 1, 7, 21, 35, and 90). Plants were transplanted into the respective columns at day 7. Error
bars indicate the standard error of the mean of the three measurements per each duplicated column (n = 2 × 3).
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digestate-amended soil which could be potentially mobilized in
the short and long term and ultimately become an environmental
hazard or TMs that could be more bioavailable to plant and
microbial communities, either potentiating plant uptake or
increasing metal toxicity. In the present study, chemical
fractionation of TMs in solid matrices consisted in three
fractions (exchangeable, reducible, and oxidizable + residual).
Preliminary tests indicated that the percentages in the oxidizable
fraction were very low (results not shown), so it was decided to
join this fraction to the residual one.

Overall, MSW digestate amendment increased the potential
mobility and availability of Fe and Mn (p <0.05) (exchangeable
fraction) in the soil, while no significant (p >0.05) influence was
found in the Pb, Cu, and Cr fraction distribution. In the initial soil,
Fe seemed to be mainly present in the residual and oxidizable
fraction (least mobile forms). Application of MSW digestate
significantly influenced Fe distribution, increasing exchangeable
and reducible fractions (p <0.05), and thus its potential
availability. Ali et al. (2015) reported that the application of
biofertilizers led to a drop in soil pH, which resulted in an
increase of available Fe. However in this study, MSW digestate
induced a slight increase in the soil pH, which is generally linked to
an increase in the cationic metal retention in soil surfaces via
sorption, inner-sphere surface complexation, and/or precipitation
and multinuclear type reactions (McBride, 1994). Therefore, the
increase in the available forms, in this case, could be caused by 1)
trace organic acids present in the MSW digestate or 2) recent TM
soil enrichment, which was not yet allowed to become sequestered
and adsorbed by soil constituents.

Similarly, the application of MSW digestate increased (p <0.05)
the exchangeable fraction of Mn, while it decreased the reducible
fraction in the soil. Considering the recent application of the MSW
digestate into the soil, this result could be attributed to MSW
digestate containing Mn in exchangeable form and the
subsequent release into the soil after amendment. Similar results
were reported by Karimi et al. (2020), who studied Mn availability in
the biochar-amended soil. The decrease of the reducible fraction and
an increase in the residual + oxidizable fraction could be explained
by the transformation of Mn into a more stable fraction through the
formation of insoluble complexes with organic matter functional
groups (Dhaliwal et al., 2019; Li et al., 2021).

Upon addition of MSW digestate to the soil, the Zn
concentration in the reducible fraction increased (p <0.05),
whereas that in the exchangeable fraction dropped. However, the
total amount of oxidizable + residual fractions was not significantly
affected by MSW digestate. This could be linked to the presence of
Mn in the MSW digestate. Hydrous Mn oxides, along with organic
matter, can decrease the reactivity of metals in the soil through
adsorption (Jing et al., 2023).

Similarly, Qiao et al. (2003) reported an increase of Zn
concentration in the reducible fraction of paddy soil after biosolid
application, as well as Bose et al. (2008), who found similar results on an
industrial waste-amended soil. However, other case studies showed an
increase in the proportion of Zn bound to the acid-extractable fraction
after biosolid amendments (Planquart et al., 1999; Qiao et al., 2003;
Yang et al., 2018; Wydro et al., 2021).

Both in the initial soil and MSW digestate-amended soil, the
largest portion of Pb, Cr, and Cu was found distributed among the

oxidizable + residual fractions (bound to organic matter and sulfides
and the remaining non-silicate-bound TMs). It is considered that
TMs are dominantly present in the residual fraction, as preliminary
results showed low TM amounts in the oxidizable fraction. This
indicates that these TMs are less readily bioavailable to plants.

