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Climate reanalysis and climate projection datasets offer the potential for
researchers, students and instructors to access physically informed, global
scale, temporally and spatially continuous climate data from the latter half of
the 20th century to present, and explore different potential future climates. While
these data are of significant use to research and teaching within biological,
environmental and social sciences, potential users often face barriers to
processing and accessing the data that cannot be overcome without specialist
knowledge, facilities or assistance. Consequently, climate reanalysis and
projection data are currently substantially under-utilised within research and
education communities. To address this issue, we present two simple “point-and-
click” graphical user interfaces: the Google Earth Engine Climate Tool
(GEEClimT), providing access to climate reanalysis data products; and Google
Earth Engine CMIP6 Explorer (GEECE), allowing processing and extraction of
CMIP6 projection data, including the ability to create custom model ensembles.
Together GEEClimT and GEECE provide easy access to over 387 terabytes of data
that can be output in commonly used spreadsheet (CSV) or raster (GeoTIFF)
formats to aid subsequent offline analysis. Data included in the two tools include:
20 atmospheric, terrestrial and oceanic reanalysis data products; a new dataset of
annual resolution climate variables (comparable to WorldClim) calculated from
ERA5-Land data for 1950-2022; and CMIP6 climate projection output for
34 model simulations for historical, SSP2-4.5 and SSP5-8.5 scenarios. New
data products can also be easily added to the tools as they become available
within the Google Earth Engine Data Catalog. Five case studies that use data from
both tools are also provided. These show that GEEClimT and GEECE are easily
expandable tools that remove multiple barriers to entry that will open use of
climate reanalysis and projection data to a new and wider range of users.
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1 Introduction

Climate reanalysis and climate projection data underpins a
substantial proportion of biological, environmental and social
science research, educational efforts to instruct the next-
generation of researchers, information to policymakers and
industry on weather and climate impacts, and contribute to
public engagement activities (Tadesse et al., 2015; Adeyeye et al.,
2019; Toreti et al., 2019; IPCC, 2021). However, significant barriers
to access exist for these data. These include (but are not limited to):
where and how to obtain data; how to process them; being limited in
the volume of data that can be reasonably stored by an individual
locally; and/or possessing insufficient processing power to work with
(up to) terabyte scale datasets. These factors combined mean that
environmental reanalysis data are significantly under-utilised
compared to their potential within environmental, biological and
social science research, education, and non-academic impact.

Recent efforts have been made to improve ease of data access by
those who generate the simulations and by the wider research
community (e.g., Kusch and Davy, 2022). However, these often
still make assumptions of users relating to: knowledge of the
suitability of data products for a user’s needs; familiarity with
output data file formats; access to computers with specific
operating systems (e.g., Linux); file storage and processing
capacity; and/or a user’s ability to code in specific programming
languages (e.g., Python/R/Matlab).

To address these issues for researchers, students and instructors,
we present the Google Earth Engine Climate Tool (GEEClimT) and
Google Earth Engine CMIP6 Explorer (GEECE), providing simple
“point-and-click” graphical user interfaces (GUIs) for rapidly
processing and accessing reanalysis and climate projection data
(respectively) within the Google Earth Engine (GEE) cloud
computing platform (Gorelick et al., 2017). Both tools provide
users with the ability to rapidly obtain pre-formatted comma
separated value (CSV) spreadsheets or GeoTIFF raster grids for
user-defined locations and areas. The tools are intended to provide
access to targeted regions that are of interest to users (e.g., from
point locations to continental scale), and not for obtaining global
scale data. Use of GEEClimT and GEECE is for educational and
research purposes only. For any other uses (e.g., media, industry,
policy, etc.), users should contact the authors.

Data processed within GEEClimT and GEECE are exported to a
user’s Google Drive, allowing easy access for subsequent analysis in
commonly used spreadsheet software (e.g., Microsoft Office, Libre
Office) and/or programming environments (e.g., R, Python,
Matlab). In providing data in these commonly used formats, we
aim to improve access to environmental reanalysis and climate
projection data for researchers and students across multiple
disciplines.

To illustrate the utility of GEEClimT and GEECE for a wide range
of research and educational purposes, we provide a series of case studies
where the tool has been tested in a research context within crop science,
species distributionmodelling, hydrology, and data exploration. As part
of GEEClimT, we also present a dataset of bioclimatic variables at
annual timescales and for World Meteorological Organisation climate
baselines comparable to WorldClim that have been derived from the
hourly resolution ERA5-Land reanalysis data product (Muñoz-Sabater
et al., 2021) for 1951-2022.

1.1 Tool 1: GEEClimT - accessing
environmental reanalysis data

Reanalysis data products offer a significant resource for
understanding climate impacts from the recent past
(approximately 1950-present, though start and end dates of
datasets vary). These data represent the results of models driven
by observational data to generate up to global-scale time series of
multiple environmental variables. In doing so they provide
substantial volumes of temporally and spatially continuous data
that are physically consistent, making them extremely useful for a
variety of research and educational purposes. Different data
products are provided at different spatial resolutions, with each
point within the datasets not being reliant on simple spatial
interpolation of observations, but rather a combination of
observations and the physics and parameterisations of the
underlying reanalysis model (e.g., Cucci et al., 2020; Muñoz-
Sabater et al., 2021).

GEEClimT provides users with a simple “point-and-click”
interface to rapidly extract custom time series from given
locations/areas from environmental reanalysis data products.
There are currently 24 different reanalysis data products that are
accessible through GEEClimT that provide results of up to
150 different variables with global coverage at a range of
different spatial and temporal resolutions (Table 1). Users are
strongly advised to read references and documentation that
accompany the data products before use, and note the units and/
or any conversions or offsets that need to be accounted for before
any output from GEEClimT are used for further analysis. The data
in GEEClimT (and GEECE) are provided as given, and no bias
correction is performed to allow users flexibility in determining what
(if any) post-processing steps may be appropriate for their specific
applications.

GEEClimT has also been constructed in a manner that allows
new datasets to be added as they become available. However, users
should note that only data products that exist within the GEE Data
Catalog or within Google Cloud data buckets can currently be added
to GEEClimT. Requests to add data products to GEEClimT that
currently exist in the GEE Data Catalog can be directed to the
authors, though requests to add data products that do not currently
exist in the GEE Data Catalog should be directed to Google.

