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The lack of reliable near-surface wind data products in lake district regions
significantly limits the efficiency of meteorological models, forecasts, services,
and wind resource development. This is primarily due to a shortage of observation
data and related studies, as well as insufficient validation and promotion of existing
data products, which further hinders the comprehension and monitoring of local
wind fields. In this study, comprehensive verification research was conducted on
mainstream wind field products, namely, ERA5-Land (EC), GLDAS (GL), and
HRCLDAS (HR) in the Dongting Lake area of China. This was achieved by
utilizing a large volume of measured data and a triple collocation analysis
(TCA) method. Additionally, an exploration into the optimal wind field data
fusion method was undertaken. HR products demonstrate superior
performance in capturing wind speed at the in situ measured scale, while GL
outperforms at the grid scale, and EC products show relatively stable performance
withminimal outliers. The long short-termmemory (LSTM) neural networkmodel,
combined with time-series features, emerges as the most optimal data fusion
model. LSTM fusion product is superior to the original product (except for HR
products at the in situmeasured scale), TCA-based weighted fusion products, and
multi-layer fully connected neural network (MFCNN) on various parameters. This
study quantifies the performance of mainstream wind products in lake areas and
provides a benchmark for further application of these products. Furthermore, the
successful implementation of an optimal wind data fusion method can provide
valuable insights for related research, and the resulting wind fusion products can
offer superior basic data support for local terminal applications.
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1 Introduction

Wind, a fundamental meteorological element, exerts
considerable influence on a large scale, affecting precipitation,
and on a smaller scale, influencing heat, water vapor flux,
convection, and cloud development (Gimeno et al., 2020; Dias
Neto et al., 2023). Accurate wind speed data can significantly
facilitate the creation and validation of meteorological models
(Gimeno et al., 2020), enhance wind resource development
(Nezhad et al., 2022), and refine meteorological services (Kosiba
et al., 2013). Over the past few years, extensive research on wind
fields in sea, island, and offshore areas has led to the creation of a
range of data products. Despite this progress, there remains a
notable shortage of medium and high-resolution data on near-
surface wind speeds in mainland lake regions (Brinckmann
et al., 2016).

Lakes, reservoirs, and other water bodies make up about 4% of
the Earth’s land area (Downing et al., 2006). Compared to land, these
water bodies have distinct features like higher heat capacity, lower
albedo, less surface roughness, and more water vapor content. These
characteristics lead to thermal disparities between water bodies and
land, which in turn create unique wind circulations, making the
wind field variable (Desai et al., 2009). This complex interaction
significantly affects regional weather patterns and local convective
processes (Long et al., 2007). Hence, accurate wind data products are
essential for understanding local weather changes, climate patterns,
and their underlying mechanisms in lake areas. It becomes a key
scientific issue to study the optimization of wind field products in
lake areas using existing observation techniques.

China has a vast inland water system, of which Dongting Lake,
located in the middle reaches of the Yangtze River, is the second
largest freshwater lake. Fishing, shipping, and tourism thrive in
Dongting Lake, with a constant flow of fishing boats, sand dredging/
transporting vessels, cruise ships, and cargo carriers. However,
during flood seasons or extreme weather events, high winds and
waves can significantly compromise navigation and flood protection
safety in the lake area. Therefore, access to high-quality wind speed
data is instrumental in fortifying shipping meteorological services,
bolstering disaster prevention and reduction capabilities, and
fostering wind resource development.

Despite the value of wind observation data, there is an apparent
shortage of large-scale spatial and uniform wind speed observation
products. Traditional wind speed observations near the surface
(water surface) typically stem from ground (buoy) station
observations, which are accurate (Lucio-Eceiza et al., 2018) but
lack sufficient resolution. The increasingly adopted remote sensing
technology can offer inversion products of sea surface wind fields.
However, due to the complexity of the relationship between sea
surface parameters and backscatter (Elyouncha et al., 2021), coupled
with the lack of verification access, these products warrant further
improvement.

Numerical simulation is also one of the solutions for obtaining
wind speed products (Nezhad et al., 2020). The continuous
evolution of meteorological observation systems and the
accumulation of multi-source data from in situ automatic
observation stations, radars, and satellites have paved the way for
assimilating multi-source data or model products. These products
compensate for the insufficient spatial resolution of observation

products (Shi et al., 2019), and they have become the mainstream
grid wind data products. They have found extensive application in
wind energy resource assessment (Ren et al., 2022), air pollution
analysis and prediction (Zhang et al., 2022), and meteorological
disaster monitoring (Zhu et al., 2022). Such assimilated or model
products provide large-scale parameterized wind field references.
However, there are unquantified uncertainties at a regional scale.
Thus, validation research is a crucial prerequisite for advancing the
various applications and facilitating their deeper integration (Li
et al., 2022a).

Each independent wind data product has its own optimized
application scenarios and shortcomings, owing to differences in
development models. ERA5-Land (EC), GLDAS (GL), and
HRCLDAS (HR) are commonly utilized in meteorology, being
official data products from meteorological agencies in Europe,
the United States, and China. Each of these products offers wind
field data. For instance, EC and GL have coarse resolution, and their
accuracy levels vary across regions (Jiang et al., 2021), moreover, the
lack of in situ measured data in China makes them easy to
underestimate wind speed (Yu et al., 2019). Nevertheless,
reanalysis data typically possess long time series and good spatial
performance. For example, EC can effectively address the issues of
spatial and temporal heterogeneity and data scarcity (Zhang et al.,
2017). It demonstrates strong applicability in near-surface wind in
the Bohai Rim region (Chen et al., 2017). HR, as an assimilation
product, does not incorporate model data, which may impact its
ability to capture spatial wind fields (Van Vledder and Akpınar,
2015), and the short application time leads to a lack of validation
studies (Jiang et al., 2021). However, it assimilates extensive
measured data in China, fostering iterative improvement, and
offers superb spatial and temporal resolution. To sum up, the
studies mentioned above, along with a broader body of related
research, have provided evidence of both the advantages and
disadvantages of these three widely used grid products. This
suggests the possibility of employing data fusion techniques
based on mathematical methodologies.

