
Evaluation of climate change
impact on plants and hydrology

Ishaq Ali Shah1,2*, Haroon Khan3, Zahir Muhammad1,
Rehman Ullah1, Shahid Iqbal4, Hiba-Allah Nafidi5,
Mohammed Bourhia6,7* and Ahmad Mohammad Salamatullah8

1Department of Botany, University of Peshawar, Peshawar, Pakistan, 2Higher Education, Archives and
Libraries Department, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan, 3Department of Weed
Science and Botany, The University of Agriculture, Peshawar, Pakistan, 4Centre for Disaster Preparedness
and Management, University of Peshawar, Peshawar, Pakistan, 5Department of Food Science, Faculty of
Agriculture and Food Science, Laval University, Quebec City, QC, Canada, 6Department of Chemistry and
Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco, 7Laboratory
of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy,
University Hassan II, Casablanca, Morocco, 8Department of Food Science and Nutrition, College of Food
and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia

Climate change (CC) is the menace of the hour impacting every facet of human
existence. Regional CC and its impact studies are crucial in that they contribute to
global change. The current study aims to investigate the prevalence of CC in
Charsadda, Pakistan and its impact on vegetation and hydrology of the region to
understand microclimate variability contribution to global CC. Utilizing local
climate data for 20 years (2001–2020), Modified Mann-Kendall and Sen’s
Slope statistics were employed to determine monthly and seasonal trends in
climate variables. Significant changing climate variables were regressed on
Moderate resolution Imaging Spectroradiometer (MODIS) satellite dataset viz.
normalized difference vegetation index (NDVI). Due to the prominent climate
factor impacting vegetation, NDVI was further correlated to MODIS land surface
temperature (LST). Floods being the conspicuous climate calamity were mapped
for 2005 and 2010 using satellites Landsat 5 and 7 dataset viz. normalized
difference water index (NDWI) with flood risk assessment by watershed
delineation. The findings revealed significant (p < 0.05) variability in climate
variables (average monthly and summer maximum temperature, and average
monthly and summer precipitation) that are driving CC and impacting vegetation
and hydrology in the region. Temperature and solar radiation affect NDVI
adversely while precipitation and relative humidity has positive impact on
vegetation. NDVI varied greatly spatiotemporally, often increasing but
worsening in some areas (Shabqadar, Abazai, Palai and Charsadda city with
NDVI = 0.1–0.3) of the study region as a result of extreme weather events.
Temporally, NDVI improved with an overall positive trend with a stage
(2007–2016) of noticeable zigzag fluctuation. Spatial grids with higher LST
(>40°C) were either devoid of or with sparse NDVI (<0.3) presenting global
warming as peril to vegetation. NDWI maps (2005, 2010 floods) indicate that
after floodswreaked havoc on the region altering the vegetation pattern revealing
heavy irregular precipitation as the next to temperature in jeopardizing vegetation
of the region. Lower elevation regions along the Swat and Kabul Rivers with a
greater risk of flooding were identified by watershed delineation. The study
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suggests that local governments and stakeholders implement CC mitigation
strategies and plans for vegetation restoration, flood alerts with post-flood
management for regional sustainable development.
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1 Introduction

Climate change (CC) is the heinous concern of the present day
world and linked to rising temperature due to excessive greenhouse
gas (GHG) caused by fast industrialization and urbanization since
industrial revolution (Crowley, 2000; Van Huong et al., 2022). The
release of GHG in alarming volumes for competition of power and
money by the world largest economies is compounding the
problem as warming trends are expected to exacerbate the
impact of climate change in the coming decades, jeopardizing
impoverished countries like Pakistan (Hussain et al., 2022a; Van
Huong et al., 2022). Carbon capture via various technologies such
as direct air capture (DAC) is one of the controlling measure to
combat the threat of CC (Towoju and Petinrin, 2023). DAC
involves air contacting sorbent medium and regeneration
segment removing CO2 independent of its origin source (Sodiq
et al., 2023). Intergovernmental panel on climate change (IPCC)
fifth assessment report (AR5) showed rapid warming above the
global mean for South Asia CC estimates which will negatively
impact agricultural practices as well as vegetation cover (Hussain S.
et al., 2022; 2023). The earth’s land surface temperature (LST) will
rise by 0.5°C–4.4°C over the 1990 levels during the next century as
per climate model projections (Van Vuuren et al., 2008). Changes
in vegetation produce natural disturbances, which modify
biosphere–atmosphere interactions (Scheffer et al., 2005).
Climate and vegetation are inextricably linked; thus, changes in
one affect changes in the other. Changes in vegetation cover at
regional as well as global scale can affect the climate system by
altering the components of a region’s climate (Hussain et al., 2023).
The dynamics of vegetation also vary as a result of climatic
changes. Longitudinal studies are imperative to understand long
term climate-vegetation interactions and then adaptations of
plants to regional and global CC via temporal phenology and
geographical distribution (Bertin, 2008; Shahid et al., 2021).
Dynamic ecosystem models may represent the complicated
interactions between plant physiological systems and climatic
variability (Sitch et al., 2003; Gritti et al., 2006). LST is the
earth ground surface radiative energy emitted often referred to
earth skin or radiometric temperature and which may not be
confused with near surface air temperature (Hulley et al., 2019).
Among environmental settings, one of the significant factors is the
temperature of land surface as well as of atmosphere which is
affected by surface energy changes, microclimatology, human
thermal comfort, atmospheric pollution, anthropogenic heat
discharge and buildings energy consumptions (Halder et al.,
2021). LST, for bare soil, is the temperature of topmost few
micrometers of soil surface, for dense vegetation, is the
temperature of the canopy leaves and for sparse vegetation, is
the ensemble temperature of the canopy, the understory (branches,
etc.) and soil surface (Hulley et al., 2019).