1.1.1 ERA5-Land-Climatic (ERALClim) data
GEEClimT also provides access to our new ERA5-Land-

Climatic (ERALClim) dataset, providing data for 19 variables
(Table 2) at annual resolution (for 1951–2022), and for World
Meteorological Organisation (WMO) climate baseline periods
(1951-1980; 1961-1990; 1971-2000; 1981-2010; and 1991–2020).
These variables are equivalent to the bioclimatic variables of
WorldClim (Fick and Hijmans, 2017), though have potentially
much broader applications within the environmental and social
sciences beyond ecological and biological data where they are
traditionally applied. To maintain consistency with WorldClim,
the naming of variables is kept the same (i.e., retaining the bio
prefix), so that pre-existing workflows that use WorldClim data can
be easily adapted to use ERALClim data.

The ERA5-Land Daily Aggregated and Monthly Aggregated
data products (Muñoz-Sabater et al., 2021) were used to calculate

Frontiers in Environmental Science frontiersin.org02

Lea et al. 10.3389/fenvs.2024.1294446

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1294446


TABLE 1 Description of data products that are currently available in GEEClimT. New datasets can be easily added only if they are available within the Google
Earth Engine Data Catalog or within a Google Cloud data bucket that is compatible with Google Earth Engine.

Data product Number of
variables

Time
range*

Temporal
resolution

Spatial
resolution**

References

Atmosphere

ERA5 Daily Aggregates 9 1979-01-02 -
2020-07-09

Daily 0.25° × 0.25°

(~27.8 km2)
C3S, 2017

ERA5 Monthly Aggregates 9 1979-01-01 -
2020-06-01

Monthly 0.25° × 0.25°

(~27.8 km2)
C3S, 2017

ERA5LClim 19 1951-01-01 -
2022-12-31

Annual 0.1° × 0.1° (~11.1 km2) This publication

ERA5LClimB (WMO baselines) 19 1951-01-01 -
2020-12-31

30 years means 0.1° × 0.1° (~11.1 km2) This publication

NCEP/NCAR Surface Level Pressure 1 1948-01-01 -
present

6 h 2.5° × 2.5° (~277.5 km2) Kalnay (1996)

NCEP/NCAR Surface Temperature 1 1948-01-01 -
present

6 h 2.5 ° × 2.5 °

(~277.5 km2)
Kalnay (1996)

NCEP/NCAR Water Vapor 1 1948-01-01 -
present

6 h 2.5° × 2.5° (~277.5 km2) Kalnay (1996)

GSMaP Operational: Global satellite mapping of
precipitation

5 2014-03-01 -
present

Hourly 0.1° × 0.1° (~11.1 km2) Okamoto et al. (2005)

MERRA-2 M2T1NXAER: Aerosol Diagnostics
V5.12.4

50 1980-01-01 -
present

Hourly 0.625° × 0.5° (~69.3 ×
55 km)

Gelaro et al. (2017)

MERRA-2 M2T1NXFLX: Surface Flux
Diagnostics V5.12.4

46 1980-01-01 -
present

Hourly 0.625° × 0.5° (~69.3 ×
55 km)

Gelaro et al. (2017)

MERRA-2 M2T1NXSLV: Single-Level
Diagnostics V5.12.4

47 1980-01-01 -
present

Hourly 0.625° × 0.5° (~69.3 ×
55 km)

Gelaro et al. (2017)

Atmosphere and terrestrial

ERA5-Land Hourly 69 1950-01-02 -
present

Hourly 0.1° × 0.1° (~11.1 km2) Muñoz Sabater et al.
(2021)

ERA5-Land Daily Aggregated 150 1950-01-02 -
present

Daily 0.1° × 0.1° (~11.1 km2) Muñoz Sabater et al.
(2021)

ERA5-Land Monthly Aggregated 150 1950-01-02 -
present

Monthly 0.1° × 0.1° (~11.1 km2) Muñoz Sabater et al.
(2021)

ERA5-Land Monthly by Hour of Day 69 1981-01-01 -
present

Monthly (hour of day) 0.1° × 0.1° (~11.1 km2) Muñoz Sabater et al.
(2021)

GLDAS-2.1: Global Land Data Assimilation
System

36 2000-01-01 -
present

3 h 0.25° × 0.25°

(~27.8 km2)
Rodell et al. (2004)

GLDAS-2.2: Global Land Data Assimilation
System

24 2003-01-01 -
present

3 h 0.25° × 0.25°

(~27.8 km2)
Li et al. (2019)

MERRA-2 M2T1NXRAD: Radiation Diagnostics
V5.12.4

36 1980-01-01 -
present

Hourly 0.625° × 0.5° (~69.3 ×
55 km)

Gelaro et al. (2017)

Terrestrial

MERRA-2 M2T1NXLND: Land Surface
Diagnostics V5.12.4

50 1980-01-01 -
present

Hourly 0.625° × 0.5° (~69.3 ×
55 km)

Gelaro et al. (2017)

Ocean

NOAA AVHRR Pathfinder Version 5.3 Collated
Global 4 km Sea Surface Temperature***

8 1981-08-24 -
present

Twice daily 4 km2 Baker-Yeboah and
Kilpatrick (2016)

HYCOM: Hybrid Coordinate Ocean Model, Sea
Surface Elevation

1 1992-10-02 -
present

Daily to hourly 0.08° × 0.08° (~8.9 km2) Cummings and
Smedstad (2013)

80 Daily to hourly 0.08° × 0.08° (~8.9 km2)

(Continued on following page)
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ERALClim within GEE, and the baseline data are calculated as the
average of the resulting annual ERALClim data (access to the annual
and baseline datasets are provided through: GEEClimT; GEE; and
can also be downloaded as GeoTIFFs outside of GEEClimT as
annual data (https://doi.org/10.5281/zenodo.8120646) and climate
baseline data (https://doi.org/10.5281/zenodo.8124385)).

The ERALClim data are provided at a spatial resolution of 0.1 ×
0.1° (~11.1 km2), which is equivalent to the spatial resolution of the
ERA5-Land reanalysis model inputs. While it would be possible to
provide ERALClim data at a finer scale through simply changing the
posting level of the output, this is intentionally not done so as to: 1)
preserve the original model resolution that the data have been
calculated at; and 2) avoid giving users a potentially false
impression of the data product’s spatial resolution. Comparisons
of ERALClim toWorldClim data for theWorldClim baseline period

(1970–2000) where the latter have been regridded from 1 km2 to
0.1 × 0.1° spatial resolution are provided in Supplementary Material
S1. GEEClimT does optionally provide functionality to obtain data
at sub-grid resolution through bilinear interpolation of data to
1 km2, but will otherwise return values from the nearest grid
point (see below).