Data fusion is a technique that synthesizes incomplete
information from various independent sources about the
characteristics of an environment to generate more complete,
unified, and accurate data (Yu et al., 2020). It is designed to
achieve lower detection errors and heightened reliability
(Rashinkar and Krushnasamy, 2017). Prominent data fusion
methods include Bayesian estimation (Ma et al., 2020), reliability
ensemble average method (Yoo et al., 2020), and machine learning
(Yin et al., 2021). In the meteorological sector, data fusion
technology has proven successful in enhancing temperature,
wind, evapotranspiration, and other data products, thereby
improving data quality and promoting product application
(Sharma et al., 2022).

The accurate monitoring of wind fields in lake areas is a cutting-
edge and complex scientific issue. The reasons are twofold: firstly,
under the context of climate change, localized strong convective
weather occurs frequently, especially in lake areas. Due to the
uniqueness of the underlying surface, these areas exhibit complex
dynamic and thermal interactions, leading to highly variable local
wind fields. Consequently, a single observational approach is
insufficient for accurately monitoring surface wind field
characteristics. Secondly, the research on wind fields in lake areas
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is limited due to a lack of observational data and technical
methodological constraints. Most of the limited research
conducted focuses on regions like the Great Lakes in North
America (Doubrawa et al., 2015), with insufficient studies carried
out in Chinese regions. As a typical inland lake, Dongting Lake,
influenced by its terrain and climate, has become a high-incidence
area for strong winds. The scarcity of high-quality wind speed
product limits local aviation meteorological services, disaster
prevention and mitigation work, as well as the development of
wind energy resources. In view of this situation, this research
comprises three segments: 1) the verification process for the wind
products from EC, GL, and HR in the Dongting Lake District
involved conducting authenticity tests (to evaluate the
performance of each product) through a combination of
comparing in situ measured data and employing triple
collocation analysis (TCA); 2) studying a wind fusion method
based on TCA and a neural network model, and screening for
the optimal fusion method; 3) conducting a comprehensive
assessment of the optimal wind speed fusion product’s
performance in the Dongting Lake area. The research results can
quantify the performance of mainstream wind speed products in the
Dongting Lake area, offer a reference for further product
application, and bolster subsequent development of fusion
products. Successful fusion technology application can provide a
reference for related research, and the resulting wind fusion
products can improve basic data support for local weather
forecasts, services, and wind resource development.

2 Materials and methods

2.1 Study area

Dongting Lake, situated at 27°39′–29°51′ N, 111°19′–113°34′ E
(Figure 1), spans the provinces of Hunan and Hubei. It is China’s
second-largest freshwater lake, with the largest water volume among
the lakes connected to the Yangtze River. Its water system comprises

Dongting Lake (2,691 km2), Xiangjiang River, Zishui River,
Yuanjiang River, Lishui River, Miluo River, Xinwall River, and
other small to medium-sized rivers directly feeding into the lake.
The lake area is vast, encompassing a complex network of
interconnected water systems. Dongting Lake is surrounded by a
multi-lake water network plain, formed over an extended period of
geological activity. The lake is bordered by hills to the east, south,
and west, and a broad plain lies to the north.

In this study, the term “lake area” specifically pertains to the
region enclosed by the dotted line shown in Figure 1, whereas the
land area is situated beyond this delineation. All the areas depicted in
Figure 1 are designated as study areas.

2.2 Data

With regard to the future utilization of the research results, EC,
GL, and HR wind field products were selected as the primary data
sources for this study. These gridded datasets were sourced from
official meteorological agencies in Europe, the United States, and
China, respectively, ensuring a high level of product quality and
reliable accessibility. In this study, data from each product spanning
1 year, from 0:00 on 1 July 2021, to 23:00 on 30 June 2022, were
utilized. This approach mitigates any potential influence of seasonal
factors on the results.

(1) Data obtained from in situ measured stations

There are 552 surface wind observation stations (right figure in
Figure 1) of the China Meteorological Administration in the study
area, but all of the observation data have been used in the
assimilation process of HR products. For the objectivity of
validation results, observation data from these 552 stations are
not used in the authenticity test of the first part, but they are
used to validate the fusion product in the third part.

In addition, we set up 11wind speed observation stations inDongting
Lake on our own (left figure in Figure 1) to obtain the first and

FIGURE 1
Distribution of terrain, water system, wind observation stations on lake (left), and wind observation stations on land, grids of the three products (right)
in the study area.
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unpublished wind observation data. Based on this dataset, mainstream
grid products were verified more rigorously and objectively.

The above two data products are hourly automatically measured
by the ZQZ-TF cup-type wind speed sensor at 10 m height, the
measuring range is 0–75 m/s, the resolution is 0.1 m/s, and the
averaged missing rate of all 563 stations is 1.09%.