MSW digestate amendment in the soil seemed to increase the
bioavailability of Fe and Mn, whereas it maintained low
bioavailability for Pb, Cu, and Cr. For Zn, on the other hand, the
MSW digestate slightly decreased its bioavailability. Based on the
comparison with previously published data, the results also seem to
indicate that the origin, type, and properties of the digestate, as well
as field conditions, will differently influence TM bioavailability.
However, the results in this section reflect the effect of a recent
application of MSW digestate to the soil; the following sections will
describe and discuss the longer-term effects.

3.3 Total metal concentration along the soil
profile through time

Understanding the migration and fractionation of TMs in the
soil environment after MSW digestate amendment is of great
significance for implementing relevant risk-control strategies
(Latosińska et al., 2021).

The total content of Zn, Cu, Cr, Pb, Mn, Ni, and Fe in the
different layers of the soil column after 7, 21, 35, and 90 days of
MSWdigestate application is shown in Figure 4. Levels of Cd and Co
were not determined due to their low concentrations, which would
prevent observing significant differences over time.

Overall, in a short-term period (90 days), relatively little
downward movement of TMs occurred. TMs (Cr, Mn, Ni, Cu,
Zn, and Pb) tended to mostly remain in the upper layer (0–0.1 m),
with the one withMSWdigestate-amended soil, moving slowly from
the surface to the second layer, within the top 0.2 m of the soil
profile.

After the stabilization period, at day 7 before plant
transplantation, concentrations for all TMs were significantly
higher (p <0.05) in the 0–0.1 m soil layer (MSW digestate-
amended soil) when compared to deeper layers and decreased
from the top to bottom, except for Fe, which already presented a
higher concentration in the initial soil (p <0.05).

In soil columns with no plant (T0, Figure 4.), as a general trend,
at day 21, significant increases (p <0.05) of Zn, Cu, Pb, Cr, Ni, and
Mn concentrations were observed in the 0.1–0.2 m layer, the layer
below the MSW-amended soil, after which TM concentration did
not vary significantly (p >0.05). These results suggest the migration
of Zn, Cu, Pb, Cr, Ni, andMn from theMSWdigestate-amended soil
to the soil layer beneath (0.1–0.2 m) during the first 21 days after
MSW digestate application, which then remained relatively stable
until the end of the experimental period (day 90), with no
statistically significant differences (p >0.05) among days 21, 35,
and 90. No evidence of TM movement deep into the soil profile was
detected since the TM concentration in the depths below 0.2 m
essentially remained unchanged for all treatments during the whole
experimental period. Similar results have been previously reported
(Harris and Urie, 1986; Farrell et al., 2010) showing that TM levels in
the soil after bio-amendment applications remained essentially
constant in the top 0.1 m of soil, while it progressively declined
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in the sub-surface layers after a longer period. Similarly, a recent
study conducted by Pikuła and Stępień (2021) showed that the
addition of increasing amounts of organic matter in the soil reduced
the leaching of TMs deep into the soil profile (especially on light soils
that are highly sandy).

However, an opposite trend was recorded here for Fe, that
presented an upward trend over depth (lower concentration was
observed in upper layers) and non-significant differences (p >0.05)
over time, except for a big decline observed at the 0.1–0.2 m layer
between day 7 and day 21, which after that point remained stable.
This could be explained by the fact that the Fe concentration did not
originate from theMSW digestate, as observed in the initial samples’
characterization, which showed that MSW digestate amendment
induced a decrease in the soil’s Fe concentration.