Differences between ERALClim and WorldClim are most
likely to occur in regions where there is a low spatial or
temporal density of meteorological observations. The reason
for this is that WorldClim produces spatially continuous data
fields through interpolation of observations, while the ERA5-
Land data (on which ERALClim are based) physically models
conditions based upon a combination of meteorological
observations that have been assimilated into the model and
the model’s climate physics (Muñoz-Sabater et al., 2021). This

TABLE 1 (Continued) Description of data products that are currently available in GEEClimT. New datasets can be easily added only if they are available
within the Google Earth Engine Data Catalog or within a Google Cloud data bucket that is compatible with Google Earth Engine.

Data product Number of
variables

Time
range*

Temporal
resolution

Spatial
resolution**

References

HYCOM: Hybrid Coordinate Ocean Model,
Water Temperature and Salinity

1992-10-02 -
present

Cummings and
Smedstad (2013)

HYCOM: Hybrid Coordinate Ocean Model,
Water Velocity

80 1992-10-02 -
present

Daily to hourly 0.08° × 0.08° (~8.9 km2) Cummings and
Smedstad (2013)

*Time range correct at time of writing, while datasets are frequently updated to include more recent and earlier data; **GEEClimT can employ bilinear interpolation to obtain data at 1 km2

resolution for user defined locations ***observational dataset rather than reanalysis data.

TABLE 2 List of ERALClim variables, description, and units. These variables are comparable to those of WorldClim.

Variable Description Units

bio1 Mean Annual Temperature °C

bio2 Mean Diurnal Range (Mean of monthly (max daily T - min daily T)) °C

bio3 Isothermality ((bio2/bio7)×100) no units

bio4 Temperature Seasonality (monthly T standard deviation across a year × 100) °C

bio5 Max Temperature of Warmest Month (from monthly means of daily max T) °C

bio6 Min Temperature of Coldest Month (from monthly means of daily min T) °C

bio7 Temperature Annual Range (bio5-bio6) °C

bio8 Mean Temperature of Wettest Quarter °C

bio9 Mean Temperature of Driest Quarter °C

bio10 Mean Temperature of Warmest Quarter °C

bio11 Mean Temperature of Coldest Quarter °C

bio12 Annual Precipitation mm

bio13 Precipitation of Wettest Month mm

bio14 Precipitation of Driest Month mm

bio15 Precipitation Seasonality (Coefficient of Variation in %) no units

bio16 Precipitation of Wettest Quarter mm

bio17 Precipitation of Driest Quarter mm

bio18 Precipitation of Warmest Quarter mm

bio19 Precipitation of Coldest Quarter mm
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in itself does not suggest that one dataset is better than the other
in all cases, but highlights that differences between each dataset
will arise due to the different methodologies used in the
processing of the underlying data.

1.1.2 Using GEEClimT
The following represents a brief description of how to use

GEEClimT and its functionality, though a full walkthrough of
how to use the tool is provided at the following https://github.
com/jmlea16/GEEClimT. A graphical representation of the tool’s
workflow is shown in Figure 1.

Users can access a link to the latest version of GEEClimT at the
GitHub link above, and access the tool after signing up for a GEE
account. No software download is required, and the tool runs
entirely in a user’s internet connected browser. Once the GUI
has loaded, users can minimise the code editor section of the
page that contains GEEClimT’s underlying code. To use
GEEClimT users can take the following steps:

1) Select whether data should be output as a CSV or GeoTIFF.
2) Select a reanalysis data product to be queried. GEEClimT will

automatically update the temporal range of data that is
available in the date text boxes and display a sample data
map representing the first time slice that is available for that
data product.

3) Select the variables of interest contained within the
data product.

4) If needed, edit the date range boxes (strictly in YYYY-MM-DD
format) and month range drop down menus to temporally
limit the data to be queried.

Where data will be output in CSV format:

5) Select how GEEClimT should handle the data when
generating output, either as: a) a single time series
representing the mean values of all points that overlap
with a user’s region of interest (ROI); or b) multiple time
series representing the full record of each grid cell that
overlaps with the ROI.

6) Select whether GEEClimT provides output data representing
either: a) results from the closest grid cell; or b) use bilinear
interpolation to provide data representative of a given
location (for a point ROI) or fraction of a grid cell (for a
polygon ROI) at 1 km2 resolution.

7) Define up to 50 points or one polygon area of interest, by
either: a) manually drawing points or a polygon representing
regions of interest directly onto the map; or b) defining point
locations or a single polygon from comma separated lists of
latitude and longitude coordinates expressed in decimal
degrees (WGS84 ellipsoid; EPSG: 4,326 projection).

8) Create the gridded ROI, which will show the areas where
GEEClimT will extract data for on the map.

9) Extract data using the options and ROI defined previously.
The time this will take will depend on the area or number of

FIGURE 1
GEEClimT workflow diagram.
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data points that have been queried. This normally takes a few
seconds, though for large datasets may take several minutes.
Once data extraction has completed, a new panel will appear
on the screen with a preview of the first 1,000 observations
(note that if the query contains >1,000 observations, these
data have been extracted but are not shown).

10) Initiate export task for all variables selected and all sites
queried. Output data are formatted with each column
representing a different variable, and each row
representing a date and time for a given location/grid cell.
To facilitate easy data processing, the central latitude and
longitude of each data point is also appended as a data
column along with a site name unique to each site.

Reanalysis data in CSV format can therefore be extracted for:
individual point locations; all grid point observations that fall within
a polygon; mean values across multiple points; or the mean of all
grid point observations that fall within a polygon.

If data are to be exported in GeoTIFF format:

1. Define a single polygon (at least three vertices) by importing a
list of comma separated latitude and longitude coordinates and
clicking the “import polygon” button, or by manually defining
a polygon using the drawing tools in the top left corner
of the map.

2. Clicking the “Create Export Task” button that will generate
export tasks that can be viewed in the “Tasks” tab next to the
code editor.

3. Clicking the blue “Run” button for each new export task. For
GeoTIFF data, two export tasks are created containing 1) a
multilayer GeoTIFF file containing the gridded data; and 2) a
CSV file with metadata corresponding to each GeoTIFF layer
to aid in post-processing. Note that if the export task contains
more than 5,000 layers then GEEClimT will split the request
into multiple export tasks.

Exported CSV or GeoTIFF data can be accessed for download to
a user’s local machine via the Google Drive account that is associated
with their Google Earth Engine account.

1.2 GEECE - CMIP6 climate projection data

Climate projection data provide global, spatially and
temporally continuous model output for historical and different
potential shared socioeconomic pathway (SSP) scenarios. The
sixth Coupled Model Intercomparison Project (CMIP6;
Thrasher et al., 2012) undertaken for the sixth
Intergovernmental Panel on Climate Change (IPCC)
Assessment Report (2021) provide results from multiple climate
models projecting future climate for different SSPs. The GEE Data
Catalog currently allows access to the results of 34 different model
simulations for historical, SSP2-4.5, and SSP5-8.5 scenarios,
representing simulations of recent past climate (1950–2015),
and future climates (2015–2100) under middling and high
emission scenarios respectively.