(2) ERA5-Land reanalysis data (EC)

The EC reanalysis data, released by the European Center for
Medium-Range Weather Forecasts (ECMWF) in 2017, is the fifth
generation of global atmospheric numerical forecast reanalysis data
(Hersbach et al., 2017; Muñoz Sabater, 2019). Utilizing the 4D-Var
method that combines model-based estimates with observations (such as
air temperature, air humidity, and pressure), EC effectively addresses
uneven spatio-temporal distribution of observed products and data
scarcity (Ma et al., 2023). The EC 10m UV wind speed product,
released in 2019, boasts a spatial resolution of 0.1° and a temporal
resolution of an hour (Li et al., 2020). The data source is the
Copernicus Climate Data Store.

(3) GLDAS assimilation data (GL)

TheGlobal LandDataAssimilation Systems (GLDAS) is among the
most widely employed land surface data assimilation products.
Comprising both satellite observation and in situ measurement,
GLDAS leverages an advanced land surface model and data
assimilation technology (Rodell et al., 2004), and incorporates data
from both satellites and ground-based observations. The GLDAS-
2.1 simulation data, spanning from the year 2,000 to the present, are
driven by various inputs, including atmospheric analysis fields from the
National Oceanic and Atmospheric Administration (NOAA)/Global
Data Assimilation System (GDAS), disaggregated precipitation fields
from the Global Precipitation Climatology Project (GPCP), and
radiation fields from the Air Force Weather Agency’s AGRicultural
METeorological modeling system (AGRMET). This study utilized the
GLDAS-2.1 10 m UV wind product, produced by a Noah-3.6 land
surface processmodel, with a 3-h temporal resolution and a 0.25° spatial
resolution (Rodell et al., 2004). The data source is the NASA Goddard
Earth Sciences Data and Information Services Center.

(4) HRCLDAS assimilation data (HR)

The High-Resolution China Meteorological Administration
Land Data Assimilation System (HRCLDAS) employs multiple
grid variational technology and a terrain correction algorithm. It
combines numerical prediction data, satellite data, and site
observation data to produce atmospheric-data-driven products
(Han et al., 2019). Built upon the foundations of CLDAS-
V1.0 and 2.0, which served as the fundamental components of
the fusion algorithm for ground temperature, humidity, ground
pressure, and 10 m wind speed, the HR product represents a
significant advancement. This integration includes radiation
station data and precipitation data gathered from various
satellites and in situ observations within China. The HR system
elevates spatial resolution from 0.0625° (the spatial resolution of
CLDAS) to 0.01°, all while maintaining an hourly time resolution.
The 10 m UV wind incorporates high-resolution digital elevation

model and albedo information (Han et al., 2018). The data source is
the China Meteorological Information Center.

2.3 Data processing method

Firstly, spatio-temporal nearest neighbor matching and error
coefficient calculation were conducted between the wind grid
products and the observed data from the 11 lake stations. If
multiple in situ measured stations are involved in the matching
process, the average value of these stations is taken as the in situ
measured wind speed value of the grid. Subsequently, the EC and GL
products were interpolated to a resolution of 0.01°/1 h using the inverse
distance weighting-based spatio-temporal interpolation method (Li
et al., 2014). This allowed for a TCA after the spatio-temporal
nearest neighbor matching of the three grid products. The next step
involved combining the TCA-based fusion method and the neural
network model to develop an optimal data fusion technology.With this
technology, we generated fusion products for the entire year in the study
area. Ultimately, the accuracy of the fusion product was validated by
comparing it to in situ wind speed data from 552 stations that were not
used in constructing the fusion model (Figure 2).

2.3.1 Triple collocation analysis and data
fusion method

Wind parameters with high spatio-temporal variability pose a
challenge in finding high-quality reference data sets for validation
studies, particularly in regions like lake areas, which are known for
their scarcity of wind observation data. However, TCA can
overcome this hurdle. By employing collocation analysis among
three independent data products, TCA extracts error parameters
and authenticity information between the evaluated product and the
unknown truth value. Hence, it has evolved as an important
evaluation tool for surface parameters (Fan et al., 2022).

In the TCA method, it is assumed that surface products are
linearly correlated with real signals (Stoffelen, 1998), and the linear
model is given by:

xi � βip + αi + εi (1)
where, xi represents the data product, p denotes the real signal, βi and
αi are regression coefficients between the data product and the truth
value, and εi is a zero-mean random error. TCA obtains the error term
εi by calculating the covariance between data products (Eq. 1).

For three independent data products, assuming that conditions
① Ε(εi) � 0;② Cov(x, εi) � 0;③ Cov(εi, εj) � 0, i ≠ j are met, the
covariance between data can be expressed as (Eq. 2):

Cij � Cov xi, xj( ) � βiβjσ
2
x, i ≠ j

β2i σ
2
x + ε2i , i � j

{ (2)

Hence, the error term εx can be expressed as (Eq. 3):

εi �

�����������
C11 − C12C13

C23

√
, i � 1�����������

C22 − C12C23

C13

√
, i � 2�����������

C33 − C13C23

C12

√
, i � 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)
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The principle of the TCA-based data fusion method involves the
linear combination of the three products according to the
uncertainty of each data product:

xnew � ω1x1 + ω2x2 + ω3x3 (4)
where, xnew represents the fusion product, and ωi denotes the weight
coefficient (Eq. 4). In this study, we employed two weight coefficient
calculation methods. The first, proposed by Gruber et al. (2017), is
referred to as the Gruber method. Its calculation formula is:

ω � ITC−1I( )−1ITC−1 (5)
where, ω represents the weight coefficient vector [ω1,ω2,ω3]T, I
represents the unit vector [1, 1, 1]T (Eq. 5), and C denotes the error
covariance matrix, as follows (Eq. 6):

ε21 0 0
0 ε22 0
0 0 ε23

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

The second method, proposed by Li et al. (2022b), is referred to
as the Li square method. Its calculation formula is (Eq. 7):

ωi � ωij + ωik

ωij + ωik( ) + ωji + ωjk( ) + ωki + ωkj( ) (7)

For each parameter, take ωij as an example, the calculation
method is (Eq. 8):

ωij �
σ2εi − σ4εiεjσεiσεj

σ2εi + σ2εj − 2σ4εiεjσεiσεj
(8)

2.3.2 Neural network model and data
fusion method

Artificial neural networks (ANNs) are a class of machine
learning models designed to simulate the operations of the
human brain. They employ nodes that function similarly to
biological neurons, forming connections to process and transmit
data. ANNs provide notable advantages over traditional regression

and statistical models, as they excel in effectively modeling nonlinear
relationships (Abiodun et al., 2018). In recent times, neural network
models have gained extensive popularity across various domains,
including machine learning and data fitting, and have delivered
impressive results (Zhou et al., 2017; Fan et al., 2021).

A multi-layer fully connected neural network (MFCNN) is a
neural network model that contains multiple hidden layers and
enables data transmission between nodes of each layer (Figure 3). As
a fundamental neural network model, it can enhance the self-
optimization ability of the neural network model during multiple
rounds of training due to its long data processing link and the
flexible setting of model layer numbers, node numbers, and node
functions, thus improving the performance of model fitting.

The long short-termmemory (LSTM) network is a variant of the
recurrent neural network (Hochreiter and Schmidhuber, 1997; Gers
et al., 2000). It effectively tackles the problem of gradient explosion
and disappearance by introducing new internal states and gate
mechanisms. Compared to MFCNN, it significantly increases the
number of model parameters, but also broadens themodel’s capacity
to mine the time-series connection between data through the
learning process. LSTM modulates the self-cyclic weight through
the input gate, the forgetting gate, and the output gate (Eqs 9–14),
allowing the model training process to alter the gradient and
cumulative time scale (Eqs 9–14).

ft � σ Wf · ht−1xt[ ] + bf( ) (9)
it � σ Wi · ht−1xt[ ] + bi( ) (10)

�Ct � tanh Wc · ht−1xt[ ] + bc( ) (11)
Ct � ft * Ct−1 + it * �Ct (12)

Ot � σ Wo · ht−1xt[ ] + bo( ) (13)
ht � Ot * tanh Ct( ) (14)

where, ft denotes the forgetting gate, σ signifies the sigmoid
function, W represents the weight matrix, and b is the
corresponding weight offset term, [ht−1xt] describes the
connection of two vectors into a longer vector, in which ht−1 is
the short-term memory and xt is the input vector at time t, it

FIGURE 2
Flowchart of this research project.
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represents the input gate, �Ct is the current input cell state, and
tanh() is the activation function, which generates candidate memory
by creating a new candidate value vector, Ct refers to the cell state at
the current time, Ct−1 is the cell state at the last time,Ot is the output
gate, and ht represents the output value.

In this study, a data fusion model was established based on
the two aforementioned neural networks. In our approach, we
employed the current and previous 23 time-series grid products
corresponding to the grids that aligned with the 11 Dongting
Lake observation stations as input variables for the model.
Additionally, we utilized the current wind speed data
obtained from these 11 stations as the target values for model
fitting. When constructing the model, 80% of the matched
dataset was allocated as the training set, while 20% served as
the validation set. To prevent overfitting during training, a
separate test set was created from the training data,
consisting of 10% of the training data. Each training and
validation round randomly selected 128 sets of data. The
model’s maximum training rounds were capped at 100, and
the optimal model was determined by the first model to undergo
10 consecutive rounds without improvement. Through
continuous refinement of data preprocessing methods,
regularization techniques, model structure, and
node functions, the optimal neural network data fusion
model was explored and verified with the fusion model
based on TCA.

2.3.3 Performance indicators
2.3.3.1 Direct matching analysis

Data product results from the direct matching analysis are
evaluated by the following parameters: Pearson correlation
coefficient (r), Bias, relative bias (Biasr), root mean square error
(RMSE), and unbiased RMSE (ubRMSE). The equations for these
indexes are as follows (Eqs 15–19):

r � cov GWD, IMD( )
σGWDσIMD

(15)

Bias � 1
m
∑m
i�1

GWDi − IMDi( ) (16)

Biasr � 1
m
∑m
i�1

GWDi − IMDi| |
IMDi

(17)

RMSE �
�������������������
1
m
∑m
i�1

GWDi − IMDi( )2
√

(18)

ubRMSE � �������������
RMSE2 − Bias2

√
(19)

where GWD represents grid wind data, IMD stands for in situ
measured data, cov() is the covariance, and σ is the
standard deviation.