The observed Zn, Cd, Pb, Cr, Ni, and Cd behavior in T0 could be
explained by the known affinity of TMs for different fractions of soil
organic matter (Fujikawa et al., 2000; Fujikawa and Fukui, 2001;
Milne et al., 2003; Hartland et al., 2012; Šípková et al., 2013) and
larger levels of organic matter in top layers induced by the MSW
digestate amendment. Within organic matter, several distinct
functional groups (such as hydroxyl, carbonyl, carboxyl,
carbohydrate, and phenol) exhibit a strong capacity for forming
complex compounds with metals, including insoluble complexes
which can ultimately reduce metal mobility and transport (Tang
et al., 2014; Borggaard et al., 2019). An additional piece of evidence is
the increase of negatively charged sites in the soil (CEC) upon MSW
amendment, previously explained (Supplementary Table S1), which
was likely because of the increase of organic matter, indicating the

FIGURE 5
Percentage of metal fractions (Cr, Cu, Pb, and Zn) (exchangeable, reducible, and residual + oxidizable) along soil layers (1, 0–0.1 m; 2, 0.1–0.2 m; 3,
0.2–0.3 m; 4, 0.3–0.4 m) in soil columns after the initial stabilization period (day 7) and the end of the experimental period (day 90). Threemeasurements
per each duplicated column (n = 2 × 3) were performed.
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ability of the upper layer of soil to hold positively charged ions (such
as TM cations) (Sumner and Miller, 1996).

Another possible explanation is the observed increase in the soil
pH upon MSW digestate amendment (from 7.9 to 8.4,
Supplementary Table S1), a value that was maintained until the
end of the experiment (Supplementary Table S3). The maintained
higher pH over time could be explained by various processes, with
emphasis on the release of OH⁻ ions due to the decarboxylation of
organic anions during the mineralization of organic carbon and the
consumption of H⁺ ions through the protonation of organic
molecules (Shi et al., 2019; Yan et al., 1996). Many researchers
have observed a significant reduction in the leaching of TMs under
an increase in soil pH value (Fulekar and Dave, 1991; Wang et al.,
2020). This slightly basic pH can induce some TM precipitation
under the form of hydroxides and/or carbonates (Ford and Sparks,
2001). Furthermore, this pH value is favorable for the sorption of
TMs onto clay minerals, present in the studied soil (Harter, 1983;
Lair et al., 2007). Finally, it has been observed in the first section that
MSW digestate amendment increased CaO and MgO
concentrations in the soil (Supplementary Table S1), which are
considered to be major adsorbents of TMs in soils due to their
alkaline nature (Spence and Shi, 2004), which could also explain the
high retention of TMs in the upper layers. A similar trend of TM
migration was found in soil columns with P. virgatum and P.
alopecuroides (treatments T1 and T2), with the TM content also
remaining mainly confined in the 0–0.2-m layers over the course of
the experiment. However, TM concentrations in the 0.1–0.2 m-layer
on days 21, 35, and 90 were significantly (p <0.05) lower when
compared to those in soil columns without plants (T0), indicating a
potential protective effect of the studied plants, preventing metal
mobility through the soil profile. A clear decline in TM
concentration over depth can be observed, especially for Zn, Cu,
and Pb. As previously mentioned, the TM distribution at depths
below 0.2 m remained constant during the experiment for all
treatments.

Similarly, P. virgatum has been widely reported to reduce Zn
concentrations in soil (Aderholt et al., 2017; B.-C; Chen et al., 2012;
Kacprzak et al., 2014; Masters et al., 2016), as well as Cr (Li et al.,
2011), which was not observed in the current study. Fewer studies
focus on P. alopecuroides (Chen et al., 2020). However, other species
of the same genus have shown the TM uptake capacity, reducing TM
concentrations in soils, similar to what was found in this study. For
example, Lin et al. (2020) used Pennisetum hydridum to treat
municipal sewage sludge. In the study of He et al. (2021),
digestate application was used to improve the Cd
phytoremediation potential of Pennisetum hydridum.

