
Real-time water quality
forecasting in rivers using satellite
data and dynamic models: an
online system for operational
management, control and
citizen science

Paul G. Whitehead1,2,3*, Paul Edmunds3, Gianbattista Bussi2,
Séamus O’Donnell3, Martyn Futter4, Steve Groom3,
Cordelia Rampley5, Chris Szweda3, David Johnson1,
Andy Triggs Hodge3, Tim Porter3 and Geraldine Castro3

1School of Geography and the Environment, University of Oxford, Oxford, United Kingdom, 2Water
Resource Associates, Wallingford, United Kingdom, 3Aquascope Solutions Ltd., Worcester,
United Kingdom, 4Department of Aquatic Science and Assessment, Swedish University of Agricultural
Sciences, Uppsala, Sweden, 5Oxford Molecular Biosensors, Centre for Innovation and Enterprise, Oxford,
United Kingdom

Increasingly scarce water resources and growing global populations have
exacerbated the problems of water quality in river systems and freshwaters in
general. New monitoring methodologies and tools to democratize access to
water quality information are needed if we are to reach ambitious societal
objectives such as the UN Sustainable Development Goals and the European
Green Deal. Here we present a cloud-based system for producing publicly
accessible real time water quality forecasts coupled to novel biosensor
technology. Short term forecasts of water quality impairments, e.g., as
cyanobacteria blooms, sediment plumes and toxic pollution incidents are
increasingly relevant both to citizens and stakeholders. Here, we present a
new cloud based system that utilizes satellite data to produce real time
forecasts of flow and water quality using a chain of dynamic catchment-scale
models at multiple locations in a river network. We demonstrate this new system
using two case studies: the River Thames and the Essex Colne River
(United Kingdom). These rivers are key water supply sources for London and
South-East England, respectively and are of high interest to recreational water
users. We show how the new system can predict and forecast water quality,
estimate toxicity and connect to citizen science observations using an App
(www.aquascope.com) for information synthesis and delivery.
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Introduction

In the management and operational control of water resource
systems, a major requirement is for information on present river
conditions and on likely future changes in water quality (Whitehead
et al., 1984; Chapra, 2008; Kroeze et al., 2016). Operational managers
need to be able to respond quickly to emergency situations in order
to protect and conserve water quality and maintain adequate water
quality for public and industrial supply. For example, rising nitrate
levels in rivers and groundwaters have placed pressure on water
supply managers to keep public water supply reservoirs below the
WHO and EU limit of 11.3 mg/L for Nitrate-N (Sutton et al., 2011).
Spikes of high nitrate being flushed from catchments in late summer,
once catchment soils have rewetted, can drive river and reservoir
waters to high Nitrate-N concentrations which then require
blending to ensure safe water supplies.

At the same time, as populations increase, there are increasing
demands for water and hence higher levels of sewage flows into
rivers, estuaries and coastal zones from both rural and urban areas.
Excess untreated water entering river systems transport high organic
and pathogen loads (Tuholske et al., 2021). This is especially true
during storm or high rainfall events where the combined sewer and
rainfall drains overwhelm sewage treatment plants (STPs), bypass
the plant and discharge directly into rivers. This is commonly
known as combined sewer overflows (CSOs) which are used as
emergency responses to reduce the risk of sewage backing up during
heavy rainfall. There use generates high levels of pollution with
significant organic loads, with very high Biochemical Oxygen
Demand (BOD). The subsequent biochemical reactions, as
defined by the Streeter Phelps equations (Streeter and Phelps,
1925; Beck and Young, 1976; Crossman et al., 2021), dictate that
this will inevitably lower Dissolved Oxygen (DO) concentrations in
rivers, thereby threatening fisheries and biodiversity
(macroinvertebrates). At the same time, the high sewage
discharges affect the suitability of the river for swimming and
bathing due to the higher levels of pathogens in rivers (Fewtrell
and Kay, 2015). With climate change increasing the frequency and
intensity of rainfall events, this is becoming a really significant
problem, threatening the water quality and ecology of all
river systems.

There is an increasing demand from the regulators and water
users such as environment agencies, water companies, river trusts
and the public for water quality and flow information in order to
understand and explain water quality. River users would like to be
informed about the state of the water quality so they can safely enjoy
recreational pursuits such as swimming, rowing, boating, canoeing,
fishing, walking, conservation activities, etc. Also, crucially, the
supply of clean, potable water is essential and a very high
priority for governments and water companies. There are many
other issues or operational concern to water companies,
environment agencies and governments, and these are addressed
in this paper.

