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The evaluation of geological suitability for urban underground space (UUS)
development is an indispensable prerequisite for its optimal utilization. As the
actual carrier of underground facilities, the evaluation of rock mass quality plays a
crucial role in assessing geological suitability. However, it is notable that the
evaluation of rock mass quality has regrettably remained somewhat marginalized
within the broader framework of the geological suitability assessment in recent
years. The selection of pertinent indicators for the evaluation of rock mass quality
inherently presents an appreciable degree of subjectivity. Predominantly
subjective evaluation methods continue to dominate the field, while the
application of objective algorithms, such as unsupervised clustering, remains
in its nascent stage. Furthermore, there is a lack of comprehensive investigations
into distinct combinations of attributes. This limitation confines the broader
applicability of the evaluation outcomes in the context of urban underground
space. Within this study, we meticulously amassed rock core test data from over
40 boreholes of engineering geological significance within the urban planning
ambit of Guang’An City. Utilizing the K-means unsupervised clustering algorithm
and the Principal Component Analysis (PCA) algorithm. We successfully
conducted an unsupervised clustering procedure with nine distinct physical
and mechanical attributes. This yielded an aggregation into five discernible
clusters. Building upon the derived clustering outcomes, a stratification of
rock mass quality was effectuated into three distinct tiers: Level 1
(characterized by pure sandstone), Level 2 (primarily dominated by sandstone),
and Level 3 (denoting fair conditions predominantly influenced by mudstone).
This structured stratification facilitates a relatively objective and comprehensive
evaluation of rock mass quality within the context of the red-bed hilly terrain. In
the course of this analytical trajectory, we conducted a dissection of the
clustering efficacy. For strongly correlated attributes, we propose a
preliminary dimensionality reduction procedure prior to the clustering
endeavor. Moreover, we recommend intervals of 10 m for the stratified
evaluation in red bed hilly urban terrains.
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1 Introduction

Since the commencement of the 21st century, concomitant with
the swift proliferation of the Chinese economy, a substantial surge in
population influx has gravitated toward urban locales, thereby
engendering an accentuated escalation in the urbanization
quotient. In order to address the issues arising from the
population-density imbalance, alleviate the problems associated
with large cities, and achieve sustainable future development, the
concept of “subterranean development” has emerged as an
important direction and trend in the development of large to
mega-cities worldwide (Pan and Jin, 2006; Peng and Peng, 2012;
Qu et al., 2015; Qian, 2019; Lapenna and Chambers, 2020; Zhang
et al., 2021b; Ge et al., 2021).

Urban Underground Space (UUS) represents an idiosyncratic
spatial reservoir subject to profound transformation throughout
its developmental trajectory. In contrast to surface domains, the
ramifications of UUS advancement, epitomized by entities like
subway systems, inherently harbor precise and exclusive
functionalities. Once deployed, such infrastructures stand
impervious to facile dismantlement or modification. Therefore,
prior to the development and utilization of UUS, a thorough
assessment of the geological suitability of the underground
conditions is essential (Andriamamonjisoa and Hubert, 2019;
Hu et al., 2019; Zhu et al., 2020; Tao et al., 2021). Furthermore,
the underground geological conditions, represented by the
subsurface rock and soil formations, play a crucial role as the
actual carriers of underground facilities. They have a significant
influence on the development of Urban Underground Space
(UUS) (Peng et al., 2019; Zhu et al., 2021; Tang et al., 2022).
Hence, the appraisal of rock mass quality assumes an eminent
stance within the overarching framework of a comprehensive
UUS evaluative paradigm.

The evaluation of rock mass quality, akin to the assessment of
Urban Underground Space (UUS), encompasses two primary
dimensions: the selection of evaluation attributes/indicators and
the discernment of suitable mathematical models. Previous studies
have shown that rock mass quality is primarily influenced by
lithological composition, physical properties, and mechanical
attributes (El et al., 2010; Zhou et al., 2019). Therefore, in the
evaluation process, it is common to consider attributes such as
bearing capacity, lithology, or selected mechanical experimental
properties as evaluation criteria (Zhang et al., 2020; Wu et al.,
2021; Tong et al., 2022; Wang et al., 2022; Li et al., 2023; Zhao
et al., 2023). Nonetheless, it is noteworthy that existing scholarship
alludes to the absence of a standardized corpus of criteria governing
attribute selection, and the imperative of the chosen attributes has
not been comprehensively interrogated within this context (Tan
et al., 2021). Hence, it is imperative to investigate the
interrelationships among evaluation indicators to choose an
appropriate type and quantity of indicators for the
evaluation endeavors.