Data for each scenario are posted at 0.25° spatial resolution
and daily temporal resolution, with the majority of simulations

providing output for nine variables. A list of these variables and
notes on their availability within different simulations are
provided in Table 3. Users should note that daily, minimum
and maximum temperatures are provided in degrees Kelvin,
meaning that conversion to degrees Celsius requires 273.15 to
be subtracted from results. Precipitation is also provided as a
daily rate with units of kg m−2 s−1, meaning that daily
precipitation totals in millimetres can be obtained by
multiplying results by the number of seconds in a day
(86,400). Similarly, if data are output at monthly or annual
resolution, precipitation values can be converted to monthly
or annual totals by multiplying by the number of seconds in
the given time unit. Special care should be taken when analysing
datasets that are aggregated over specific time intervals, and users
should note the units that data are provided in before any
conversion is attempted. This information is available through
links given in the GEECE interface.

Users should also note that monthly increments are given in
calendar months (i.e. 28 days in February (29 in leap years);
30 days for April, June, September and November; and 31 days
for January, March, July, August, October, November and
December) rather than equal length months. For annual
resolution output, leap years will also be made up of data for
366 days, with non-leap years made up of data for 365 days. Users
should also check information within the GEE Data Catalog for
how model simulations that have been run to provide 360 days of
output per year (‘HadGEM3-GC31-LL’, ‘HadGEM3-GC31-MM’,
‘KACE-1-0-G′, and ‘UKESM1-0-LL’) or 364 days of output per
year (‘IITM-ESM’) deal with providing output at 365 or
366 days per year.

GEECE follows a similar workflow to GEEClimT, and while
much of the underlying code for the tools is shared, different
processing pathways necessitate two separate tools. A full
walkthrough of how to use the tool is provided at the following
https://github.com/jmlea16/GEECE. A graphical representation of
the GEECE’s workflow is shown in Figure 2.

GEECE also provides users with options to extract data in CSV
or GeoTIFF format, though also allows users to create their own
custom simulation ensembles (optionally with their associated
standard deviation). When selecting simulations to include in
ensembles, it should be noted that some CMIP6 simulations are
considered to perform better than others for different variables and
geographic regions. Consequently, users may wish to first undertake
evaluations of the performance of individual ensemble members
before deciding on its final make-up.

Point and raster data for individual simulations or ensembles
can be obtained from GEECE by taking the following steps:

1. Select whether output should be from historical, SSP2-4.5 or
SSP5-8.5 scenarios

2. Select the simulations to generate output for. Note that the
simulations highlighted in blue text in the user interface do not
contain output for all variables listed in Table 3. Users should
therefore check whether the desired variable(s) to be output are
included in the model simulation(s) selected before running
the tool. Failure to do so may result in the tool failing to
provide output.

3. Select the variables that output should be provided for.
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4. Select whether output should be provided for: 1) every
simulation selected individually; 2) an ensemble mean of all
simulations selected; or 3) an ensemble mean of all simulations
selected and the associated ensemble standard deviation.

5. If needed, edit the date range boxes (strictly in YYYY-MM-DD
format) and month range drop down menus to temporally
limit the data to be queried.

6. Select the timestep of the output either as: 1) daily; 2)
monthly; 3) annual; or 4) the mean of the time
period selected.

7. Select whether data should be output in CSV or
GeoTIFF format.

For outputting in CSV format:

TABLE 3 List and description of variables available for CMIP6 simulations within GEECE.

Variable
name

Description Units Notes

Hurs Near surface relative humidity % Not present in these models: ‘BCC-CSM2-MR’, ‘NESM3’, ‘KIOST-ESM’ (only for scenario
‘ssp245’in 2058)

Huss Near surface specific humidity mass
fraction

Not present in these models: ‘IPSL-CM6A-LR’, ‘MIROC6’, ‘NESM3′

Pr Mean of the daily precipitation rate kg/m2/s

rlds Surface downwelling longwave
radiation

W/m2

rsds Surface downwelling shortwave
radiation

W/m2

sfcWind Daily mean near surface wind speed m/s

Tas Daily near surface air temperature K Not present in these models: ‘NorESM2-LM’ (only for scenario ‘ssp585’in 2096)

tasmax Daily maximum near surface air
temperature

K Not present in these models: ‘CESM2’, ‘CESM2-WACCM’, ‘IITM-ESM’

tasmin Daily minimum near surface air
temperature

K Not present in these models: ‘CESM2’, ‘CESM2-WACCM’, ‘IITM-ESM’, ‘TaiESM1’ (only for
scenario ‘ssp585’in 2093)

FIGURE 2
GEECE workflow diagram.
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8. Define up to 50 points or one polygon area of interest, by
either: a) manually drawing points or a polygon
representing regions of interest directly onto the map; or
b) defining point locations or a single polygon from comma
separated lists of latitude and longitude coordinates
expressed in decimal degrees (WGS84 ellipsoid; EPSG:
4,326 projection).

9. Create the gridded ROI, which will show the areas where
GEEClimT will extract data for on the map.

10. Extract data using the options and ROI defined previously.

For outputting in GeoTIFF format:

8. Define a single polygon (at least three vertices) by importing a
list of comma separated latitude and longitude coordinates and
clicking the “import polygon” button, or by manually defining
a polygon using the drawing tools in the top left corner
of the map.

9. Clicking the “Create Export Task” button that will generate
export tasks that can be viewed in the “Tasks” tab next to the
code editor.

1.3 Performance of GEEClimT and GEECE

The time that it takes for GEEClimT and GEECE to process,
extract and export data will be a function of the volume of data that
need to be processed and extracted. Consequently, for a given time
period of interest, exporting data from an hourly resolution data
product will likely take longer than exporting data for the same time
period for a monthly resolution data product. Similarly, exporting
data from multiple locations or a region will take longer than for a
single point location.

The time that the tools take to execute tasks will also be impacted
by how busy the GEE servers are at any given time, and which
servers a task is allocated to. GEE users have no control over these
aspects when they run any operation within the API, making it
challenging to define an expected execution time for any given task.
However, GEE does provide an indication of the amount of
computational power required to complete each export task in
the form of Earth Engine Compute Unit-seconds (EECU-s).
While EECU-s do not translate to CPU-seconds due to the way
in which the GEE server service is provided, they give an indication
of the amount of processing power required to perform each
export task.