Small but not significant differences (p >0.05) were observed
between columns with different plant species, except for the Zn
concentration in the 0.1–0.2 m layer at day 90, which was lower
(p <0.05) in the presence of P. virgatum than with P. alopecuroides.
The reduced migration of TMs observed when plants were present
could be explained by the activity in the rhizosphere. Both plants and
rhizosphere microorganisms (bacteria, archaea, and fungi) can
contribute to lowering TM mobility (Plekhanova et al., 2022).
They both can release chelating compounds outside cells, for
example, secondary metabolites such as biosurfactants, TM-
binding proteins (metallothionein), metallophores, and low
molecular weight organic acids and iron-chelating compounds

(siderophores) (Tao et al., 2004; Lambers et al., 2009; Seshadri
et al., 2015; Fresno et al., 2017; Barra Caracciolo and Terenzi,
2021), which can induce sorption and/or precipitation processes
and decrease the mobility and accessibility of TMs significantly. A
recent study from Grybos et al. (2022) showed the potential of
microorganisms to release chelating agents for Fe and Pb.

Furthermore, these compounds can enhance the plant’s and
rhizosphere microorganisms’ metabolically active uptake of TMs
(McGrath et al., 2001). In fact, the Zn and Cu concentration decrease
could be explained by plant uptake due to their essential nature for
plants, as they were involved in many enzymatic processes
necessary, for example, for proper photosynthesis, metabolism of
carbohydrates and proteins, oxidation processes, and synthesis of
DNA, RNA, and chlorophyll.

It is important to note that in both the absence and presence of
plants, Pb, Zn, Ni, Fe, Mn, Cr, and Cu concentrations in column
leachates collected over time were below the detection limit
(250 μg L-1, 17 µg·L-1, 125 μg L-1, 174 µg·L-1, 66 μg L-1, 0.75 μg L-1,
and 100 μg L-1, respectively), indicating no significant leaching of
TMs from the soil column.

To better visualize the obtained findings, correlation coefficients
were calculated (Pearson’s at the 0.05 significance level) and
principal component analysis was performed to determine the
relationships between total concentrations of TMs in the soil
profile and among the pH, depth, and presence/absence of plants
in soil columns T0, T1, and T2 (Supplementary Material,
Supplementary Table S5, Supplementary Figure S3). As
previously observed, Pb, Cr, Zn, Ni, Mn, and Cu were negatively
correlated with depth (p <0.05), whereas the opposite was observed
for Fe (p <0.05). Concentrations of Pb, Cr, Zn, Ni, Mn, and Cu over
time and depth were positively correlated with each other (p <0.05),
while they were negatively correlated with Fe (p <0.05). The
positively correlated metal concentrations with each other could
indicate a synergy among the leaching of these metals through the
soil profile (Gräfe et al., 2004; Kumpiene et al., 2008). Regarding
plant presence, Mn, Zn, Ni, and Cu total concentrations in the soil
profile were negatively correlated with the presence of both P.
alopecuroides and P. virgatum, while Pb was negatively correlated
with P. virgatum, and Cr was negatively correlated with P.
alopecuroides, although these correlations were not significant
(p >0.05).

3.4 Metal fractionation as a function of time,
depth, and presence of plants

To evaluate the evolution of the potential availability of TMs
in the soil amended with MSW digestate over time and depth, and
possible plant presence effects, metal fractionation was
determined in samples collected in soil columns after the
stabilization period (7 days) and at the end of the
experimental period (90 days) for Cu, Cr, Pb, and Zn. The
TMs of concern could cause ecotoxicological effects in the soil
ecosystem upon amendment (Figure 5).

At day 7, Cu, Cr, and Pb were found mostly in the oxidizable +
residual fraction in all soil layers, indicating that TMs were in their
less mobile state, as previously observed for the initial samples. This
was followed by the reducible fraction (TMs bound to oxides which
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are unstable under reducing conditions), while the exchangeable
fraction (bound to the soil by weak adsorption in the particles,
therefore the most “mobile” fraction) was very low. Zn was found to
be the most bioavailable TM; in the top layer (0–0.1 m),
approximately 25% of the total concentration of Zn corresponded
to the exchangeable fraction, whereas 47% corresponded to the
reducible fraction. According to the literature, the mobility of the
selected TMs in soils decreases in the following order: Zn >Cu >Pb
(Finzgar et al., 2007).