In this paper, we propose and demonstrate a real-time system
for delivering water quality and flow information based on satellite
data coupled to dynamic process-based models of flow and water
quality. This system will have potential great benefits to a wide range
of stakeholders from government, to environmental agencies, to
river users and river trusts, as well as support citizen science. Further

aspects and applications of the proposed technology is given in the
final sections of this paper.

A wide range of satellite data has become available recently and
the data supply is increasing year by year as more advanced
technology comes online with a range of new satellite services.
Also, there has been an expansion of water quality models over
many decades, with increasing complexity, greater spatial
distribution and more detailed temporal resolution (e.g., monthly,
weekly, daily and sub-daily, Tang et al., 2019). Many of these models
are not suitable for a real-time forecasting role as they are too
complex and require access to GIS systems (e.g., SWAT, SWAT+,
Arnold et al., 2012; Bieger et al., 2017) which means they are very
time consuming to solve computationally in real time. Any real time
model must be able to simulate catchments in seconds or a few
moments to be useful for users online or by river pollution control
staff controlling water intakes, monitoring rivers or protecting
public water supply systems.

In this paper we use the INCA (Integrated Catchments) suite of
catchment-scale, process-based models (Whitehead et al., 1998a;
Whitehead et al., 1998b). INCA is one of the most used catchment-
scale water quality models in the scientific literature (Fu et al., 2019).
It was developed in 1998 to simulate river system flow, Nitrate-N
and ammonia (Whitehead et al., 1998a; Whitehead et al., 1998b;
Wade A. J. et al., 2002). It was subsequently updated to add other
water quality variables such as phosphorus, dissolved oxygen and
algal production (Wade et al., 2002b;Wade et al., 2002c), carbon and
mercury (Futter et al., 2011; Futter et al., 2012). It has been applied
widely in the United Kingdom (Whitehead et al., 2002; Bussi et al.,
2020) and globally (Khan et al., 2018; Jin et al., 2021; Bussi et al.,
2023; Sharma et al., 2023). In this study, INCA-N (Wade A. J. et al.,
2002) and INCA-P (Crossman et al., 2021) have been used INCA is
computationally fast and capture the key hydro-chemical and
biological and dynamic processes affecting water quality. INCA
has been applied to approximately 150 catchments in every
continent except Antarctica. It has been used in a wide range of
climatic and terrestrial environments in catchments ranging in size
from a few square kilometers (Whitehead et al., 2002) to thousands
of square kilometers such as the Ganges or the Mekong (Whitehead
et al., 2015; Khan et al., 2018; Bussi et al., 2020).

The model is driven by daily time series of rainfall and
temperature data from, e.g., the United Kingdom Met Office,
weather radar, or satellite products, as in this paper. Such real-
time data has been used for many years for flood flow prediction
(Cole and Moore, 2009) but to the best of our knowledge,
application to water quality data forecasting has been limited to
the Bedford Ouse application (Whitehead et al., 1984). Here we
demonstrate applications of a real-time forecasting system to the
River Thames in South-East England and the River Colne in Eastern
England. These rivers supply water to London and Eastern England.
Both rivers have a very strong recreational and citizen science
following with many people enjoying the rivers for fishing,
swimming, boating, rowing, canoeing, etc. And there are very
active river trust and conservation groups monitoring and
helping to manage the rivers and their tributaries (e.g., Thames
21, Action for the River Kennet and Oxford Waters Interest Group).

Thus the main objective of this study is to demonstrate an online
real time river water quality forecasting system driven by process
based catchment-scale models and satellite data. Which displays
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reach and river location simulating flow and water quality data in a
web-based system and a mobile app.