Monitoring changes in vegetation and land cover has been made
possible by remote sensing (RS) data, which has considerably aided
in sustainable land use management (Atif et al., 2015; Hussain et al.,
2023). Studying how plant and land cover change over time as a
result of natural disasters like droughts and floods are affected by CC
is made possible by RS and geographic information systems (GIS).
The introduction of GIS and the synoptic view, along with the
repetitive nature and digital format suitable for computer handling

of remote satellite sensing data, have led to improved mapping and
real-time monitoring of vegetation, urbanization, and agricultural
production (Shah et al., 2022b; 2023). NDVI, an essential metric for
examining variations in plant cover over time, is obtained from RS
satellite spectral bands which measures the vegetation health as it
has a robust correlation with green biomass (Shah et al., 2022b;
Hussain S. et al., 2022). It is a very accurate measure for analyzing
variations in plant cover across time and space, detecting the crop
types and land use/land cover (LULC) change as well as assessing
crop yield and production (Gao et al., 2019; Hussain et al., 2023).
NDVI is sensitive climate factors such as temperature, precipitation,
solar radiation and relative humidity (Shah et al., 2022b; 2023).
Among these climate variables temperature is the most heinous one
and is focused more in climate vegetation interaction studies. LST is
a closely linked with NDVI in the context as studied by many
researchers (Maroni et al., 2021). NDWI is another RS dataset used
for flood mapping in conjunction with pre- and post-flood image
processing to determine the extent of the flood (Memon et al., 2015;
Shah et al., 2022b; Singh and Kansal, 2022). The NDWI is designed
to maximized detection of the green spectral band reflection from
the water bodies of earth surface (Ganaie et al., 2013; Khalifeh
Soltanian et al., 2019). Environmental monitoring is based on
detection of temporal trends as such studies are extracted from
historical environmental behaviors. Mann-Kendall test and linear
regression models are used to examine the temporal trends of plant
cover and land cover variance (Mustapha, 2013; Jiang et al., 2015).

Pakistan is hit by the CC induced weather extremes especially
monsoon (July-September) flash and fluvial floods since its
inception such as witnessed in 1955, 1973, 1976, 1980, 1992
(Solheim et al., 2001), 2005, 2010, 2014, 2015, 2016, 2017, 2020,
2021 (EM- DAT, 2022) and 2022 (Devi, 2022). The country is
ranked fifth and eighth most vulnerable to CC induced weather
extremes as per the global climate risk index 2020 (1999–2018) and
2021 (2000–2019) reports respectively (Eckstein et al., 2019; 2021).
The Indus-Kabul river system flooding catastrophe in 2010 killed
1985 people in addition to a worth $9,500,000 infrastructure losses
(EM- DAT, 2022). Over the previous 2 decades, CC has increased
the volume, occurrence and intensity of floods (Zhang et al., 2011).
Several studies show that developing agrarian nations tend to be
more vulnerable to CC extremes due to their dependence on
subsistence agriculture, livestock production in addition to poor
adaptive capacity and limited access to resources to mitigate the
impact of CC (Minh et al., 2023). Khyber Pakhtunkhwa (KP) is
Pakistan’s most climate-change-affected province, owing to its
varied terrain and the existence of significant rivers such as the
Indus, Kabul, and others (Atta-ur-Rahman and Khan, 2013). The
human intervention such as embankments, LULC change, sewage
discharges of industrial, domestic and agricultural practices, dams
and barrages construction in the Indus river has caused it to become
sediment-laden resulting in run-off and catastrophic floods (Shahid
et al., 2018; Shah et al., 2022b).

The significance of the current regional research on the effects of
CC on hydrology and vegetation lies in its potential to further
knowledge of the global CC phenomenon and its consequences. The
district Charsadda has had several catastrophic floods such as
2010 due to climate extremes that have affected its sensitive
vegetation besides agricultural output (Fida et al., 2021; Shah
et al., 2022b). The area is home to Kabul and Swat, two of the
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most well-known rivers in KP. Because of their confluence, there is
an increased danger of flooding in the future, which makes research
like this necessary. Peshawar valley/basin is recognized as food
basket of KP (Khan et al., 2014a; Shah et al., 2022a), the district
which is part of the said basket requires special attention. The
present study will.