Regarding soil columns without plants (treatment T0), in
general, at the end of the experimental period, Zn, Cu, Cr, and
Pb were mostly found in the oxidizable and residual fractions. As
previously detailed, these TMs are probably non-mobile, not
available, being bound to stable, high-molecular weight
substances (Kazi et al., 2005; Van Poucke et al., 2020a; Van
Poucke et al., 2020b), being probably sequestered by organic
matter in the soil matrix. Overall, the reducible fraction of TMs
in the first soil layer (0–0.1 m) decreased over time when compared
to that on day 7, increasing in the second soil layer (0.1 m–0.2 m),
accordingly to the migration of TMs observed for the total TM
concentration. Layers below 0.2 m remained practically unchanged.
Concerning Zn, both exchangeable and reducible fractions
decreased in the 0–0.1 m layer, while both fractions increased in
the 0.1–0.2 m layer. However, no significant changes were observed
in TM fractions between day 7 and day 90.

Previous studies reported that there is a risk in the
application of bio-amendments from municipal waste or
urban sources, such as digestate or sewage sludge, in soil
since both quantity and bioavailability of TMs may increase
in the soil (Cambier et al., 2019). However, in the present study,
a low metal mobility was observed without a significant increase
in metal bioavailability. This was even more noticeable when
the plants were present.

No significant changes between presence (T1 and T2) and
absence of plants (T0) were observed in Cu and Cr fractionation.
However, for Pb, while its fractionation in columns with P. virgatum
(T1) was similar to that found in soil columns without plant (T0), P.
alopecuroides’s presence (T2) seemed to slightly increase the Pb
reducible fraction. These results are in accordance with the reported
high solubility of Pb at low pH (Sauvé et al., 1997). For Zn, however,
both plants clearly changed Zn fractionation and availability,
increasing it in the second soil layer (0.1–0.2 m). This could be
explained by the rhizosphere activities, discussed in the previous
section, which can in turn induce a decrease in pH (Supplementary
Table S3).

The 0–0.2 m (rhizosphere) layer of both soil columns with the
plants (P. virgatum and P. alopecuroides) showed a one-unit
pH decrease compared to the 0.2–0.4 m layer, 7.1 vs. 8.2. This
pH decrease could be explained by a root-mediated pH shift,
which could be attributed to a combination of mechanisms,
including 1) the cation–anion exchange balance; 2) organic
acid release; 3) root exudation and respiration, 4) redox-
coupled processes; 5) release of H+ ions by the roots in their
immediate vicinity (Seitz Valerie A. et al., 2022). Soil pH decrease
can increase TM mobility and availability since it plays a major
role in the sorption of metals as it directly controls the solubility
of metal hydroxides, as well as of metal carbonates and
phosphates (Sauvé et al., 2000; Michaud et al., 2007; Blossfeld
et al., 2010; Seshadri et al., 2015; Antoniadis et al., 2017). Soil
pH can also affect metal hydrolysis, ion-pair formation, and
organic matter solubility.

Nonetheless, despite some changes in metal availability in
upper layers, the combined study of total TM concentration and
fractionation indicated that the presence of plants reduced
metal transport through the soil profile in the short term
(90 days).

FIGURE 6
(A) Average height (cm) (+SD) over time of P. virgatum and P. alopecuroides grown in the presence or absence of MSW digestate. (B) Average dry
mass (mg) (+SD) at the end of the experimental period (day 90) of P. virgatum and P. alopecuroides grown in the presence or absence of MSW digestate.
Error bars indicate the standard error of the mean of three measurements per each duplicated column (n = 2 × 3) in the case of plants from MSW-
amended columns (T1 and T2) and threemeasurement per single column (n = 1 × 3) for plants in the unamended column (T3 and T4). Columns with
different letters are significantly different at the 0.05 level of significance by Tukey’s multiple comparison test.
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3.5 Effects of MSW digestate on plant
growth