2.3.3.2 Triple collocation analysis
The following parameters are used as indicators of TCA:

correlation coefficient (Rho), standard error (Stderr), fractional
RMSE (fRMSE), and signal-to-noise ratio in decibels (Snr_db)
(Eqs 20–26). The equations used are as follows:

Rho �

�����������������
cov a, b( ) × cov a, c( )
cov a, a( ) × cov b, c( )

√
sign cov a, c( ) × cov b, c( )( ) ×

�����������������
cov a, b( ) × cov b, c( )
cov b, b( ) × cov a, c( )

√
sign cov a, b( ) × cov b, c( )( ) ×

�����������������
cov a, c( ) × cov b, c( )
cov c, c( ) × cov a, b( )

√

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

Sensitivitya � cov a, b( ) × cov a, c( )
cov b, c( ) (21)

Errvara � cov a, a( ) − Sensitivitya (22)
If Errvara ≥ 0, then

Stderra �
�������
Errvara

√
(23)

fRMSE � �������
1 − Rho2

√
(24)

Snra � cov a, a( ) × cov b, c( )
cov a, b( ) × cov a, c( ) − 1 (25)

If Snra ≥ 0 then Snr dba � −10 × log Snra( ) (26)
where a, b, and c are the triple-collocated products in each grid.
In the preceding parameters, higher values of r and Rho, and

lower values of Bias, Biasr, RMSE, ubRMSE, and Stderr, indicate
superior product performance. The value of fRMSE ranges from 0
(indicating perfect estimates) to 1 (indicating total noise with no
ground truth signal), with values > ~0.7 suggesting an error variance
that exceeds the variance of the true time series (Fan et al., 2021). A

FIGURE 3
Neural network model structure.
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value of zero for Snr_db indicates that signal variance is equal to
noise variance; +3 (+6) dB indicates that signal variance is twice
(four times) noise variance; −3 (−6) dB indicates that signal variance
is half (one-fourth) noise variance, and so forth (Chen et al., 2017).

3 Results

3.1 Authenticity tests of multi-source grid
wind products

The authenticity of three distinct grid products tested in the
Dongting Lake area was assessed by employing direct matching
analysis for each independent wind field product and the triple
collocation analysis for the interpolated data. The direct matching
analysis involves comparing original EC, GL, and HR with the
observation data from 11 lake stations and computing error
parameters. The results of the analysis, as depicted in Table 1, reveal
unique strengths and weaknesses for each of the three grid products in
the Dongting Lake area. In terms of the overall error coefficient, EC
products exhibit the smallest RMSE and ubRMSE, signifying fewer
outliers and a smaller absolute deviation. GL products, with the highest
r value, demonstrate superior capacity to capture surface wind speed.
Conversely, HR products achieve the best results in Bias and Biasr,
indicatingminor overall deviation. However, each product also presents
certain shortcomings. GL products, in terms of the overall error
coefficient, perform the poorest in Bias, Biasr, and RMSE, suggesting
a large overall deviation andmore outliers. HR products, with the worst
r and ubRMSE, reveal an inadequate capability to capture wind speed
and a larger absolute deviation.

When evaluating the best-performing grids for each product, it
becomes clear that a HR grid demonstrates superior performance in
various parameters. Nevertheless, it is important to highlight that
there is an underperformance observed in the case of the worst-
performing HR grid. This underperformance is characterized by the
poorest values for parameters like r and ubRMSE. This suboptimal
performance of the worst-performing HR grid can be attributed to
its heavy reliance on measured surface data and its susceptibility to
instability in areas with insufficient data support. Conversely, the
worst-performing grids reveal a significant Bias, Biasr, and RMSE in

the GL product, indicating a high abnormal deviation and random
error at some grids, thereby negatively affecting the product’s overall
performance.

Remarkably, the TCA verification results contrast with the
direct matching analysis, demonstrating an optimal performance
for GL products (Figure 4). A total of 800 times were randomly
selected from the 8,760 annual occurrences, and the analysis was
conducted using the TCA method after matching. The analysis’
Rho parameters reveal a noticeably stronger correlation of EC
and GL products with the real wind field in the Dongting Lake
area than that of HR products. The respective mean values in the
study area are 0.908, 0.933, and 0.622. Furthermore, GL
outperforms EC in the lake area boundary and some regions
outside the lake area. The mean values of Stderr for EC, GL, and
HR products are 0.478, 0.44, and 0.585, respectively, and their
corresponding fRMSE values are 0.41, 0.345, and 0.756. These
results suggest that EC and GL products have lesser errors when
compared with the actual wind field than HR products, with GL
demonstrating superior performance. Interestingly, the Stderr of
HR products is comparable to the others, but its fRMSE is
substantially different, indicating a higher error variance than
the real signal in most areas and an increased prevalence of
outliers with large deviations. The results of Snr_db are similar to
Rho and fRMSE, with mean values of 7.084, 9.157, and −1.957 for
EC, GL, and HR respectively, ranking the products in the order of
GL, EC, and HR. This parameter indicates that the proportion of
effective signals in the data for GL, EC, and HR is considerably
higher than that of noise in most parts of the lake area. In
contrast, the proportion of noise in the HR product data in
the lake’s surrounding areas is too high, obscuring the real signal.

The distribution of TCA error coefficients for the three products
in the lake area is relatively uniform, suggesting superior
performance in the lake area or its boundary compared to the
land area outside. In the lake area, the correlation between the
product and the real wind field is strong (Figures 4A–C), the overall
error is small (Figures 4G–I), and the signal-to-noise ratio is high
(Figures 4J–L). The exception to this pattern is the Stderr parameter
(Figures 4D–F), which performs better in some land areas outside
the lake than within it. This, along with the fRMSE distribution
analysis, suggests that deviations in land areas are primarily caused

TABLE 1 Error coefficients of three grid products matched with the 11 Lake station data.