1. Analyze regional climate data to test the hypothesis of
occurrence of CC in the study area.

2. Monitor spatiotemporal variation in the vegetation cover
under the influence of CC.

3. Regress vegetation (NDVI) on climate parameters especially
LST to elaborate climate-vegetation interaction

4. Map floods of 2005 and 2010 to enunciate its implications on
the region especially its vegetation

5. Devise mitigation measures to address the threat posed by CC

2 Materials and methods

2.1 Study area

Located in the northwest corner of the Peshawar Valley, the
Charsadda district spans latitudes 34°02′59.99″N to 34°38′00″N,
longitudes 71°28′01″E to 71°53′01″E, and elevations 277m–979 m
(SRTM DEM). Mohmand, Peshawar, Mardan, Malakand, and
Nowshera districts border it to the northwest, south, northeast,
north, and southeast, respectively (Figure 1), encompassing a total
area of 996 km2 (Provincial Land Use Plan, 2020). The common
forms of land cover entail water body (8.8%), barren terrain (22.5%)
and agricultural land (68.5%) (Fida et al., 2020). The district has a
semi-arid hot climate classified as BSh by the Köppen–Geiger
climate classification system. The yearly precipitation is 460 mm

and the average temperature is 22.5°C (Iqbal and Ali, 2022). January
remains the coldest month of the year with a temperature range of
3.1°C–10.4°C, June as the driest and hottest month of temperature
25.6°C–41°C and 11 mm average precipitation and August as the
wettest and greenest month with an average precipitation range of
400–600 mm and relative humidity of 64.6% (Shah et al., 2023). In
terms of geology, the region comprises 80% deposited alluvium and
20% rocks and gravel in outcrops throughout the northwest and
much of the western terrain (Provincial Land Use Plan, 2020).

2.2 Datasets and sources

The following table is providing details of the datasets used in
the current study.

2.3 Data processing and preparation

2.3.1 NDVI and NDWI
The most popular approach for analyzing time series changes in

land cover and plant cover as a result of CC and human activities is
the combination of RS data with GIS and R analysis. Numerous
indicators are used to quantify changes in the large-scale vegetation
cover and hydrological oscillations. Accurate mapping of vegetation,
aquatic bodies, built-up regions, and land features is made possible
by remote satellite sensing of many bands of visible and invisible
light, each with unique absorption and reflection properties. Reliable
measures of vegetation and water bodies, the NDVI and NDWI are
used to monitor changes in vegetation cover and hydrology over
time. These are obtained by applying Eqs 1, 2 to plant properties of
Near Infra-red (NIR) band (780–890 nm) reflection and red band
(680–710 nm) absorption (Tucker, 1979) while water bodies

FIGURE 1
Locational map of the study area showing localities/sites of concern in the study.
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absorption of NIR and reflection of Green band (490–570 nm)
respectively.

NDVI � ρNIR − ρRed
ρNIR + ρRed

(1)

NDWI � ρGreen − ρNIR

ρGreen + ρNIR

(2)

Where ρNIR, ρRed and ρGreen are reflectance of NIR, Red and
Green bands respectively.

ArcGIS 10.8.2 was used to obtain both datasets from the satellite
data. Using the maximum value composite technique (Holben, 1986),
which eliminated cloud masking, solar zenith, and air pollution, the
NDVI was averaged for the whole district and converted to monthly
mean NDVI values. The yearly mean NDVI for the inter-annual
vegetation variation analysis was calculated using the monthly mean
NDVI. The floods of 2005 and 2010 were mapped via NDWI with
elaboration of before and after flood situationmapping the concurrent
timeframe NDWI.

2.3.2 Land surface temperature (LST)
LST is a measurement of the heat radiation emitted from the

ground or the canopy’s surface in vegetated areas. It is a
significant factor in the local and global surface energy and
water balance (Shah et al., 2023). It can give spatially
continuous LST with worldwide coverage and is extracted
using remotely sensed thermal infrared (TIF) data, allowing
researchers to look at the thermal heterogeneity of the Earth’s
surface and the effects of both natural and man-made changes on
surface temperatures (Hu and Brunsell, 2015). LST’s sensitivity
to variations in plant density makes it a useful tool in ecological
and biogeographical research. Thus, in both agricultural and
natural environments, it can monitor changes in ecosystems,
surface moisture levels, transpirational cooling, drought, and
plant stress (Anderson et al., 2000; Bertin, 2008). LST is used
to investigate the effects of changing land cover on climate as well
as the interactions between tropical forest droughts, heat waves,
melting ice sheets, and maximum thermal anomalies (Mildrexler
et al., 2018).

2.3.2.1 Calculating LST
The Generalized Split-Window (GSW) method, a typical

MODIS LST retrieval algorithm, is one of the MODIS LST
algorithms that GEE uses (Wan and Dozier, 1996; Ghent et al.,
2019). The clear-sky top-of-atmosphere (TOA) brightness
temperatures (BTs) from bands 31 and 32, which are centered on
11 µm and 12 µm, respectively, are used to estimate LST using the
GSW technique. The GSW-based LST approach is commonly
expressed as follows:

LST � A1 + A2
1 − ε

ε
+ A3

Δε

ε2
( ) T11 + T12

2
B1 + B2

1 − ε

ε
+ B3

Δε

ε2
( ) T11 + T12

2

+ C

(3)

LST is calculated using Eq 3, where T11 and T12 are the TOA-BTs
for the 11µm and 12 µm channels (bands 31 and 32), respectively.
While Δε is a difference in emissivity between channels (ε11−ε12), ε is
the mean land surface emissivity of the two bands. The retrieval
coefficients for operationalMODISCollections 5 and 6 areAj,Bj, and
C, and they rely on water vapor and zenith view angle relative to other
variables. The method is based on linearizing the TOA BTs with
surface temperature and controlling factors such as surface emissivity,
atmosphere, and satellite viewing angle (Ghent et al., 2019; Shah
et al., 2023).