The Thames and Essex Colne
catchments

The Thames

The Thames River is a key river in Southeast England with a
catchment area of 10,000 km2 (Figure 1) and a length of 218 km
from the Cricklade source in the Cotswold Hills of
Gloucestershire to Teddington in West London. The bedrock
in the region is mainly permeable Chalk which gives a base flow
index of approximately 0.72, although there are sub-catchments
of low permeability clays. The water quality is characterized by
high base cation concentrations due to the chalk aquifers and
groundwater flows. The mean annual flow (1999-2022) ranges
from 1.5 m3/s at Cricklade, to 33.5 m3/s at Days Weir, to 65.5 m3/
s at Teddington (Figure 1). Seasonally, high flows normally
occur in winter and early spring (January to April) and low
flows occur in summer and late autumn (July-November).
Average rainfall for the catchment is low at 711 mm/year.
The catchment is predominantly rural in the upper reaches
and becomes more urban further downstream. The low
average annual rainfall increases the vulnerability of the
Thames to drought. The Thames is a crucial water source for
London with the population of Greater London of
approximately 13 million. In addition, there have been large
changes in land use in the Thames catchment since the 1930s
(Whitehead et al., 2002) which have affected flows, water quality
and ecology. The potential future impacts of climate change are
serious as it is likely there will be a shortfall in water resources by
the 2030s (Whitehead et al., 2009).

River Colne (Essex)

The River Colne (Figure 2) rises near Steeple Bumpstead in
Essex and flows south east through Halstead and the Colne Valley to
Colchester, where it becomes tidal before joining the Blackwater
Estuary and ultimately the North Sea. The catchment headwaters are
predominantly rural, giving way to a more urban environment
downstream at Colchester. The catchment area is 298.9 km2 and
the river has a length of 54.9 km. The underlying geology is mainly
London Clay and some Upper Chalk, with superficial deposits of
semi-pervious Boulder Clay and some sands and gravels. The
catchment has a base flow index of 0.52 which reflects the semi
permeable geology. The Essex Colne receives relatively low rainfall
with an average of 572 mm per year, which generates a mean flow of
12.2 m3/s and a peak flow of 22.6 m3/s and, is thus, extremely
vulnerable to drought. There are a number of abstractions along
the river for irrigation and water is abstracted and pumped to
Ardleigh Reservoir for public drinking water supply.

Satellite data forecasting scheme:
Methodology

The overall strategy for the forecasting scheme synthesizes
satellite data collected across a catchment or watershed which is
then linked to a model chain to generate flow and water quality data
at key locations down a river system (Figures 3, 4). The daily time
series of flow and water quality data can then be displayed online or
via a mobile app, to show recent and past changes in water quality.
The system forecasts future flows and water quality, up to 3–5 days
ahead. This then provides a warning system for operational
managers who might want to switch supplies if a significant
pollution pulse is moving down the river system, or for other
river users who might also want to avoid a pollution pulse. The

FIGURE 1
Map of the River Thames showing sub-catchments (left) and location the United Kingdom (right).
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forecast system can take advantage of the natural inbuilt dynamics of
rivers, as all rivers have a delay transporting water down the system
and this residence time can be significant (e.g., 2–5 days on the
Thames). Also, rather like weather forecasts, a probability can be
assigned to any forecast, so that users can evaluate predictions in
terms of a familiar risk assessment.

The data transfer system for the real time forecasting system
uses satellite-derived estimates of rainfall and temperature that are
run through a model chain to generate hydrological time series
which are in turn used to force the INCA water quality model

(Figure 4). INCA then simulates flow and water quality for all
reaches down the river. Water quality is influenced by catchment
land use, effluent discharges and, hence population numbers, to
generate flows and water quality down the river system The model
generates a range of water quality including nutrients (N, P),
sediments, DO and BOD (Figures 5, 6). These outputs and
short term water quality forecasts are then displayed online in
real time or in a mobile app.

The process for obtaining and evaluating satellite data and
transforming it into forecasts of water quality is as follows:

FIGURE 2
Map of the River Colne (Essex) showing sub-catchments (left) and location in the United Kingdom (right).

FIGURE 3
A typical catchment with water flows and sources of pollution from industry, farming and wastewater. Satellites monitor land use, daily rainfall and
temperature with data being transferred via online cloud-based system. Rainfall, river flows and water quality are displayed on the system website and
mobile app.
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1. Precipitation is generated from the NASA GPM IMERG
v06 satellite constellation dataset (Huffman et al., 2019),
whilst temperature is derived from the multiple data-sourced
ERA-5 LAND dataset produced by the ECMWF (Muñoz
Sabater, 2019). Both are accessed and processed in JavaScript

using Google Earth Engine (Gorelick et al., 2017). Data sets
(Table 1) are collated across a catchment and time-averaged to
produce a daily result that is then exported to local databases;

2. At this point, some ground truthing is required to ensure the
satellite data reflects the actual measured rainfall and

FIGURE 4
Data flows in the real time forecasting system.