Product Lake station Data quantity r Bias (m/s) Biasr RMSE (m/s) ubRMSE (m/s)

EC All 61,373 0.685 0.430 0.510 1.485 1.421

P3185/6 7,067 0.819 −0.042 0.319 1.112 1.111

P3180 7,041 0.664 1.603 1.568 1.975 1.154

GL All 11,793 0.694 0.976 0.609 1.733 1.432

P3184/5/6 2,409 0.842 0.177 0.306 1.010 0.994

P3180 2,350 0.655 2.249 2.140 2.726 1.539

HR All 66,715 0.663 −0.155 0.462 1.503 1.495

P3183 6,863 0.876 0.022 0.254 0.799 0.798

P3189 6,080 0.543 −0.549 0.532 1.871 1.788

(The stations listed in the table were one or more matched stations corresponding to the best and worst-performing grids of each grid product.).
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by a greater number of outliers, indicating that the product’s stability
is compromised outside the lake area.

From the authenticity tests using both methods, it is established that
the GL products in the Dongting Lake area perform comparatively well,
demonstrating a good ability to capture surface wind speed at both in situ
measured and grid scales. However, they are prone to abnormal
deviations. While the HR products show strong performance in direct
matching at certain lake stations, their overall performance is subpar. This
is particularly evident in the TCA evaluation, which provides a better
representation of the model’s capability to capture the spatial distribution
of the grid wind field and address any discrepancies in product
assessment. In fact, when it comes to TCA indicators, the HR
products consistently exhibit the poorest performance compared to
other products. EC products are stable in the study area with a

smaller abnormal deviation, but they do not excel in any particular
aspect. Considering thatGLperforms better, closely followed byEC in the
Dongting Lake area, and HR shows some advantages in specific
parameters, it is crucial to leverage data fusion technology to
capitalize on the strengths of each independent product. Developing
fusion products with superior comprehensive performance is the ultimate
goal of the following research.

3.2 Research on the optimal wind field data
fusion method

In this study, data fusion research on three independent wind
field products—EC, GL, and HR—are conducted using two data

FIGURE 4
The TCA error parameter of EC, GL, and HR wind speed products in the Dongting Lake area: the gradual deepening of the red color signifies an
improvement in product performance, while the gradual deepening of the blue color indicates a decline in product performance. The results presented in
the figure pertain only to grids where all three datasets exhibit a positive correlation, and there are more than 100 data triplets available for analysis. (A)
Rho-EC (B) Rho-GL (C) Rho-HR (D) Stderr-EC (E) Stderr-GL (F) Stderr-HR (G) fRMSE-EC (H) fRMSE-GL (I) fRMSE-HR (J) Snr_db-EC (K) Snr_db-GL
(L) Snr_db-HR.
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fusion methods based on TCA and two data fusion methods based
on machine learning. As a representative of the weight fusion
method, the TCA fusion method calculates the weight coefficient
based on the error coefficient. The neural network model, due to its
robust fitting capacity, fits the measured data through the grid
product. This neural network fusion model undergoes numerous
rounds of training and improvement, eventually leading to the
formation of two fusion model structures as outlined in Table 2.

To ensure objectivity in the comparative evaluation of the fusion
effects of the four models, the verification data used was a matched
data set that excluded the neural network model training data. This
set comprised approximately 10,000 data points, and the validation
results are presented in Table 3. According to the correlation
between the grid product, the fusion product, and the measured
data, the correlation between the four fusion products and the
measured data is higher than that of the three original grid
products. The LSTM fusion product shows the highest
correlation coefficient, thereby confirming its superior ability to

capture the wind speed of the lake area, followed by MFCNN and
TCA-Li with similar results. Based on Bias, Biasr, RMSE, and
ubRMSE, LSTM is the closest to the observed value, followed by
TCA-Li and TCA-Gruber. The error performance of these two triple
matching fusion models shows a slight improvement compared to
each grid product, but they do not have a distinct advantage.
MFCNN has the largest gap with the measured data, indicating
that this fusion model cannot efficiently filter out the outliers.
Overall, the LSTM fusion product outperforms the others.

3.3 Validation of LSTM fusion wind field
products in the study area

The LSTM data fusion model, which yielded the most optimal
results, was applied to all grids in the study area. This resulted in the
generation of the best fusion wind field product with a resolution of
1 km/1 h throughout the year. The fusion product was then directly

TABLE 2 Neural network fusion model structure.

Categories of neural network
models

Layer of
model

Types Dimension of input
data

Dimension of output
data

Parameter
quantities

MFCNN 1 Dense1 (None,3) (None,128) 512

2 Dropout1 (None,128) (None,128) 0

3 Dense2 (None,128) (None,64) 8,256

4 Dropout2 (None,64) (None,64) 0

5 Dense3 (None,64) (None,32) 2,080

6 Dropout3 (None,32) (None,32) 0

7 Dense4 (None,32) (None,1) 33

LSTM 1 LSTM1 (None,24,3) (None,24,128) 67,584

2 Dropout1 (None,24,128) (None,24,128) 0

3 LSTM2 (None,24,128) (None,24,64) 49,408

4 Dropout2 (None,24,64) (None,24,64) 0

5 LSTM3 (None,24,64) (None,32) 12,416

6 Dropout3 (None,32) (None,32) 0

7 Dense (None,32) (None,1) 33

TABLE 3 Error coefficients of wind grid products and fusion products in the validation dataset.