2.3.2.2 Google Earth Engine (GEE)
In addition to USGS EE, using JavaScript codes in Google

Earth Engine’s (GEE) code editor, the datasets may be examined,
sorted, exported to Google Drive, and downloaded. The current
study investigated the precision of both data collection methods.
The USGS EE and GEE shall be held responsible for the final data
correctness and resolutions. GEE is a planetary-scale database
and geospatial analytical platform designed for a variety of
research functions, including large-scale cloud computing,
petabyte-scale massive archives of remote sensing data, and
special tools for large-scale geospatial data processing and
ultimate decision-making, such as Geospark, Hadoop,

TABLE 1 Details for the datasets and their sources used in the study.

Dataset Source and its details Dataset properties Link to source

NDVI USGS EE1/LP DAAC2 MODIS (MOD13Q1) Resolution https://lpdaac.usgs.gov/products/
mod13q1v006/

Tempral-16days, spatial-250 m

NDWI USGS EE Resolution https://earthexplorer.usgs.gov/

Landsat 5 and 7 Temporal-8 days, spatial-30 m

LST USGS EE/LP DAAC Resolution https://lpdaac.usgs.gov/products/
mod11a1v006/

MODIS (MOD11A1) Temporal-1day, spatial-1km

All Google Earth Engine JavaScript code access https://code.earthengine.google.com

Climate PMD3/NASA4 Power Data Access Viewer Temperature, Precipitation, solar radiation, relative humidity https://power.larc.nasa.gov/data-access-
viewer/

1United States Geological Survey Earth Explorer.
2Land Processes Distributed Active Archive Centre.
3Pakistan Meteorological Department.
4National Aeronautics and Space Administration.
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Terralib, and others (Camara et al., 2000; Whitman et al., 2014;
Yu et al., 2015).

2.3.3 Climate data
The meteorological data [temperature (°C), average daily

precipitation (mm/day) and relative humidity (%)] for a study
period of 20 years (2001–2020) were collected from a number of
meteorological stations under the administration of Pakistan
Meteorological Department (PMD) in or around the research
region. The data were also acquired from NASA Power Data
Access for missing parameter [solar radiation (W/m2)] in local
data and the rest of the parameters cross-validation for accuracy
and precision.

2.4 Methods of data analysis

2.4.1 Climate parameters variation/change
trend analysis

Climate data after correct sorting and seasonal organization
(summer includes May, June, July and August, while winter
comprises November, December and January), was analyzed in
R (4.2.1 version) using modified Mann-Kendall (MK) and Sen’s
Slope (SS) statistics. MK trend test is the most familiar trend
detection method frequently utilized in time series studies
(Alashan, 2020). The test is a nonparametric test for
estimating trends in climate datasets having no normal
distribution and is less susceptible to outliers (Hussain et al.,

2022b). The method assumes that there is no trend in the
examined time series at first as a null hypothesis, H0. The
alternative hypothesis H1 is valid if H0 is rejected which
means that there exists a trend. The acceptance is based on
standardized test statistic ‘Z’ with a specific significance level
‘α’ (Alashan, 2020). The SS estimator is used to estimate the
magnitude of trends (Hussain et al., 2022a).

2.4.2 Climate factors influence on NDVI
The current study linked climatic factors and NDVI to

estimate the impact of CC on vegetation. Simple and
multivariate linear regression models were used to investigate
climate parameters such as annual mean temperature (°C),
precipitation (mm/day), relative humidity (%), solar radiation
(W/m2), and NDVI. To visualize and interpret data, scatter plots
were utilized.

2.4.3 NDVI variation analysis
2.4.3.1 NDVI temporal variation trend

The inter-annual variation (temporal variation) in the NDVI
was calculated using the linear regression model of ordinary least
squares (OLS). The OLS model is commonly used in time series
variation analysis (Wen et al., 2015). Eq 4 provides the slope, which
may then be interpreted for an examination of the NDVI fluctuation
trend (Xianfeng et al., 2013). Increased vegetation cover is indicated
by a slope larger than zero, decreasing vegetation cover is indicated
by a slope less than zero, and no discernible change in vegetation
cover is indicated by a slope of zero.

FIGURE 2
Flow chart for Data and Methods.
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Slope � ∑n
i�1 i−( �i) (NDVIi −NDVI)

∑n
i�1 i−( �i)2 (4)

Where Slope is for the linear regression slope of, i is the number
of years (i = 1,2,3,. . ..20), n is the time span, �i is the average year,
NDVIi is value of NDVI at time i, andNDVI is the value of average
annual NDVI over the 20 years.

2.4.3.2 NDVI spatial variation trend
The software program ArcGIS 10.8.2 was utilized for the

examination of spatial variation trends. After a 20-year analysis of
the averaged NDVI photos, a composite change in plant cover was
seen over the research. Supervised classification was used to construct
(train) a high-accuracy sample layer file. When the sample layer
classes were applied to the test NDVI pictures, the spatial variations in
plant cover during the wet (August) and dry (June) months of each
year were clearly shown and contrasted (see Figure 2).

2.4.4 Investigating the impact of LST on NDVI
Data for LST and NDVI were collected from the MODIS Terra

satellite MOD11A1 and MOD13Q1 (Table 1), respectively, using
JavaScript in the code editor of GEE. The MODIS Terra satellite
collects LST every day, whereas NDVI has a 16-day temporal
resolution. The datasets were preprocessed and analyzed in
ArcMap 10.8.2. Data from the June months of 4 years, 2005,
2010, 2015, and 2020, were examined. For both datasets, the data
were first retrieved from the rasters using sampling by Fishnet in
ArcMap’s toolbox. No-data-point rows were removed from the data
before they were sorted and transferred to Excel for regression
analysis. The rasters were then mapped to evaluate the spatial
variance in both the LST and NDVI images from the
aforementioned Junes (see Figure 2).