FIGURE 5
Simulated (blue) and observed (red) discharge, dissolved oxygen, soluble reactive phosphorus (SRP) and nitrate in the River Thames at Teddington.
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FIGURE 6
Simulated (blue) and observed (red) discharge, soluble reactive phosphorus (SRP), biochemical oxygen demand and nitrate in the River Colne (Essex)
at Colchester.

TABLE 1 Data Sources used in the study.

Data Source References

Daily precipitation and temperature United Kingdom Met Office Integrated Data Archive System
(MIDAS) for land surface station data

Ward, J. and Cowley, P., 1997. MIDAS—The United KingdomMet
Office Project to Replace its Climate Data Banks. In Climate and
Environmental Database Systems (pp. 73-85). Boston, MA:
Springer US.

Satellite Data Precipitation is generated from the GPM IMERG v06 satellite
dataset (NASA), temperature is derived from the ERA-5 LAND
dataset

NASA (Huffman et al., 2019), ECMWF temperature data (Muñoz
Sabater, 2019)

Land use United Kingdom Centre for Ecology and Hydrology Land
Cover Map

Smith, G., Beare, M., Boyd, M., Downs, T., Gregory, M., Morton,
D., Brown, N. and Thomson, A., 2007. United Kingdom land cover
map production through the generalisation of OS MasterMap®.
The Cartographic Journal, 443), pp.276-283

Copernicus Global Land Cover Map Buchhorn, M., Lesiv, M., Tsendbazar, N.E., Herold, M., Bertels, L.
and Smets, B., 2020. Copernicus global land cover
layers—collection 2. Remote Sensing, 126), p.1044

Population SEDAC-CIESIN Gridded Population of the World Centre for International Earth Science Information Network -
CIESIN - Columbia University. 2018. Population Estimation
Service, Version 3 (PES-v3). Palisades, NY: NASA Socio-economic
Data and Applications Centre (SEDAC). https://doi.org/10.7927/
H4DR2SK5

River flow United Kingdom National River Flow Archive

Water quality Environment Agency water quality data archive
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temperature. For example, the United Kingdom Met Office
provides daily estimate of precipitation and temperature data.
The satellite-derived estimates can be compared with these
instrumental data and evaluated statistically to estimate bias
and statistical distribution. If needed, the satellite-derived
estimates can then be transformed using a simple statistical
procedure to give a similar statistical distribution as the
instrumental observations and to eliminate any inherent bias;

3. The procedure utilised to map the statistical distribution of the
satellite-derived estimates to the observed data is based on an
empirical quantile mapping bias correction methodology
(Lafon et al., 2013). First, a quantile look-up table is built
by estimating a large number of quantiles from the historical
distributions of observed and satellite data (the same historical
period is used for both datasets), and then a correction
coefficient is computed as the ratio (for precipitation) or the
difference (for temperature) between the same quantile of
satellite data and observed data. Finally, a new time series of
bias-corrected data is generated by applying to each daily value
of the historical satellite time series its corresponding
correction coefficient from the quantile look-up table based
on its quantile;

4. The corrected data are then used in a water balance model
(PERSiST, Futter et al., 2014). PERSiST (the Precipitation,
Evapotranspiration and Runoff Simulator for Solute
Transport) is designed to work on a semi-distributed scale
for catchments. It can simulate terrestrial runoff and
streamflow across a range of spatial scales from headwaters
to large river basins. The model generates time series inputs for
the INCA model consisting of daily hydrologically effective
rainfall (HER), temperature, and soil moisture deficits;

5. The INCA model needs to be set up for the catchment, which
involves collating topographic and land use data and evaluating
observed flow and quality time series. Model calibration is
necessary to adequately represent catchment dynamics and
water quality responses;

6. Once the INCA models are set up, the hydrological time series
inputs from PERSiST can be input to the INCA water quality
model to simulate flow, nitrate-N, ammonium-N, phosphorus
(total and soluble), suspended sediments, DO, BOD and
phytoplankton biomass. INCA is run automatically in the
cloud and generates flow and water quality data at every
reach location down the river system;

7. Output displays of the data can be provided online in real time
as time series, profiles down the river, or statistical summaries
available online or in the mobile app;