1.4 Example applications of GEEClimT
and GEECE

The following show some simple applications of how data
extracted from GEEClimT and GEECE can be used, and aim to
highlight some aspects of working with reanalysis data that may be
useful for new users. These examples are by no means
comprehensive in terms of potential applications or issues that
users may encounter, and focus primarily on how data extracted
from the tools can facilitate easy analysis in environmental and
ecological applications.

1.4.1 Case study 1: comparing observations,
reanalysis data, and future climate projections
in Greenland

Within glaciology reanalysis and projection data have significant
potential for informing investigations into the past, present and
future of the Greenland Ice Sheet (GrIS). The low density of
meteorological stations across the ice sheet and significant
climate gradients from non-glaciated coastal regions to the ice
sheet interior mean that observations at one location can differ
substantially from conditions experienced a short distance
(<10 s km) away. Reanalysis and projection data that are
generated by physically based climate models can therefore
provide data that are likely to be more representative of a
particular locality where weather station data are unavailable.
However, reanalysis data can also be subject to spatially varying
biases related to the underlying model physics and density of
observations (e.g., Cucchi et al., 2020), while the spatial
resolution over which both reanalysis and projections are
conducted is frequently incapable of resolving local topographic
effects and sub-grid resolution weather variability.

In this example, we highlight these effects by comparing ERA5-
Land data for Greenland’s capital city Nuuk (64.2000⁰ N 51.6833⁰
W; Jensen et al., 2022), and the on-ice PROMICE weather station
KAN_U (67.0007⁰ N 47.0243⁰ W; Fausto et al., 2021; How et al.,
2022). These sites are chosen given that Nuuk is a coastal city with
significant surrounding topography that is also frequently affected
by local conditions off-shore (e.g., sea fog), while KAN_U is located
toward the ice sheet interior with little topographic variability and is
influenced by general synoptic conditions. Both Nuuk and KAN_U
weather stations provide data at hourly resolution, with the analysis
below using all data where corresponding ERA5-Land reanalysis
data were available (1 November 2000 to 31 December 2021; and
4 April 2009 to 27 March 2023 respectively). It should be noted that
while ERA5-Land atmospheric data variables have higher spatial
resolution than ERA5 data, these represent lapse-rate corrected
regridding of ERA5 data (Muñoz Sabater et al., 2019; https://cds.
climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds. e2161bac?
tab=overview; accessed: 26/6/2023).

Comparison of observations to reanalysis data were performed
at hourly, daily and monthly temporal resolution, with an ensemble
of 24 CMIP6 models used to obtain data for historical (1950–2015),
and SSP2-4.5 and SSP5-8.5 projection scenarios (2015–2,100) at
annual resolution (Figure 3; Bentsen et al., 2019; Byun et al., 2019;
Dix et al., 2019; EC-Earth Consortium, 2019a; EC-Earth
Consortium, 2019a; Guo et al., 2018; Hajima et al., 2019;
Jungclaus et al., 2019; Krasting et al., 2018; Li, 2019; Lovato
et al., 2021; Lovato and Peano, 2020; NASA Goddard Institute
for Space Studies, 2018; Ridley et al., 2018; Ridley et al., 2019;
Volodin et al., 2019a; 2019b; Wieners et al., 2019; Yukimoto et al.,
2019; Ziehn et al., 2019). The CMIP6 ensemble excludes simulations
available in GEECE where there are any missing data (Boucher et al.,
2018; Tatebe and Wanatabe, 2018; Xin et al., 2018; Danabasoglu,
2019a; Danabasoglu, 2019b; Cao and Wang, 2019; Kim et al., 2019;
Lee and Liang, 2019; Panickal et al., 2019; Seland et al., 2019).

To enable comparison with observations, ERA5-Land 2 m air
temperature data (Muñoz-Sabater et al., 2021) were extracted using
GEEClimT from Hourly, Daily Aggregated and Monthly
Aggregated data products, while GEECE was used to define the
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CMIP6 model ensemble, process input data from daily to annual
resolution, and calculate respective ensemble means and standard
deviations for the time series. Within the tools we take advantage of
GEEClimT and GEECE’s functionality for extracting to a CSV file
data from given point locations where values are interpolated from
the nearest four grid cells, though users should note the different
spatial resolutions of the climate projection data (0.25 × 0.25°) and
ERA5-Land reanalysis data (0.1 × 0.1°). Through using the point
interpolation option in the tools we aim to mitigate the effects of the
topography around Nuuk, though the differing spatial resolutions of
the underlying data place limits on direct comparison. Observational
data for each site were resampled to the corresponding ERA5-Land
data product time interval by taking the mean of available
observations. Time periods where observation data were missing
within each timestep were discarded from the analysis.

Results show strong correlations exist at all temporal intervals
between observations and ERA5-Land reanalysis data products for
both Nuuk and KAN_U locations. However, ERA5-Land data for
Nuuk show evidence for a cold bias that increases with more
negative temperatures. This bias is replicated at hourly, daily and
monthly temporal intervals, though the correlation between
observations and reanalysis is observed to strengthen with longer
temporal intervals (Figures 3A–C). At KAN_U, less bias is observed
between reanalysis and observational data compared to Nuuk,
though ERA5-Land data do exhibit a warm bias at the coldest
temperatures (Figures 3E–G). Stronger correlations between
observations and ERA5-Land data are found at KAN_U than at
Nuuk for all temporal intervals analysed. Results from the
CMIP6 ensemble show that Nuuk and KAN_U are projected to

experience similar magnitudes of warming for SSP2-4.5 and SSP5-
8.5 by 2,100, with divergence between the two projection scenarios
beginning in approximately 2040 for both locations (Figures 3D, H).

Differences in the strength and bias of relationships observed at
Nuuk and KAN_U likely reflect a combination of inherent model
bias, regridding effects associated with ERA5-Land using
downscaled data from ERA5 output, the inability of the
reanalysis model to resolve the effects of sub-grid topographic
variability (i.e., high variability at Nuuk resulting in weaker
correlations compared to low variability at KAN_U), and sub-
grid scale variability in weather conditions (also higher at Nuuk
than at KAN_U). The warm bias of reanalysis data at KAN_U at
lower temperatures may also be partly explained by winter snow
accumulation partially burying the weather station, effectively
raising the land surface meaning that the temperature sensor
height may be < 2 m.

The above example aims to highlight that while reanalysis data
will likely be strongly correlated to reality, biases may exist; outliers
become more likely at shorter time intervals; sub-grid scale
topography and local weather variability will impact the accuracy
of reanalysis data; and how the observational data have been
acquired all need to be considered before taking results of
reanalysis data at face value.