Positive significant effects (p <0.05) of MSW digestate amendment
were observed on the growth of both plants (Figure 6). At the end of the

experimental period, both plants presented a significantly higher
(p <0.05) dry matter biomass in MSW digestate-amended soil
conditions when compared to the unamended soil (Figure 6). P.
virgatum in the MSW digestate-amended soil presented a greater
(p <0.05) total biomass than P. alopecuroides under the same

FIGURE 7
Concentration (μg g-1) on dry weight basis (+SD) of Pb, Zn, and Cu at the end of the experimental period (day 90) in roots and leaves of P. virgatum
and P. alopecuroides grown in the presence or absence of MSW digestate. (A) P. virgatum grown in the presence and absence of MSW digestate, (B) P.
alopecuroides grown in the presence and absence of MSW digestate. (*) indicates the significant differences of each metal concentration between the
presence and absence of theMSW amendment at the 0.05 level of significance by Tukey’smultiple comparison test. Error bars indicate the standard
error of themean of the threemeasurements from two columns (n = 2 × 3) for T1 and T2, and themean of threemeasurements from a single column (n =
1 × 3) for T3 and T4. The values were below the limit of detection (LOD) for Cu (1.5 μg g-1).
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conditions. Furthermore, plants’ height evolution over time was
increased with MSW digestate amendment (Figure 6).

Digestates can enhance plant growth directly through
physiological and nutritional effects. Some substances found in
digestates can function as natural plant hormones (auxins and
gibberellins) and can improve seed germination, root initiation, and
uptake of plant nutrients. Digestates can also serve as sources of
biologically available N, P, and K, which can contribute to plant
growth (Liang et al., 1996; Tambone et al., 2010). For instance, in this
study, it has been shown that MSW digestate application increased P2O5

concentration in soil (Supplementary Table S1). Indirectly, digestatesmay
affect plant growth through modifications of the physical, chemical, and
biological properties of the soil, for example, enhanced soil water holding
capacity and CEC and improved soil structure (Stevenson, 1994). In
addition, recent studies have identified beneficial microbes in digestates,
such as plant growth promoting bacteria (PGPB) (Qi et al., 2017).

In fact, it has been demonstrated that the application of different
digestates from different sources improved crop yields (Zheng et al.,
2019; Jimenez et al., 2020; Jamison et al., 2021; Panuccio et al., 2021),
as observed in the current study. Tan et al. (2021) showed that the
bioenergy crop hybrid giant Napier grass increased the total yield
when digestate was applied. In addition, Walsh et al. (2012) found

that grasses amended with liquid digestate gave similar or better
yields than those receiving either N or NPK inorganic fertilizers.
Alburquerque et al. (2012) found that the addition of the digestate
increased the soil microbial biomass and activities, which provided a
greater amount of organic carbon to the soil, ultimately causing a
positive effect on crop yields. Lopushniak et al. (2021) performed
prognostic models of P. virgatum L., and according to their results,
the use of sewage sludge provided a higher dry biomass yield than
unamended soil. Rodgers & Anderson (1989) already demonstrated the
benefits of sludge amendment in P. virgatum and other grass crop
species. Yue et al. (2017) reported howmunicipal sewage sludge biochar
amendment induced an improvement of poor urban soil fertility and
turf grass nutrition and growth.

Therefore, the amendment with the MSW digestate was
beneficial to plants. Higher plant growth can lead to higher
exudation of compounds which can influence TM mobility and
availability and could influence the TM behaviors as discussed in the
previous sections, contributing for a higher retention of TMs in the
layer of the soil amended with the MSW digestate, reducing TM
mobility in the layer of the soil beneath it. A higher plant growth and
an increase in plant biomass can also lead to a high amount of TMs
being removed from contaminated matrices due to a higher metal

FIGURE 8
Root bioconcentration factor (BCF) and translocation factor (TF) (+SD) of Pb, Zn, and Cu for P. virgatum and P. alopecuroides grown in the (A)MSW
digestate amended soil and (B) unamended soil, at the end of the experimental period (day 90). Error bars indicate the standard error of the mean of the
three measurements from two columns (n = 2 × 3) for T1 and T2 and the mean of three measurements from a single column (n = 1 × 3) for T3 and T4.
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uptake, which will also reduce the possibility of TM mobility
through the soil profile.