Grids wind product r Bias Biasr RMSE ubRMSE

EC 0.698 0.286 0.477 1.362 1.332

GL 0.692 0.664 0.536 1.564 1.416

HR 0.708 −0.02 0.432 1.333 1.318

TCA-Gruber 0.732 0.350 0.454 1.311 1.263

TCA-Li 0.753 0.248 0.425 1.239 1.214

MFCNN 0.754 −1.943 0.888 2.630 1.773

LSTM 0.768 −0.02 0.395 1.181 1.181

(The fusion weights of TCA-Gruber and TCA-Li were determined using Eqs 5, 7, respectively.).
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matched and verified based on all 563 wind speed observation
station data in the study area. As presented in Table 4, the
accuracy of the LSTM fusion products greatly improves
compared to the EC and GL products, excluding HR products
which have already assimilated data from 552 of these stations.
This improvement is evident at nearly all overall, optimal, and
worst sites.

In the direct verification of in situ measured scale, LSTM fusion
products surpass all data products except HR, which possesses an
absolute advantage in error parameter comparison due to its data
source benefits. However, it is important to acknowledge that there
is a scale difference between the in situ measurements and the grid-
scale wind field. In order to assess the fusion product’s ability to
accurately represent the wind field at the grid scale, TCA evaluation
was carried out after the GL-HR-LSTM matching process. Results
further affirmed the LSTM fusion product’s relative optimality, and
the spatial distribution of product performance contrasts that of GL
and HR, showing better results in the land area close to the lake than
in the middle of the lake area (Figure 5). The Rho of LSTM products
in the study area shows clear advantages (with mean values of 0.806,
0.745, and 0.936), affirming that the fusion product’s ability to
capture the surface wind field has notably improved, especially in the
land area near the lake. The distribution of Stderr (mean 0.757,
0.497, and 0.1) suggested that the fusion products’ deviation in other
areas is smaller, barring some blank land areas. The fRMSE (mean
values of 0.571, 0.641, and 0.469) and Snr_db (mean values of 3.188,
1.358, and 5.931) are mostly consistent with the above parameters,
but some grids in the middle of the lake area perform slightly worse,
potentially due to a greater deviation and increased data noise in this
portion of the grids.

Stderr, fRMSE, and Snr_db of the fusion products in some
terrestrial regions near the lake are blank. According to the
calculation process of these parameters, this could be because the
data is stable with small fluctuations, there is a low correlation
between GL and HR products, or there is a high correlation between
the data product and the other two, resulting in negative values of

Errvara and Snra Eqs 22, 25. Also, due to the large Rho, fRMSE
cannot be calculated Eq. 11, which could explain the product’s solid
performance on land near the lake.

4 Discussion

As a fundamental meteorological element, the surface wind field
significantly impacts meteorology, agriculture, fishery, shipping,
construction, water conservancy, and other industries. Accurate
wind field products are crucial. This study holistically analyzed
the accuracy performance of three mainstream wind speed products
in the Dongting Lake area, identified the best data fusion method,
and generated an annual set of 1 km/1h resolution wind speed
products for the Dongting Lake area, followed by inspection and
evaluation. The study confirmed the varying strengths and
weaknesses of the three mainstream wind speed products and
also affirmed that a neural network model considering the time
factor can better integrate the lake wind field. These research results
can provide a reference for related research, but some issues remain
open for further discussion.

Due to the scarcity of wind field data products in lake areas,
there are only a few verification studies on them.Most of the existing
studies are focused on land or sea surface wind fields. The
performance of the three products obtained in the Dongting Lake
area is largely consistent with related in situmeasured scale research
in this study. The error coefficient (Table 1) of EC products aligns
with the research results of (Chen et al., 2017) in the (Kuang et al.,
2015) in the Taiwan Strait, and Jiang et al. (2021) in the inland of
Hainan Island. Few studies verify GL products, but the literature also
reports results of similar accuracy (Wang and Zeng, 2012) and a
propensity to overestimate wind speed (Qi et al., 2015) with the
mainstream wind speed products, consistent with this study. Based
on in situmeasurements and comparative studies involving CLDAS
series products, such as CLDAS being superior to EC products in
Sichuan Province (Li et al., 2020), and HRCLDAS performing better

TABLE 4 Error coefficients of wind grid products and LSTM fusion products with in situ measurements in the study area.

Products Lake station Data quantity r Bias Biasr RMSE ubRMSE

EC All 4,607,182 0.543 0.888 0.942 1.502 1.211

803,649 8,735 0.808 0.454 0.380 1.068 0.967

803,628 8,728 0.069 0.109 1.130 1.841 1.838

GL All 4,607,182 0.561 1.152 1.097 1.793 1.374

817,808 8,670 0.822 0.896 0.485 1.430 1.114

803,628 8,728 0.105 0.078 1.096 1.790 1.789

HR All 4,607,182 0.960 −0.051 0.091 0.354 0.350

803,583 2,919 0.999 0.002 0.001 0.065 0.065

802,904 8,714 0.567 −0.040 0.485 0.621 0.620

LSTM product All 4,607,182 0.674 −0.460 0.613 1.200 1.108

741,068 8,600 0.837 −0.383 0.635 0.935 0.853

816,650 8,666 0.311 0.101 0.806 0.803 0.796

(The six-digit numbers in the Lake Station column represent the station numbers of the best and worst-performing stations/grids.).
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than EC products in Hainan Island (Jiang et al., 2021), the findings
are also consistent with this study. HR demonstrates a notable
advantage in the in situ measured scale verification research,
which may be due to the product’s significant advantage of
abundant site-measured data resources in China. However, it
displays a distinct disadvantage in subsequent accuracy
verification involving the area scale (Figure 4), suggesting a need
for future improvements in HR products.