1.4.2 Case study 2: species distribution modelling -
red eyed damselfly (Erythromma najas)

A key approach within biology, ecology and evolution is to
correlate biological data with the abiotic environment (e.g., climate,
topography) to establish mechanistic links between the environment

FIGURE 3
Results of 2 m air temperature weather station observations compared to ERA5-Land reanalysis data products for Nuuk (A–C), and KAN_U (E–G)
obtained from GEEClimT. Results showing the annual mean and standard deviation of a 24member ensemble of CMIP6model simulations for historical,
SSP2-4.5 and SSP5-8.5 scenarios processed using GEECE are also shown for Nuuk (D) and KAN_U (H). Note that panels (A, B, E, F) show the density of
data points within 0.5°C intervals.
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and species distributions, with this approach broadly being referred to
as biogeography (Lomolino et al., 2017). Such biogeography studies
can be used to inform on population characteristics, demography,
species distributions, biodiversity and responses to climate change
(Fitt and Lancaster, 2017; Lomolino et al., 2017). The ability to access
high quality, geolocated abiotic environmental data therefore holds
huge importance. Here, we demonstrate the utility of GEEClimT for
such studies, demonstrating its application in species distribution
modelling (SDM) of a native British damselfly, Erythromma najas.

Within this case study, results from SDM’s will be compared
between models where climate variables were obtained from
ERALClim dataset within GEEClimT, and models where
WorldClim V2 (Fick and Hijmans, 2017) environmental
variables were used. In this case study GEEClimT is used to
extract a raster grid of ERALClim data of the British Isles from a
user drawn polygon and download equivalent WorldClim
V2 data that are both clipped to the United Kingdom
borders in post processing. WorldClim V2 represents the

FIGURE 4
Plots showing (A) location of observations of Erythromma najas (n = 9,485) across the United Kingdom used as input for (B) species distribution
model constrained by ERALClim data, and (C) species distribution model constrained by WorldClim v2 data. The difference in suitability scores between
ERALClim and WorldClim v2 species distribution models is shown in panel (D) where positive values indicate higher suitability scores for ERALClim and
negative values indicate higher suitability scores for WorldClim.
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environmental dataset most widely used for this application
(Title and Bemmels, 2018), while ERALClim represents a new
dataset developed in this study that is comparable to
WorldClim, derived from ERA5-Land data (Munoz-Sabater
et al., 2021).

Bioclimatic variables were assessed for co-linearity, and
variables with a correlation score greater than 0.8 were removed,
leaving Bio1, 2, 3, 4, 5, 8, 9, 10, 15, and 18. For ERALClim and
WorldClim inputs, species distributions were modelled using
maximum entropy habitat suitability model implemented in
MaxEnt, version 3.4.3 (Phillips et al., 2006) using the Dismo
package for R (Hijmans et al., 2019). Species’ presence points
were downloaded from the Global Biodiversity Information
Facility (http://www.gbif.org; https://doi.org/10.15468/dl.hdeere),
with duplicate records and records which did not fall within both
a ERALClim and WorldClim raster cell being removed, leaving
9,485 presence points (Figure 4A).

The MaxEnt models were run five times using default
parameters, withholding a separate 20% of presence points for
model testing on each model run. The final niche model for each
species represented the average habitat suitability calculated
across the five model runs. Model fit was also assessed by
estimating the area under the Receiver Operating
Characteristic (ROC) curve (AUC), with both models having
an AUC greater than 0.8.

Results highlight limited agreement in model results between the
WorldClim and ERALClim datasets, where Bio10 has the both the
highest contribution and permutation importance when the data is
modelled with ERALClim data, while Bio5 is the most important
and has highest contribution when modelled with WorldClim
(Table 4). Likewise, when comparing suitability maps, while there
is general agreement in the projected suitability (Figures 4B, C),
there are distinct differences (Figure 4D). These differences within
this case study, can have profound impact of the interpretation of
results, given that SDM’s are often used to inform conservation
decision making, such as species reintroduction (Barlow et al., 2021),

or making predictions of range shifts under climate change (Jarvie
and Svenning, 2018).

While this case study does not have the power to suggest that
one dataset performs better than another, results here do
highlight the importance of climate dataset choice when
conducting biogeographical studies. As demonstrated here,
results can vary significantly, and can have meaningful impact
on the interpretation of results. It is therefore important to have
access to a wide range of environmental data to enable accurate
studies of the relationship between the environment and
biological systems.

1.4.3 Case study 3: estimating crop yields -
miscanthus

Within the disciplines of Biology, Ecology and Evolution, it
is commonplace to correlate biological data with abiotic
environmental data so that mechanistic links and genotype
by environment associations can be derived. Here, we
demonstrate with a simple example the utility of this dataset
for applications in ecological and biological studies. Miscanthus
is a perennial C4 grass that is used as a biofuel primarily for
combustion and occasionally for anaerobic digestion, with
approx. 20,000 ha commercially grown in the EU and some
8,286 ha grown in the United Kingdom (EU CORDIS, 2016;
DEFRA, 2021).

Originating from Asia, Miscanthus has now been bred to
produce a range of varieties that are more suitable for European
and United Kingdom climates (Clifton-Brown et al., 2004; Heaton
et al., 2010; Brown et al., 2013). Within the United Kingdom, yields
of Miscanthus can vary markedly as a result of several
environmental factors, of which, temperature is a key abiotic
driver of yield (Purdy et al., 2013; Awty-Carroll et al., 2023).
Using ERA5-Land data obtained from GEEClimT we have
correlated Miscanthus yields across 8 sites within the
United Kingdom. All available yield data that was geolocated
were included, providing 44 data points from 8 sites. Using the

TABLE 4 Percentage contribution and permutation importance for species distribution models that are constrained by WorldClim and ERALClim for
Erythromma najas.

Variable Percent contribution Permutation importance

WorldClim ERALClim WorldClim ERALClim

bio10 5.2 80.9 12.2 68.9

bio4 2.9 6.5 4.7 17.3

bio1 3.8 3.8 4.1 7.5

bio8 0.8 2.2 1.7 0.4

bio3 0.9 1.7 0.1 3.3

bio18 2.9 1.5 1.8 0.1

bio5 80.8 1.4 70.1 0

bio9 0.7 0.8 2.6 1.5

bio15 0.5 0.7 0.8 1

bio2 1.4 0.4 1.8 0
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same interpolation approach employed in case study 1 the latitude
and longitude were extracted from these points and placed into
GEEClimT, extracting all data available from the ERA5-Land data
product for the period 1990 and 2022. These data were downloaded
as a. csv file, and read into R v 4.2.2 for further analysis (R Core
Team, 2021).