3.6 Plant metal uptake

After harvesting the plants at the end of the experiment, the total
concentration of the two essential TMs (Zn and Cu) and one non-
essential TM (Pb) in plant tissues was determined to evaluate whether
the plants were adopting a phytoextraction strategy.

When analyzing phytoextraction, different factors should be
taken into consideration: 1) the plant’s potential to accumulate
the TM and 2) the plant’s ability to transfer the accumulated
contaminants from belowground to the aboveground tissues.
Therefore, the bioconcentration factor and translocation factor
were calculated to evaluate TM uptake, mobilization into the
plant tissues, and storage in the shoot parts. The BCF is
described as the ability of plants for elemental accumulation
from the substrate (Radziemska, 2018), being used to measure
the TM accumulation efficiency in plants; BCF
values >1 indicate a potential TM hyperaccumulator species
(Zhang et al., 2002). The TF explains the ability of a plant to
translocate the TM from the roots through the shoots and
leaves, mediated by the xylem and/or phloem cells (Rascio
and Navari-Izzo, 2011), being used to evaluate plants’
capacity for phytoextraction.

Pb, Zn, and Cu concentrations in plant tissues grown in the MSW
digestate-amended soil was significantly higher than in plants grown in
the unamended soil (p<0.05) (Figure 7), being themost noticeable for Zn.
In general, Zn levels were statistically higher in P. virgatum. In both plant
species, the concentration of TMs in the leaves and roots followed the
order Zn >Cu >Pb; both in the MSW digestate-amended and
-unamended soil, however, the differences between Cu and Pb
concentrations were not statistically significant. This was in
accordance with the metal fractionation results where Zn was found
mostly in exchangeable and reducible fractions, considered to be themost
bioavailable TM in the MSW digestate-amended soil and so more easily
taken up. In addition, according to the total TM concentration, Zn was
the most abundant TM.

Both in the unamended and MSW digestate-amended soil, the
BCF <1 was observed for both plants for all the TMs. BCF values were
slightly higher for P. virgatum (Figure 8). Even though Zn and Cu are
essential elements for all living organisms (Bowen, 1966), no evidence
of bioconcentration was found. In addition, despite Zn being the most
available TM, no evidence of hyperaccumulation in plants was found.

Regarding TM translocation abilities, for Zn a TF >1 was observed
for both plant species. As mentioned previously, a TF value higher than
1 indicates that the TM is stored mainly in the aboveground part of the
plant, which is primarily responsible for phytoextraction (Nirola et al.,
2015). The observed results suggest a potential for both plants to
relocate Zn to the aboveground biomass. The highest accumulation
of the contaminants in the aerial part is interesting from the
phytoextraction point of view. Once the contaminants are in the
aerial part, the biomass harvest will contain the metals removed
from the MSW digestate-amended soil.

Previous studies have shown that P. virgatum can uptake TMs
such as Cd, Cr, and Zn from contaminated soils (Cui et al., 2011;
Aderholt et al., 2017; Afzal et al., 2017; Guo et al., 2019). Mei et al.

(2020) also showed P. alopecuroides had good Cu, Pb, Zn, and Cd
uptake abilities when exposed to synthetic stormwater in
bioretention plants, as also observed in this study, although
without the bioconcentration capacity.