8. Alerts can be sent out to interested parties providing notice of
an extreme event, e.g., pollution discharge, CSO discharges,
high pathogen events or a pulse of high nitrate water moving
down the river system;

9. The data transfer system for the real time forecasting system is
shown in Figure 4. The data transfer shows the satellite system
providing estimates of rainfall and temperatures and these are
fed through amodel to estimate hydrologically effective rainfall
(i.e., rainfall less evapotranspiration effects). These data are
then fed into INCA to simulate the river system at all reaches
down the river. INCA takes account of land use down the
catchment, effluent discharges and, hence population

numbers, to generate flows and water quality down the river
system. These river data are then displayed in real time on an
online web system or on a mobile phone app. The model
generates a range of water quality including nutrients (N, P),
sediments, DO and BOD. Figures 5, 6 show typical outputs for
the Thames and the Colne Rivers.

INCA model: Application to rivers
Thames and Essex Colne

INCA is a dynamic, semi-distributed, process-based model for
water quantity and quality. It has a hydrological sub-model to
simulate the transformation of rainfall into runoff and the
propagation of water through a river network. INCA requires
daily time series of precipitation, temperature, hydrologically
effective rainfall and soil moisture deficit as inputs which can be
estimated using the hydrological model, PERSiST (Futter et al.,
2014). PERSiST is based on a user-specified number of linear
reservoirs and reproduces relevant hydrological processes, such as
snowmelt, direct runoff generation, soil storage, aquifer storage, and
flows through the stream network.

Two members of the INCA family of water quality models are
used in the applications presented here. INCA-N simulates the
catchment N cycle, from the main inputs (atmospheric
deposition, fertilisers, wastewater), soil stores and processes,
aquatic transformations and eventual flux through the outlet of a
river network or catchment. Both nitrate and ammonium are
simulated. Modelled terrestrial processes include denitrification,
nitrification, immobilisation, mineralisation and leaching towards
the river system and aquifers. Instream processes such as
nitrification and denitrification are also incorporated into the
model (Whitehead et al., 1998a; Whitehead et al., 1998b; Wade
A. J. et al., 2002). INCA-P simulates daily river flow, total and soluble
P, suspended sediments (potentially separated by size), DO and
BOD, and phytoplankton growth. INCA-P simulates the P cycle
from the main P sources, both diffuse (fertilisers) and point
(wastewater) and the main processes involving phosphorus, such
as sediment sorption/desorption, sedimentation and resuspension,
bedload buildup, the DO/BOD dynamic interactions, and
phytoplankton growth and death equations (Crossman et al., 2021).

Application to the Thames and the
Essex Colne

The INCA N and P versions of the models have been applied to
the Rivers Thames and Essex Colne. In order to model the Thames,
Jin et al. (2012) and Crossman et al. (2021) divided the river system
into 22 reaches and sub-catchments from the source at Cricklade to
the lowest weir on the freshwater downstream boundary at
Teddington (Figure 1). Reach boundaries were selected at
confluences, flow gauging stations and water quality monitoring
stations. The sub-catchment boundaries were derived using a Digital
Terrain Model (DTM). Daily time series of hydrologically effective
rainfall (HER) and soil moisture deficit (SMD) were derived using
the Meteorological Office Rainfall and Temperature data (Table 1)
and the use of the PERSiST model to estimate hydrologically
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effective rainfall and soil moisture deficit (Futter et al., 2014). The
effects of land surface and topography on flow are simulated through
a semi-distributed approach incorporating the dynamics and
characteristics of each sub-catchment. The residence times and
flow rates in the soil and groundwater zones in the model are
also essential to simulate flows.

For model calibration and validation, a prior general sensitivity
analysis of the INCA model of the River Thames (Spear and
Hornberger, 1980; Whitehead et al., 2015) was utilised initially to
identify the key model parameters. The following parameters were
identified as the most influential. In the hydrological sub model,
rainfall excess proportion (the proportion of excess rain that is
converted into direct runoff), soil water and ground water
residence times (i.e., flow velocity for sub-superficial flow and base
flow), maximum infiltration rate, flow-velocity coefficient (the
coefficient of a power law used to calculate channel flow velocity
from discharge), flow threshold for saturation excess direct runoff.
Sensitive parameters for P simulations include the soil matrix sorption
coefficient (which adjusts the sorption capacity of the soils), water
column sorption coefficient (which adjusts the sorption capacity of
the water column), and the streambed sorption coefficient (which
adjusts the sorption capacity of the be sediment).