2.4.5 Floods mapping and watershed delineation
Landsat 5 and 7 data were employed for NDWI dataset

extraction for the required timeframes, i.e., June 2005 and
August 2010 with preceding and proceeding months NDWI for
better comparison of flood month. The raw data was processed in

ArcGIS 10.8.2 while creating a training data layer by supervised
maximum likelihood classification. The accuracy of the layer was
tested by Kappa coefficient (85%) and then applied to the months
under consideration.

Watershed delineation was performed on Shuttle Radar
Mission Topography (SRTM) Digital Elevation Models (DEM)
data to probe flood risk including elevation gradient, water
channels and flood inundation areas (Figure 2).

3 Results

3.1 Climate change/variability in the
district Charsadda

Table 2 displays the findings of Sen’s slope analysis and the
modified Mann-Kendall trend test on monthly climate data from
the Charsadda district over a 20-year period (2001–2020). The
average monthly temperature is rising (MK Z-value = 0.94), as seen
in the table, although it is statistically non-significant at a 95%
confidence level. Monthly maximum temperature data reveals a
statistically significant (p < 0.05) positive (rising) trend (MK
Z-value = 2.97). The average of the monthly high and low
temperatures is the monthly average temperature. The average yields
unimpressive results since the maximum temperature is rising and the
minimum temperature is declining. There is no discernible trend,
despite the fact that the minimum temperature is gradually falling.
The seasonal data studied reveal a rise in both the summer and winter
seasons’monthly average temperatures, as well as a substantial increase
in just the summer season’s monthly maximum temperature. Even
though it is exceptional, the minimum temperature during the summer
displays a negative tendency (MK Z-value = −0.89), which is consistent
with the pattern. The research area has seen erratic precipitation
patterns for several years. As part of the monsoon region, the area
is subjected to severe monsoon rains throughout the monsoon season,
however at drastically varying rates and patterns each year. Table 2
shows an exceptionally significant rising trend (MK Z-value = 6.05) in
monthly precipitation. The summer season, as shown in Table 2,

TABLE 2 A visual display of the monthly and seasonal climatic patterns (trends) for the district of Charsadda.

Climate variable Linear slope MKa Z-value MK Tau Sen’s slope p-value Trend

Average Temperature 1166.0 0.94 0.04 0.005 0.348 Positive

Average Temp (Summer) 256.0 1.06 0.08 0.013 0.322 Positive

Average Temp (Winter) 246.0 1.57 0.14 0.017 0.118 Positive

Maximum Temperature 3683.0 2.97 0.13 0.011 0.003 Positive

Max. Temp (Summer) 1266.0 5.26 0.40 0.028 0.000 Positive

Minimum Temperature −448.0 −0.36 −0.02 −0.002 0.719 Negative

Min. Temp (Summer) −214.0 −0.89 − 0.07 −0.013 0.376 Negative

Precipitation 7524.0 6.05 0.26 0.007 0.000 Positive

Precipitation (Summer) 1199.0 4.98 0.38 0.336 0.000 Positive

Relative Humidity 8263.0 6.65 0.29 0.082 0.000 Positive

Solar Radiation − 671.0 − 0.54 − 0.02 − 0.013 0.589 Negative

aMK, stands for Mann-Kendall.
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consists of 4 months: May, June, July, and August, with the latter
2 months being in the monsoon period and hence experiencing the
greatest monsoon spells. As a result of the two primary causes, frequent
monsoon periods and the waterway of the Swat river in the research
region, the land has been ruined by high floods (Atif et al., 2015).
Furthermore, because of the changing pattern and rate of precipitation,
the area experiences severe droughts in other seasons, with significant
economic and cultural consequences. Both disasters (droughts in dry
months and floods in wet months) wreak havoc on the region by
negatively hurting the district’s socioeconomic standing (Dale, 1997).

Table 2 also shows that relative humidity increased dramatically
over the research period, which may have contributed to the
warming of the study area’s environment. Water vapors in the
air acts as a GHG and saturates the air, which may have a negative
impact on the examined location. Most living species may be
harmed by 100% humid air at temperatures over 40°C (Wang
et al., 2010). However, Figure 3 shows that it has a favorable
association with NDVI (vegetation). As seen in Table 2, solar
radiation has a somewhat negative trend. The lowering trend of
the climatic component has a negative impact on vegetation (NDVI)
since it reduces the photosynthetic power of the plants.

3.2 Climate change impact on NDVI

CC has a significant influence on NDVI (Gao et al., 2019).
Simple and multivariate linear regression models were used to
evaluate the influence of climate on NDVI. Climate variables will

always influence vegetation (NDVI) (Jiang et al., 2015). The
cumulative association between NDVI and time (years), annual
mean temperature (°C), precipitation (mm/day), relative humidity
(%), and solar radiation (W/m2) is depicted in Figure 3. The findings
indicate a significant link between weather patterns and NDVI. The
NDVI has a positive correlation and regression coefficient when
measured over time, showing that it improves with certain irregular
fluctuations. Climate factors (precipitation and relative humidity)
significantly improve NDVI.