Differences in TM accumulation between the two plant species
could be attributed to different plant uptake capacities; variations in
the plant biomass, as P. virgatum presented a higher biomass; or the
differences in the rhizosphere microbial community structure (not
determined), rather than metal availability differences, which were
not significant, as discussed previously. On the other hand,
differences of the TF between the MSW digestate-amended and
unamended soil could be explained by the differences in TM
bioavailability and the plant biomass between the different
conditions, as well as the differences in rhizosphere microbial
diversity. The TM type, sources, physical and chemical behavior,
environmental factors (Usman et al., 2020), plant biomass, and
rhizosphere microbial diversity (Wood et al., 2016) can all play a role
in TM extraction and accumulation by plants.

Therefore, the decrease in Zn, Cu, and Pb in the MSW digestate-
amended soil layer and reduced migration into the soil layer beneath it
when plants were present could be more closely associated with the
physical and chemical stabilization of TMs in the soil through
phytostabilization processes rather than direct root metal
accumulation by the plants. However, the plants showed a capacity
to translocate and accumulate Zn in aboveground tissues. The results
suggest that different phytoremediation processes may be occurring,
which combined, can help immobilize TMs in the rhizosphere and
plant tissues (Kidd et al., 2009; Alkorta et al., 2010) and protect deeper
layers of the soil from TM migration. Further research would help
identify the phytoremediation mechanisms adopted by the plants,
which in turn would help optimize the process.

4 Conclusion

The results showed that MSW digestate application increased the
organic matter content and the macro- and micronutrients in the
marginal soil, indicating a potentially suitable use in soil reclamation.
Furthermore, MSW digestate exhibited a positive impact on the growth
rate and biomass yield of P. virgatum and P. alopecuroides, with the
latter showing a slightly less biomass growth.

Overall, total TM concentrations increased in the 0.1–0.2 m
soil layer over time, the soil layer beneath the digestate-amended
soil, suggesting a downward migration of TMs. Nevertheless,
total TM concentrations tended to be confined in the upper layers
(0–0.2 m) of the soil profile, indicating no metal migration to the
deep soil layers and no evidence of risk, for instance, of
groundwater contamination. The highest concentrations in
bioavailable metal fractions were found in the first layers, the
0–0.1-m MSW digestate-amended soil and 0.1–0.2 m, especially
for Zn. The other TMs, namely, Cu, Cr, Fe, Mn, and Pb, were
mostly found in oxidizable–residual fractions in all layers of the
soil profile, showing a low availability. P. virgatum and P.
alopecuroides reduced TM migration to the 0.1–0.2 m layer, in
particular that of Zn, Cu, and Pb, suggesting a protective effect.
Moreover, in general, no significant differences were observed
among TM fractionation between the presence and absence of
plants. In fact, only an increase in Zn availability in the 0.1–0.2 m
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layer was observed when P. virgatum was present. Within the
studied conditions, higher concentrations of TMs were found in
both plants’ tissues when exposed to MSW digestate-amended
soils relatively to unamended soils. However, no
bioconcentration capacity was observed for the two plants.

Although the current findings cannot be extended to all soils, for
the bio-amendment types and field situations, it is expected that the
current research will add to the body of knowledge regarding the
potential benefit of the MSW digestate, along with its impact on soil
attributes and the use of phytoremediation technologies as an
economically green alternative to increase the safety of such
practices. Further experiments are needed to analyze the long-
term effects and large-scale implementation.

Ultimately, this approach may help achieve the Mission Board’s
proposal to the European Commission that aims to ensure 75% of
healthy soils by 2030 for food, people, nature, and climate (EC,
2020). Furthermore, it may also help address the United Nations
Sustainable Development Goals (SDGs) 7 (“Ensure access to
affordable, reliable, sustainable and modern energy for all”), 13
(“Climate action”), and 15 (“Protect, restore and promote
sustainable use of terrestrial ecosystems, sustainably manage
forests, combat desertification, and halt and reverse land
degradation and halt biodiversity loss”) (United Nations, 2016).
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