Grid-scale wind field product verification research combining
EC, GL, and HR grid products has not been found, so a comparison
with related research is not feasible. However, the results of this
paper suggest that EC and GL are close to and significantly better
than HR at the grid scale. It seems that the performance of reanalysis
products integrated with model data is significantly superior to that
of assimilation data products at the grid scale. This study conducted

TCAs for both groups of data and assessed product quality. GL and
HR products are involved in two TCAs, but the error parameter
values are not entirely consistent (Figures 4, 5). As TCA primarily
relies on mathematical principles such as covariance, although there
is a clear and rigorous technical basis, the results are relative values
closely associated with the three matching original products and
cannot provide absolute analysis results.

In the data fusion research, we used four methods for comparison,
but there are many other data fusion methods. Future research might
discover better fusion methods for obtaining superior lake wind field
fusion products. However, as it currently stands, the LSTM fusion
model that can capture the characteristics of data time series can yield
considerably better wind field products, suggesting that the wind field
products themselves have time-correlated features, which has also been
confirmed in related research (Huang et al., 2019; Zhang, 2020). The

FIGURE 5
The TCA error distribution map of TCA of GL-HR-LSTM fusion product (results are only shown for grids where all three datasets display a significant
positive correlation and there are more than 100 data triplets). (A) Rho-GL (B) Rho-HR (C) Rho-LSTM (D) Stderr-GL (E) Stderr-HR (F) Stderr-LSTM (G)
fRMSE-GL (H) fRMSE-HR (I) fRMSE-LSTM (J) Snr_db-GL (K) Snr_db-HR (L) Snr_db-LSTM.
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fusion effect of the optimal model surpasses that of the maximum
likelihood estimation algorithm and the space-timeweighting algorithm
in the sea surface wind field (Zhang, 2018). It also outperforms the
fusion effects of various interpolationmethods in the offshore wind field
of China (Xu et al., 2016). Therefore, it can be considered an effective
wind field fusionmethod. By examining the spatial distribution of error
parameters in the in situ measured data obtained from stations that
were not part of the model construction (comprising 552 stations), it is
evident that the merged products in the study area can accurately
capture the station-level wind (Figure 6). However, the scatter color
distribution in the figure also shows that the ability of the fusion product
to capture the land wind field near the lake area is stronger than that in
the middle of the lake area, and the correlation coefficient is higher in
the land area. The distribution of Biasr shows that most of themiddle of
the lake area performs well, probably due to the fact that the wind speed
in the middle of the lake area is high, and the wind speed in the land
area, especially in the southern mountainous area, is generally low.
Smaller data deviations can easily show a relatively large difference. The
distribution of RMSE and ubRMSE suggests that the overall deviation of
the product is small and the land area around the lake area is slightly
better. These results align with the TCA (Figure 5).

In summary, LSTM fusion products can incorporate the advantages
of each product and perform better than EC, GL, and TCA, MFCNN
fusion products at the in situ measured scale, except for HR (which
incorporates observed data from most stations in the lake area). At the
grid scale, it is stronger than all threemainstreamproducts involved in the

study. This confirms the benefits of the fusionmodel and also verifies that
the data fusion method can significantly improve the accuracy of wind
speed products in the lake area, offering a reference for related research.
With the future application and continuous improvement of this product
in meteorological operations, it can enhance the refinement of
meteorological services such as water transportation, fisheries, wind
energy resource development, and tourism in the lake area.

5 Conclusion

In this study, we conducted verification and fusion research on
three mainstream wind field products in the unique Dongting Lake
area, successfully developing a set of optimally fused wind field
products. The main conclusions drawn from the research are
summarized as follows:

• Validation results, based on in situ measured data from the
Dongting Lake area, revealed distinct characteristics for each
of the three mainstream grid wind speed products. GL
products demonstrate the most significant ability to capture
surface wind speed changes at the in situ measured scale (r =
0.694). EC products exhibit a small absolute deviation with few
outliers (RMSE = 1.502 m/s, ubRMSE = 1.211 m/s). HR
products maintain a minor overall deviation
(Bias = −0.155 m/s, Biasr = 0.462).

FIGURE 6
Error coefficients of the LSTM fusion product with the in situ measured data in 552 stations. (A) R2 (B) Biasr (C) RMSE (D) ubRMSE.
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• The TCA confirmed that among the three mainstream grid
wind speed products, GL products display absolute advantages
at the grid scale (average Rho = 0.933, Stderr = 0.44, fRMSE =
0.345, Snr_db = 9.157), excelling in terms of correlation, error,
and signal-to-noise ratio. However, HR products lag
significantly behind the other two products in this regard
(average Rho = 0.622, Stderr = 0.585, fRMSE = 0.756,
Snr_db = −1.957).

• In comparison to independent products, TCA-based weight
fusion products, and MFCNN fusion products, the LSTM data
fusion method with time-series features proves to be superior
when merging wind speed products in the Dongting Lake area.
The fusion products demonstrate enhanced performance both at
the in situmeasured scale (except HR products) and the grid scale
(average r = 0.674, Bias = −0.460 m/s, ubRMSE = 1.108 m/s;
Rho = 0.936, Stderr = 0.1, fRMSE = 0.469, Snr_db = 5.931).
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