The data for mean annual soil temperature and for mean
volumetric soil water (MVSW), was selected to investigate these
key abiotic drivers in relation to Miscanthus harvestable yield. For
each site, the average was calculated for the period spanning when
the Miscanthus rhizomes were planted to when they were harvested,
and for the 12 months preceding harvest. Correlations were then
obtained between yield and the abiotic environmental data sets
calculated using linear models. Results demonstrated that yield
decreased with increasing mean soil temperature, in the
12 months preceding harvest (Effect = 66.88 ± 16.48, df = 39.52,
t = 4.06, p < 0.001, Figure 5B). Conversely, yield increased with
increasing MVSW (Effect = −2.14 ± 0.87, df = 38.47, t = −2.45, p =
0.019, Figure 5A). This aligns with our understanding that
Miscanthus is adapted to a cool and moist climate (Beale et al.,
1996; Purdy et al., 2013).

This analysis acts as a working example of how climate derived
data from GEEClimT can be used to forecast yields and could be
utilised as a tool for identifying suitable locations for Miscanthus
crop production, or optimal locations for other crop species. At a
local level, farmers and growers can increase their localised species-
specific productivity by identifying species that are best adapted
within their local environmental mosaic. Not only does this
highlight the suitability for reanalysis climate data to be used to
biological studies but illustrates the potential accessibility that
GEEClimT allows for ease of access, opening up a wider range of
data to biologists without the need for technical knowledge or
specialist software skills.

1.4.4 Case study 4: comparison of NCEP/NCAR
reanalysis data with ERA5-Land along a
latitudinal gradient

Multiple reanalysis products provide data output that represent
similar variables. However, for each data product, results will likely
differ depending on (amongst other factors): the underlying physics
of the model used to generate the output; the observations used to
drive the model; the data assimilation schemes used to incorporate
data into the model; and the spatial resolution that the simulations
are conducted at. In this example, we compare results of 2 m air
temperature output from the 2.5⁰ resolution NCEP/NCAR
Reanalysis dataset (Kalnay, 1996), and the 0.1⁰ resolution ERA5-
Land Monthly Aggregated dataset (Muñoz-Sabater et al., 2021) for
the period 1951-2022 at annual temporal resolution. To illustrate
how these results can vary along a latitudinal gradient, data were
extracted using GEEClimT for every 10th degree of latitude from
80⁰S to 80⁰N along the 20⁰W line of longitude by directly defining
latitude and longitude within the tool. This line of longitude was
chosen to maximise data availability for the ERA5-Land dataset,
given that it does not provide output over oceans. NCEP/NCAR
Reanalysis Data are provided at 6 hourly intervals, while we take
advantage of the ERA5-Land Monthly Aggregated product to
minimise GEEClimT processing and post-processing times. For
this scenario, GEEClimT took approximately 3 h to extract the
NCEP/NCAR data (providing data for 17 locations, and a total
of 1,874,760 data values), and less than 1 minute to extract the
ERA5-Land data (providing data for 10 locations, and a total of
8,800 data values). Output data were subsequently imported into
MatlabⓇ and to allow calculation of annual means for each latitude
for each reanalysis product.

Results from both reanalysis products capture expected
temperature variability with latitude (Figures 6A, C), and display
late 20th century/early 21st century warming trends (Figures 6B, D).

FIGURE 5
Results of linear modelling of (A) volumetric soil moisture values obtained from ERA5-Land data using GEEClimT versus Miscanthus yield per
hectare; and (B) soil temperature values obtained from ERA5-Land data using GEEClimT versus Miscanthus yield per hectare. Colour of points indicate
different site locations.
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However, differences between the data products are observed in
both the absolute temperatures provided for each location
(Figure 6C) and in the magnitude of the temperature anomalies
compared to the 1961–1990 mean baseline temperatures
(Figures 6D–F).

In addition to previously mentioned influences on the values
provided by reanalysis data, at least part of the differences observed
between these two datasets can be accounted for due to the
differing spatial resolutions of the reanalysis output, and the
manner in which GEEClimT extracts data from them
(i.e., using bilinear interpolation of the nearest grid cells to
obtain values for a given location). GEEClimT output from
coarser spatial resolution data (e.g., NCEP/NCAR) will
therefore be influenced by grid values that cover larger areas
than finer resolution datasets (e.g., ERA5-Land). It is also worth
reiterating at this point that ERA5-Land output at 0.1⁰ resolution is
equivalent to lapse-rate corrected data from ERA5 simulations
performed at 0.25⁰ resolution.

1.4.5 Case study 5 - identifying periods of drought
and flood risk using standardised precipitation
index (SPI)

Hydrological extremes such as floods and droughts are major
climate related hazards with methods that allow estimations of
their probability of occurrence and magnitude being of much use.
One such measure is the Standardised Precipitation index (SPI)
(Mckee et al., 1993), one of the World Meteorological

Organisation’s key drought indexes used in drought prediction
and assessment.

The SPI requires only precipitation as an input data source
which can be useful in data sparse environments. Use of reanalysis
data (that provide data averaged over a grid cell or region), can be a
useful addition to this in providing an indication of conditions
over an area, rather than just at an individual point. The SPI is
based on the probability of precipitation within a chosen time
interval and is outputted as a monthly value. This is achieved
through first fitting precipitation input data to a gamma
distribution that are then transformed to a normal distribution.
SPI values are computed over running time intervals (Mckee et al.,
1993), with traditional intervals of 3, 6, and 12–48-month
timescales being representative of meteorological, ecological,
and longer-term hydrological drought (affecting groundwater
and reservoir reserves) respectively. The monthly SPI value
calculated represents the deviation from the recent long-term
mean (i.e., the time interval), with negative numbers
representing relatively dry periods and positive relatively wet
periods–the more extreme the value, the more extreme the
period. In addition to drought, the ability to identify periods of
extreme precipitation provides a means to assess the
meteorological conditions preceding flooding.

Here, we provide examples of the use of both GEEClimT and
GEECE to obtain precipitation data (from ERA5 (Muñoz Sabater
et al., 2019) and a 24 model CMIP ensemble respectively) in the
investigation of recent hydrometeorological extremes and

FIGURE 6
Annual mean 2 m air temperature data output for ERA5-Land and NCEP/NCAR Reanalysis data products for 1951–2022 by latitude along 20⁰W line
of longitude, showing: (A) absolute temperatures obtained fromERA5-Land, and (B) fromNCEP/NCAR Reanalysis; (C) the difference between ERA5-Land
andNCEP/NCAR; (D) the 2 m air temperature anomaly for ERA5-Land data using a baselinemean value from 1961 to 1990 calculated for each latitude; (E)
as (D) but for NCEP/NCAR Reanalysis data; and (F) the difference in 2 m air temperature anomalies between ERA5-Land andNCEP/NCAR Reanalysis.
All locations where no data are available or no comparison was possible are shown in black.
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investigate the potential impacts of climate change on droughts in
areas previously determined to be at risk. CSV files of data for each
location were obtained through copy and pasting the polygon
coordinates of each area of interest directly into GEEClimT
and GEECE.