Conversely, there is a negative correlation between NDVI and
temperature and Sun radiation (Wang et al., 2001; Sun and Qin,
2016; Shah et al., 2023). The link between the NDVI and time,
temperature, precipitation, relative humidity, and solar radiation
is shown in Figure 3 in a way that makes each of these factors
both independent (column-wise) and concurrently dependent
(row-wise). The variables were substantially (p < 0.05) related,
according to multiple linear regression in R. R2 = 0.835 showed
the degree of data interrelationship and model design prediction.
Vegetation is greatly impacted by temperature (Figure 3). A
change in the Earth’s average temperature as seen in the
research location is referred to as CC, and it always has a
major effect on the local flora (Sun and Qin, 2016; Shah et al.,
2022b). Precipitation affects plants (NDVI) in a reciprocal
manner, unlike temperature.

Over the past 20 years, there has been a shift in the pattern of
precipitation; while the extremes have a detrimental effect on the
vegetation, overall, the effects have been positive. Plants are
significantly impacted by relative humidity (Figure 3). The

FIGURE 3
Time (years), average temperature (°C), relative humidity (%), precipitation (mm/day), and solar radiation (W/m2) are displayed as dependent
and independent variables concurrently. The dependent variable here is NDVI, whereas the others are independent climatic parameters that
influence NDVI; yet, this illustration portrays their relationship as if they were all independent variables with one dependent variable and
vice versa.
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NDVI values cluster at 40%–50% humidity, indicating that this
humidity range has a significant impact on plants. Solar radiation
is an important climatic factor that determines NDVI. The
relationship between NDVI and solar radiation is inverse
(Figure 3). High radiation lowers plant photosynthetic
production while simultaneously restricting evapotranspiration,
both of which have a negative impact on vegetation (Shah
et al., 2022b).

3.3 Vegetation (NDVI) variation in space
and time

The dynamic element of the ecosystem that varies over time and
space is the vegetation. Its constant change under the impact of CC
demonstrates the dynamic interplay and climatic responsiveness of
the surrounding environment. The present study emphasizes that
due of their tight relationship, CC has significant effects on
vegetation.

3.3.1 Temporal variation in NDVI
According to NDVI evaluations, human-caused CC has a

major influence on plant cover. Figure 4 displays the yearly
NDVI values fluctuation across the research period. The four
stages below depict the variance trend from 2001 to 2020. The
first stage shows a growing trend with a strong slope from 2001 to
2003. Following that, there is minor variation but no discernable
trend from 2004 to 2007. From 2007 to 2016, the third stage
features a zigzag fluctuation pattern with significant crests and
troughs and an overall rising trend. Years of major reductions in
NDVI values alternated with years with net rising tendency
throughout this stage of NDVI temporal fluctuation. Even years
exhibit lower NDVI values than odd years, such as 2008, 2010,
2012, 2014, and 2016, demonstrating a distinct trend in plant
cover. From 2016 through 2020, the last stage shows a steady
increasing trend, i.e., a rapid increase in NDVI values, indicating
the fastest-growing tendency. In the final phase, the Pakistani
government’s “billion tree tsunami” initiative in KP, vegetation
improved significantly (Kamal et al., 2018). The overall trend of the

NDVI variance indicated a gradual increase in vegetation,
indicating a considerable improvement in the vegetation cover
of the studied region during the past 20 years.

3.3.2 Vegetation’s spatial variation
The climate of Charsadda is generally semi-arid to semi-humid.

However, adverse climatic circumstances, such as natural catastrophes
caused by CC, have caused drastic changes in the past. Figure 5
displays the inter-annual average NDVI spatial variation (in
percentages for specific places) in the district of Charsadda from
2001 to 2020. The region is lush green, with the plant cover improving
year after year. The region’s entire vegetation cover has high NDVI
values, but as Figure 5 shows, the northwestern elevated boundary
remains dry and sparsely vegetated. These elevated areas include
Shabqadar,MattaMughal Khel, Abazai, and Palai, as well as other tiny
patches around Tangi and Charsadda City (see Figure 1 for locations),
with NDVI values ranging from 0.1 to 0.3 and covering less than 10%
of the district’s land. Pir Qilla, Batagram, Sukker, Umerzai, Mirzadher,
Deputy Kili, Sherpao, Zaim, Chindaro Dag, Khanmahi, Nissata,
Boobak, Dosehra, Sardheri, and Daragai are among the towns
(representing more than 85% of the district) with NDVI values
ranging from 0.3 to 0.55. Because of the district’s extensive
agricultural fields, marshes, and artificially wooded Populus
nigra zones around the Marghan, Shakoor, Harichand, and
Swat rivers, 4.77% of the district has thick vegetation with an
NDVI of greater than 0.55 (Figure 5). The district’s land cover
categories include agricultural fields, marshes, woodland regions,
cemetery wastelands, and urbanized lands. The most populous
locations missing green patches are in Charsadda City
and Shabqadar.