The feasible ranges of variation of these influential model
parameters, informed by previous studies, were sampled
randomly, and 10,000 different parameter sets were generated
using a Monte Carlo sampling strategy based on the Metropolis
Hastings algorithm. In general, the models fit well to the observed
flow, N and P at both rivers (Figures 5, 6). The model statistical
performance can be assessed using the observed values of flow and
water quality at seven flow gauging stations along the Thames, using
daily data for flow but fortnightly data for water quality. Kling Gupta
Efficiency scores were used to assess the model performance,
showing very good scores for flow and water quality, indicating
the model is achieving a very good fit (Table 2; Figures 5, 6).

Real-Time forecasting Capability

Real time forecasting of water quality has a long history (e.g.,
Whitehead et al., 1984) but until now it has been based on supplying
upstream data from automatic monitors on upstream river reaches.
This is open to further data and reliability issues as the early
automatic water quality monitors were liable to routine
breakdown and maintenance issues. Recent improvements in
technology have significantly improved this situation (Bowes
et al., 2016). However, this approach cannot predict future water
quality based on from forecasts of catchment rainfall and
temperature. Thus, it cannot take account of storm events. In
this study we are using the satellite data in real-time to give an
early indication of rainfall events and then feeding this data through
the models to give up-to-date forecasts along the rivers with
forecasts up to 3–5 days ahead. This then gives river control
officers and water supply managers a means of anticipating
future changes to facilitate timely management decision making.

A key question is how similar the satellite-derived estimates
are to instrumental observations. In order to assess this, a set of
simulations were made using satellite-derived rainfall and
temperature and United Kingdom Met Office instrumental
data. By comparing the flow and water quality using the two
data sets, an idea of their relative accuracy can be obtained
(Figure 7). The NSE statistics comparing water quality
predictions derived from satellite versus instrumental
(United Kingdom Met Office) data prediction are very strong
with Nash Sutcliffe values for the Thames as 0.98, 0.99 and 0.87 for
DO, P and flow respectively. This suggests that satellite-derived
data are an excellent source of information for predicting flow and
water quality in river systems.

Biosensor technology to forecast river
water toxicity

In terms of the early warning of pollution issues, one useful
addition to the standard set of water quality attributes is that of
toxicity. Poor water quality can have significant impacts on health,
whether from organic chemical pollution, pathogens in the water,
metals or cyanobacteria blooms. These toxic effects combine to
attack biological systems such as stream animals and invertebrates,
fish and people. There is no overall measure of this biological toxicity
at present, but one new option is available utilising molecular
biosensors (Rampley et al., 2017; Rampley et al., 2019).

Biosensors based on environmental bacteria can detect changes
in water quality such as low oxygen concentration, toxicity from
pollution, cyanobacteria and metals (see www.omb.co.uk). By
genetically engineering the soil bacterium Acinetobacter baylyi, to
constitutively express the gene cassette LUXCDABE, it releases
measurable quantities of light, i.e., it luminesces (Figure 8).
When the bacteria are exposed to clean water (i.e., it is
unperturbed), the luminescence it releases is bright. However, if
it is exposed to polluted water containing agents causing toxicity (e.
g., metals, pesticides, herbicides, other pollutants, etc.) the
luminescence decreases. Extremely toxic compounds can kill the
cells, thereby reducing the luminescence to zero. This varying
decrease in luminescence is a direct response to environmental

TABLE 2 Kling gupta efficiency (KGE) statistics for the rivers Thames and
Colne.

River Thames

Reach Stream flow Phosphorus (SRP)

4 0.75 0.60

6 0.61

9 0.76 0.50

10 0.77 0.61

13 0.85 0.60

17 0.87

20 0.72

22 0.62

River CoIne

Reach Stream Flow Phosphorus (SRP)

2 0.55 0.43

3 0.66
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stressors and can be used to indicate the presence and magnitude of
contamination or pollution (Figure 8).

This biosensor technology gives a unique biological perspective
on water quality; with enhanced speed, reduced cost and ethical
benefits over traditional toxicity model organisms, e.g.,
macroinvertebrate and fish. By comparing the dose-dependent
relationships between the biosensors and known pollutants, they
can offer significant potential for monitoring water quality in
freshwater rivers and lakes, with results achieved within 30 min.