First, we focussed on the California (United States) drought of
2012–2016, focussing on El Dorado Forest where drought
conditions were so severe tree mortality reached almost 50%
(Fettig et al., 2019). SPI was computed for a 12-month interval
(SPI-12) representing hydrological drought from 1980–2021
(Figure 7A). In this example SPI clearly identifies the 2012 to
2016 drought as the most intense (most negative SPI) of the
study period, second only to the drought in the early 2000s.

ERA5 Monthly Aggregated precipitation data extracted from
GEEClimT was then used to investigate a wetter period for a
different location, with the late December 2015–January
2016 floods in Aberdeenshire, Scotland chosen (Figure 7B).
For this example, an interval of 6 months was chosen (SPI-6)
as it represents soil water stores, and the flooding was linked to an
ongoing wet period and lack of soil water storage capacity
(Soulsby et al., 2017). Here while the late December
2015–January 2016 wet period is clearly visible; it was not the
most intense event (second to March-July 2012). The SPI index
does however clearly show the large magnitude of the wet period,
as all bars between December 2015 to April 2016 exceed an SPI
of +1.

Finally, we applied the SPI technique to CMIP6 ensemble data
obtained via GEECE. ERA5-Land, CMIP6 historical scenario data,
SSP2-4.5 and SSP5-8.5 data were downloaded for Dorset,
United Kingdom, which has been identified as being susceptible
to drought with projected changes in climate (Arnell et al., 2021). A
mean of the 24 member model ensemble was used at a monthly time
step to calculate SPI over a 24-month interval (SPI-24),
representative of long-term hydrological drought. The historical
period (defined here as 1955–2005), and future projections using
SSP2-4.5 (medium emissions) and SSP5-8.5 (high emissions)
scenarios for 2020-2050 were then compared to identify changes

in drought duration (months of negative SPI), magnitude (sum of all
SPIs within the drought), and intensity (maximum SPI during
drought) (Table 5)).

While caution should be applied as this analysis only considers
precipitation and no other variables associated with other elements
of climate change, the analysis suggests that under medium
emissions scenarios that the intensity of long-term extreme

FIGURE 7
SPI indices for (A) 1980 - 2021 for a 12-month interval (SPI-12) for El Dorado Forest in CA, United States, with drought period mentioned in the text
highlighted by red shading; and (B) a 6-month interval (SPI-6) for Aberdeenshire, United Kingdom, with wet period mentioned in the text highlighted by
blue shading.

TABLE 5 Comparison of the minimum, average, and maximum values for
the duration, magnitude, and intensity of long term (SPI-24) droughts in
Dorset between: the 1955–2005 ERA5-Land data, the 1955–2005 historical
scenario data, and 2020–2060 projected data for bothmedium (SSP4.5 and
high (SSP8.5) emission scenarios.

Minimum Average Maximum

ERA5-Land: 1955–2005 (n droughts = 2)

Duration 48.0 56.0 64.0

Magnitude −61.3 −53.0 −44.7

Intensity −2.8 −2.2 −1.7

CIMP6 Historical: 1955–2005 (n droughts = 4)

Duration 15.0 29.5 36.0

Magnitude −74.0 −40.0 −15.4

Intensity −3.7 −2.3 −1.5

Medium emission (SSP2-4.5): 2020–2060 (n droughts = 2)

Duration 43.0 53.5 64.0

Magnitude −69.6 −64.9 −60.1

Intensity −3.1 −2.7 −2.2

High emission (SSP5-8.5): 2020–2060 (n droughts = 4)

Duration 25.0 35.3 51.0

Magnitude −60.1 −35.7 −19.0

Intensity −2.6 −2.2 −1.8
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(<-1.5 intensity) hydrological drought remains similar to the
historical period, though there will likely be increases in the
duration, intensity and magnitude of these hydrometeorological
hazards in the future. Mismatch between the ERA5 and the
CMIP6 historical scenario may result from using the ensemble
mean values as input for the SPI, which will dampen monthly
variability that may be captured by individual simulations. Similar
caveats apply to results driven by the SSP2-4.5 and SSP5-
8.5 ensemble means, highlighting that users should carefully
consider how or if the assumptions made in datasets extracted
from GEEClimT and GEECE may impact the results of
subsequent analysis.

The data used within this analysis was identified and processed
for download in <15 min before being used in the relatively simple
SPI analysis. This highlights the use of the tool in accessing data
from anywhere on the planet - something traditionally difficult and
time consuming–and applying it to real world, beneficial analyses
enabling assessment of conditions before, during, and after extreme
hydrometeorological events, as well as understanding potential
future scenarios.

2 Summary

GEEClimT and GEECE offer the potential to dramatically
improve the ease of access to reanalysis and climate projection
data, broadening its user base amongst researchers, students
and instructors. The tools are free to use for research and
educational purposes, though can also be used for
commercial applications (strictly only through direct
correspondence with the authors).

The new annual resolution ERALClim dataset included within
GEEClimT also represents a significant extension of the WorldClim
(BioClim) data product, providing global scale bioclimatic variables
for 1951-2022 and climate baseline summaries for five different
WMO climate baselines from 1951 to present. Derivation of
ERALClim from ERA5-Land Hourly data ensures that results
provided are based on a combination of climate physics and
assimilated observations rather than spatial interpolation of
observations alone.

Through the point-and-click interfaces of GEEClimT and
GEECE, they provide a single location to access 24 different
reanalysis data products, and three climate scenarios for
34 different model simulations respectively. In doing so,
GEEClimT and GEECE address multiple existing barriers to
accessing these data through: 1) not requiring any coding
experience to process and obtain full time series of data from
user defined regions of interest; 2) by limiting analysis to a user’s
ROI, they remove the requirement to download substantial
volumes of potentially superfluous data (compared to where
data products can only be downloaded as full global model
domains); 3) removing potentially laborious post-processing
steps through provision of output data in commonly used
spreadsheet or raster data formats (rather than specialist
netCDF or GRIB formats); and 4) processing and analysing
data in a cloud computing environment, meaning that users are
not limited by the processing power or storage capacity of their
local machines. The case studies presented of how data obtained

through GEEClimT and GEECE can be applied to environmental
and biological problems, though illustrate only a small range of its
potential applications.

Together, GEEClimT and GEECE therefore provide a means to
ensure that the significant potential of reanalysis data across
environmental, biological and social sciences can be more easily
realised by a wider range of researchers and students across multiple
disciplines.
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