3.3.3 NDVI spatial variation in the month of August
and June

The NDVI of August, the greenest month of the year, is shown
in Figure 6A. August has the most dense vegetation in the region,
with an average NDVI range of 0.55–0.75, and it consistently
improves year after year. A considerable quantity of barren land
is seen in the region’s 2001 NDVI imagery. This amount of bare land
gradually reduced over time with a few minor irregular oscillations

FIGURE 4
Inter-annual (2001–2020) NDVI variance in the district Charsadda exhibits erratic discord with overall improvement during the research period.
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until the study area’s 2020 NDVI image displays very little bare land.
The monsoon season, which occurs in the same month, means there
will be a lot of rain and humidity. The month of 2010 had the biggest
flash flood in the region’s history, as seen on the map (Atta-ur-
Rahman and Khan, 2013; Fida et al., 2020). June is the driest month
of the year, hence the study area’s usual NDVI values are low,

indicating that there is not much vegetation there (Figure 6B). Given
that it is the hottest month of the year, it is extremely dry and
scorching. The research region has little to no vegetation due to the
extreme weather this month. Figure 6B depicts how weather
severity, which has although consistently favoured NDVI since
2001, impacts the NDVI for each June. The NDVI range for

FIGURE 6
Vegetation (NDVI) variation in space and time for the study period (2001–2020) focusing the months of August (A) and June (B).

FIGURE 5
Spatial distribution of vegetation in district Charsadda showing variation over 20 years (2001–2010) with varied percentages for different places.
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most maps is between 0.05 and 0.4. All maps have a relatively small
percentage of NDVI values higher than 0.35. Surprisingly, the maps
show that vegetation increased the study area’s vegetation cover over
time by slowly emerging over a long period of time.

3.4 Impact of June’s LST on June’ NDVI

The previous section showed the research period’s June
vegetation spatial distribution, which suggests that the vegetation
is negatively impacted by the month’s high summer temperatures,
together with a lack of humidity and precipitation. The delicate
interaction between NDVI and high temperatures, as those in June,
is the topic of the current section. Due to its sensitivity to changes in
plant density, land surface temperature (LST) is commonly used for
ecological and bio-geographical investigations and may therefore
monitor ecosystem disturbances (Ghent et al., 2019). Loss of
vegetation and soil moisture content causes a rise in LST, which
is worsened by human activity. Urban development activities also
have a direct impact on LST, which poses a worldwide problem for
sustainable development. An extensive influence of LST on NDVI is
revealed by scatter plots with regression in Figure 7, spatial
distribution differences of both in Figure 8 and correlation
analysis in Figure 9. The capacity of plants to evapotranspire and
photosynthesize is hampered by temperatures that are above
optimal limits, which results in the death of the vegetation (Shah
et al., 2022b). With the expression of trend line equations and
regression coefficients, Figure 7 shows the relationship between
LST and NDVI.

The figure shows that during themonth of June in the years under
study (2005, 2010, 2015, and 2020), there is a complete negative
association between LST and NDVI. The findings suggest that
vegetation would be negatively impacted by CC and the associated

rise in temperature, which might cause ecological disruption (Bai
et al., 2013). In regions with higher temperatures and little vegetation,
the spatial connection of LST and NDVI reflects the same scenario
(Figure 8). The warmer climate grids appear to contain less
vegetation. However, as the illustration for June 2020 shows,
there is an anomaly: the vegetation is not affected just by
temperature. Even in particular grids with higher
temperatures, the NDVI is still noticeable, which might be
explained by additional meteorological factors such as relative
humidity and precipitation, etc. Figure 9 depicts correlation
matrix among LSTs and NDVIs of the said Junes illustrating
that they have negative correlation coefficients (red boxes).

3.5 Climate change impact on
hydrology (NDWI)

The study area witnessed several weather extremes in which
floods were on the top of the list. As Table 2 reveals the highly
significant increasing trends of annual average precipitation as well as
summer (monsoon) season precipitation, the probability of floods in
future is high which is aggravated by the presence of two heavy water
bodies viz. Kabul and Swat rivers. This section maps the floods of
2005 and 2010 to illustrate the impact of the climate crisis in the region.

3.5.1 June 2005 flood
Figure 10A illustrates the 2005 flood which occurred in the late

June of the year. The flood intensity was high at south-western
boundary especially at the junction point of the two rivers viz.
Kabul and Swat rivers. The figure shows the pre-flood map of May
with normal flow of the waters in the rivers and post-flood maps of
July having flood inundated areas with August map of heavy
vegetation.

FIGURE 7
Scatter plots of spatial variations of LST and NDVI of the selected timeframes (Junes of 2005, 2010, 2015 and 2020) to represent the regression
coefficients and trend lines.
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3.5.2 August 2010 flood
The August 2010 flood was the most devastating flood in the

history of the region wreaking havoc to the masses. Figure 10B

depicts the pre-floodmap of July with normal water bodies and post-
flood maps of August start and end with September of the year. The
flood happened in the first week of August inundating most of the
district causing huge losses in terms of economy and human lives.

3.5.3 Watershed delineation
Water channels represented by dendritic network or river

network serve as primary pathway in transporting sediment,
water and other environmental fluxes (Shahid et al., 2021;
Shah et al., 2022b). These networks add in floods like fluxes
especially in changing climate due to human intervention.
Figure 11 depicts these dendritic water pathways highlighting the
flood risky areas. The southern corner of the district viz. Sardaryab,
Sukkar, Charsadda city, Nissata (See Figure 1 to pinpoint the
localities) is of lowest elevation (red) with proximity to the rivers
junction exhibit highest flood risk.

4 Discussion

The climate is the primary determinant of an area’s vegetation
(Greve et al., 2011). In retreat, vegetation cover changes have the
potential to affect climate to change. Due to human involvement in
the local ecosystem, vegetation has suffered. Environmental
stressors and weather extremes are becoming worse due to CC.

FIGURE 8
Spatial distribution of differences in vegetation cover and LST for the month of June of 2005, 2010, 2015, and 2020.