Biosensors can detect environmental toxicity in real time, and
therefore could be used as a valuable tool for understanding the
effects of water quality changes on aquatic ecosystem health. We are
currently examining the relationships between biosensor
luminescence and published toxicity in macroinvertebrates and
other aquatic organisms. For example, previous work

demonstrated a significant correlation between Mugilogobius.
Chulae (zebrafish) toxicity results and A. baylyi Tox2 response to
heavy metals (Hg2+, Zn2+, Cu2+, and Cd2+) in seawater (Cui et al.,
2018). This demonstrates the potential for bacterial-based
biosensors to act as proxy measures for assessing ecosystem health.

From an analysis of water quality and toxicity data from the
Thames and Colne, we have derived a relationship between toxicity
and water quality, with a focus on N, P, temperature and
cyanobacteria as follows:

Toxicity � 33.46 − 0.422Temperature − 0.411Nitrate

− 0.854 Phosphate – 0.00069Cyano

This equation gives an R2 of 0.53 and can be used it to simulate
toxicity in rivers (Figure 9). Toxicity is higher during winter as

FIGURE 7
Simulations of discharge, biochemical oxygen demand and dissolved oxygen in the River Thames Teddington using Met Office (blue) and satellite
derived (green) forcing data.

FIGURE 8
Luminescence response from the bacterial biosensors reflecting toxicity.
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temperatures are lower, organic pollution levels are higher, DO is
lower and there is increased flushing of pollutants into the river from
agriculture and urban sources, due to wetter conditions and
higher rainfall.

Overall, integrating the biosensor data with real time water
quality modelling and forecasting can play a critical role in
monitoring and protecting the water quality of freshwater rivers
and lakes by providing timely information on environmental stress
and contamination.

Delivery of an online real time
forecasting system

Themain objective of this project has been to create a simulation
and forecasting system driven by satellite data and the use of
process-based knowledge of catchment dynamic behaviour for
flow and water quality prediction. The aim has been to create
historical simulations of flow and water quality, as well as a three
to 5 day ahead forecast at any location down the river system, and to
provide a tool that scientists, managers or the general public might
use. An App has been created to deliver information to users and
some illustrations of model simulations and forecasts are given in
Figures 10–13 for the Thames and the Colne Rivers. Firstly, a
dashboard shows the river set up map with options for plotting
flow, nitrate, ammonia, phosphorus, DO and BOD (Figure 10).
Then Figure 11 shows a time series plot of rainfall, flow and nitrate
for the Colne over the past 10 days and a forecast ahead of 3 days.
Note that the nitrate concentrations increase significantly as the
flows increase due to the flushing out of nitrate from agricultural
soils. These high nitrate levels are of concern to water authorities
who need to supply reservoirs from the river water but are
significantly constrained by the need to keep nitrate pollution to
a minimum in the reservoirs. Figure 12 shows the River Thames flow
and phosphorus data from January 2023 to September 2023, and
illustrates variable flow conditions with a flooding event in early
January providing dilution of incoming phosphorus from effluent
discharges and agricultural runoff. After the storm event the
phosphorus levels increase significantly over the summer as flows
fall and there is less dilution of the polluting discharges from

effluents and field runoff. Finally Figure 13 shows the profile of
flow and nitrogen down the Colne, illustrating the increased runoff
and hence flow down the system and the build-up of nitrate along
the river system, illustrating the flushing out of nutrients from the
source to the sea. Figure 14 is particularly interesting as it shows the
CSO flows from a sewage treatment works discharge on two
occasions. An App has been created (www.aquascope.com) to
deliver information to users.

Discussion and conclusion

The system presented here integrates data from multiple
sources. It enables satellite data, instrumental meteorological
measurements, in-situ flow and water quality observations and
multiple models to work together in real-time to generate
historical patterns of behaviour and water quality forecasts for
river systems. Model source code has been seamlessly
incorporated into a cloud platform infrastructure. The models
receive daily inputs of current and forecasted precipitation and
temperature data that drive real-time, daily water quality forecasts.
All data, including historical records and real-time observations, are
stored in a time series database and automated workflows
continually check observations against forecasts. The observed
data acts as ground truth and helps fine-tune the model’s
parameters and predictions. This dynamic calibration process
ensures that the system adapts to changing environmental
conditions and is continuously improving. The entire workflow
operates within a Software as a Service (SaaS) platform, making it
accessible to a wide range of users and organizations. Users can
access the daily water quality forecasts through an intuitive and user-
friendly interface, allowing them to set up early warning alerts and
conduct scenario modelling.

Data management

The research presented here has utilised commercial cloud
services, who provide the best infrastructure to operate state of the
art solutions without the concern of investing in capital equipment

FIGURE 9
Modelled toxicity changes in the river Thames at Oxford (2010–2019).
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nor large teams of domain specialists. By using infrastructure as a
service (IaaS), the hardware running the system presented here is
maintained by the cloud service provider, and any infrastructure

failures are dealt with automatically. Traditional software solutions
run on computers scaled to handle the biggest imaginedworkload and
can often be very wasteful of resources. APIs from several data brokers

FIGURE 10
Dashboard for the River Colne (Essex) showing catchment, river system and flow and water quality elements to select for display.

FIGURE 11
The App display showing input rainfall (bars), simulated discharge (grey) and nitrate concentrations (NO3

−) and three day forecast conditions (pink)
for the River Colne (Essex) at Colchester.

FIGURE 12
The App display showing input rainfall (bars), simulated discharge (grey) and phosphate concentrations (PO4

3−) and three day forecast conditions
(pink) for the River Thames at Teddington. Notice the buildup of phosphate under low flow conditions.
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are used to acquire inputs to the system presented here. These inputs
include raw satellite imagery, processed data such as weather reports
and forecasts on a planetary scale, as well as data collected on a hyper-
local scale such as water quality monitors and citizen science
observations. Ingested data is stored and fed into the different
models (INCA P, INCA N, PERSiST, etc.) before the output is
delivered to the mobile app. Once the data is acquired, the
application processes the data through the several different
models–INCA P, INCA N, PERSiST, etc.–and this rich set of data
is then stored and made available to the application for reporting and
visualisation.

Potential users and uses

There are many potential users for this real time forecasting
system and service including:

1. Regulatory agencies (e.g., the United Kingdom Environment
Agency) can make use of the system and App to help validate

environment agency sampling at locations of interest that are
not formal sample points for compliance, and for tracking
pollution incidents that occur along river systems. For
example, a release of a toxic load into the river could pose a
real threat to fish and invertebrates or threaten public
water supplies.

2. Water companies, who need to understand baseline river
conditions near there CSO discharge points and potential
impact of discharges due to spill events.

3. Water utilities needing insight to support work in their capital
investment programmes, for upgrades of sewage works and for
baseline river conditions pre and post project. Post project
monitoring can help validate the benefit of investments.

4. Citizen scientists, river trusts and communities who want to
understand water quality in the areas where they enjoy leisure
activities.

5. Citizen scientists and academics who want to assess patterns of
water quality.

6. Water utilities could use forecasts as the first element of the
management of bankside reservoirs to provide early warning of

FIGURE 13
Spatial patterns of flow (grey) and nitrate (NO3

−, red) down the River Colne (Essex) from source (reach 1) to sea (reach 4). Note the increasing trends in
flow and nitrate concentrations when moving down the river.

FIGURE 14
Time series of rainfall (bars), combined sewer overflow (CSO) events (brown bars) with observed (blue dots) and simulated phosphate
concentrations (PO4

3−) for the River Thames at Oxford.
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changes in nitrogen and phosphorus levels that contribute to
eutrophication with consequential problems for following
treatment processes.

7. With climate change being of increasing concern, the models
can be used to assess future climate change impacts on flow and
water quality, (Whitehead et al., 2009). For example, with
increasingly warmer conditions, nuisance algal blooms, e.g.,
cyanobacteria, will occur more frequently and hence a
prediction or forecast of these on the river system would be
very valuable. Similarly, an early warning of a parasite
cryptosporidium washed into rivers from grazing cattle
during high flow events.

The societal impact of providing forecast data that is easily and
openly accessible will change how we see and value our rivers.
Weather forecasts replaced the old ‘red sky at night’ tools, and we
now frequently consult ever improving forecasts to plan our lives.
The same should happen with water quality, to enable people to
make better decisions based on better data for our own health and
the health of rivers.
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