FIGURE 9
LST and NDVI cross correlations (correlation matrix) for the
Junes of 2005, 2010, 2015, and 2020 with Pearson correlation
coefficients at a 0.01 confidence interval.
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The district of Charsadda is witnessing the phenomenon of CC,
according to Table 2 trends for climate parameter variation and
various research on the region (Khan et al., 2014b; 2021; Iqbal and
Ali, 2022). The temperature, which has apparently scaled
considerably, is the climate factor having the highest potential to
induce CC (Table 2), according to the current study besides Ullah
et al., 2019; Iqbal and Ali 2022. Other variables that change over time
and space, in addition to temperature, also have an impact on
climate and, consequently, vegetation. The study found that after
temperature, precipitation is the next to highly influence the plant
cover, along with relative humidity (He, 2014; Mo et al., 2019). The
research infers that because temperature mediates how solar
radiation affects vegetation, it is dangerous when it is at its

strongest (Panferov et al., 2001). The study further explored the
impact of temperature on vegetation by revealing a spatial grid-wise
link between NDVI and LST, which suggests that grids with high
temperatures are devoid of or very sparse vegetation (Figure 3).

A global problem, CC affects many elements of human life
(Kabiri et al., 2015; Gul, 2019). The vegetation in the Charsadda
region saw a major impact from CC (Khan et al., 2019), according to
the current study as well. Additionally, Figures 7–9 show that LST
has had a negative impact on the NDVI (Sun and Kafatos, 2007;
Boqer and Science, 2009). Parts of the previously vegetated terrain
are being transformed into urban areas as a result of the fast
suburbanization happening in the study area (Malik and Ali,
2015; Ali K. et al., 2019). This growing urbanization, along with
other factors, may significantly contribute to local climate
variability, aggravating large-scale CC, as has been observed in
other nations (Raza and Ijaz, 2009; Yang et al., 2013; Kabiri
et al., 2015). As a result, the research area may see an increase in
extreme weather occurrences in the future if mitigating measures are
not put in place (Rahman et al., 2018; Ali S. et al., 2019).

CC induced weather extremes such as heatwaves, heavy rains,
hailstones, storms, droughts, strong winds are happening in the
study area are increasing in frequency as reported from areas in close
proximity (Shah et al., 2022a). Floods are common due to highly
significant positive trends of annual as well as summer (monsoon)
precipitation (Table 2). Floods of 2005 (Figure 10A) and 2010
(Figure 10B) mapped reveal the harsh impact of climate crisis on
the region. Future floods are more likely to occur due to rapid
changing climate and presence of significant water bodies, i.e., Kabul
and Swat rivers.

Understanding the consequences of CC and the mechanisms
pivotal to cause CC are critical for developing climate-resilient
adaptations and mitigation strategies. The present work’s purpose is
to encourage more research in the area and to assist stakeholders in
developing climate-resilient plans to deal with the consequences of CC
on the research region. The study’s findings also emphasize the

FIGURE 10
NDWI depicting pre and post-flood maps of the floods of 2005 (A) and 2010 (B).

FIGURE 11
Water Channels showing dendritic network depicting flood risk.
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importance of taking immediate action to decrease CC’s negative
effects on the region’s ecosystems and human culture. As a result,
policymakers and stakeholders must place a high priority on
developing and implementing effective solutions to the issues
caused by CC. The current study is aimed at understanding the
contribution of local climate variability to large-scale or global
CC and its impacts.

5 Conclusion

The current study found that CC and its induced weather
extremes in the form of high temperatures and floods have
negative impact on vegetation cover and hydrology of the district
Charsadda. Following are the point-wise main conclusions of the
study as per its objectives.

1. Climate variables trend analysis via modified Mann-Kendall
test and Sen’s slope statistics revealed significant trends. There
are highly significant (p < 0.05) positive (increasing) trends for
maximum temperature annually (MK-Z value = 2.96, Sen’s
slope = 0.109) as well as for summer season (MK-Z value =
5.26, Sen’s slope = 0.028) and precipitation both annually (MK-
Z value = 6.05, Sen’s slope = 0.007) as well as for summer
season (MK-Z value = 4.98, Sen’s slope = 0.336). Relative
humidity in consequence to increased precipitation also
showed highly significant (p < 0.05) positive (increasing)
trend (MK-Z value = 6.65, Sen’s slope = 0.082).

2. Confirming climate change in the study area, the regression
analysis exposed significant (R2 = 0.835) impact of the climate
factors on NDVI. NDVI varied both temporally and spatially
under the influence of changed climate with overall
improvement.

3. LST is the most heinous climate parameter influencing NDVI
negatively.

4. Heavy intense irregular rainfalls caused severe pluvial and
fluvial floods in 2005 and 2010 leading to disastrous
conditions affecting both natural ecosystems including
vegetation and human lives.

5. Flood risk assessment via watershed channels revealed more
than 50% of area to be at risk in future.

6. Local government and stakeholders are urged to take
mitigation measures and devise policy to check the human-
induced climate change.

In brief, CC worsens weather, influencing the local vegetation
and land uses causing enormous economic and human losses. In
light of their contribution to global CC, regional as well as
longitudinal climate research such as this one are essential.
Beyond Charsadda, the KP area is experiencing CC and its
effects, making research of this nature necessary. The study’s
conclusions will be useful in making decisions on measures for
regional sustainability, CC mitigation, and vegetation restoration.
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