In the evaluation of rock and soil quality, an array of semi-
quantitative mathematical models frequently finds application,
encompassing methodologies such as the Analytic Hierarchy
Process (AHP) and the Most Unfavorable Grade Method
(MUGM) (Xiong et al., 2006; Wang, 2013; Yuan, 2020; Li et al.,
2021; Tian et al., 2021), Fuzzy Comprehensive Evaluation (Zhou B.

et al., 2022; Zhao et al., 2022) and combination of the above method
(Wu, 2021; Tong et al., 2022). Although these methodologies
incorporate expert knowledge, their outcomes are conspicuously
shaped by subjective elements, consequently engendering challenges
in terms of result reproducibility. On the contrary, unsupervised
clustering algorithms, characterized by a diminished susceptibility to
subjective influences, have the capacity to yield relatively objective
evaluation outcomes.Wang et al. (2022) and Li (2020) employ Fuzzy
C-mean clustering algorithm to evaluate geological suitability; Du
et al. (2022) adopted spectral clustering in Jiaozhou Bay stability
evaluation. These studies have pioneered the application of
clustering methods in the suitability assessment of subterranean
spaces. However, extant scholarship reveals a paucity of research
delving into comparative analyses of clustering outcomes across
distinct attributes. Moreover, the formulation of definitive
guidelines for the curation of evaluation criteria remains an
unexplored terrain within this domain.

This study incorporates classical unsupervised learning
(K-means) and dimensionality reduction algorithms (PCA)
into the assessment of rock-soil mass quality in Guang’an
City. Through clustering physical and mechanical attributes
from over 40 boreholes of engineering geological, it evaluates
the effectiveness of various attribute combinations. Additionally,
a detailed analysis of the clustering results is performed.
Providing a foundation for the future utilization of
underground spaces in the red-bed hilly areas and offering
insights into the transition from empirical and expert-driven
suitability assessments to data-driven methodologies. In a
broader spectrum, this inquiry furnishes illuminating insights
germane to the structuring of a comprehensive evaluation
indicator framework, extending its relevance to the expanse of
diverse urban subterranean locales.

2 Geological setting

The study area is situated at the confluence of Chongqing
municipality and Sichuan province in the southwestern region of
China (Figure 1) (Zhang et al., 2021a). It serves as a pioneering
demonstration zone for the advancement of China’s western regions
and the establishment of the Chengdu-Chongqing economic sphere.
A further facet of its distinctiveness lies in its characteristic as a
prolific milieu characterized by the pervasive juxtaposition of red
sandstone-mudstone amalgams. The study area encapsulates a
dyadic delineation of natural terrains, delineated as the Sichuan
red bed hilly belt and the lower elevation sector of the Huaying
Mountain terrain. It is noteworthy that these domains are situated
within the precincts of the Upper Yangtze platform, concurrently
aligning with the Central Sichuan depression, as delineated in the
scholarly oeuvre authored by Wei et al. (2017).

The region exhibits a prevalence of tectonically inactive
fractures, with seismic activity of relatively low magnitude
primarily observed in the eastern sector (Zhou et al., 2022; Zhou
et al., 2023). Within Guang’An, a total of eight distinct geological
strata can be identified, namely the Cambrian, Ordovician, Silurian,
Carboniferous, Permian, Triassic, Jurassic, and Quaternary. The
initial six strata are predominantly present in the mountainous
terrain, while the remaining exposed strata in the red soil hilly area
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exhibit gentle dip angles ranging from 1 to 5°. The Jurassic
Shaximiao Formation (J2s), which is extensively distributed with
a thickness of 400–500 m, displays varying degrees of weathering,

ranging from moderate to severe (Zhou et al., 2022). Moreover,
approximately 80% of the entire outcrop consists of interlayered and
lenticular sand and mudstone (Figure 2).

FIGURE 1
Location of study area and distribution of wells.

FIGURE 2
Simplify geological map of study area [modified after (Zhou et al., 2022)].

Frontiers in Environmental Science frontiersin.org03

Zhou et al. 10.3389/fenvs.2024.1335574

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1335574


3 Methodology

3.1 Theory review of k-means

K-means, a prominent exemplar within the spectrum of
unsupervised machine learning algorithms, traces its origins to
an incipient proposition by Stuart (1982), wherein its
conceptualization was envisioned as a mechanism to effectuate
signal quantization within the realm of telecommunications. It is
of pertinence to highlight that its subsequent rediscovery and
consequential propagation within the scientific milieu can be
attributed to E. W. Forgy, who independently rekindled the
algorithm’s conceptual essence in the year 1965.

The fundamental tenet underpinning the K-means algorithm
entails the partitioning of a bestowed dataset into a set of K clusters,
with K signifying a predetermined numeric value. This partitioning is
actualized through the imperative of minimizing the cumulative sum of
squared distances, spanning the interrelation between individual data
points and their corresponding cluster centroids. The algorithm
embarks upon an iterative expedition, which commences with the
assignment of each data point to its nearest centroid, subsequently
culminating in the recalibration of these centroids, predicated on the
arithmetic mean encapsulated within the assortment of data points
ascribed to each specific centroid. This iterative voyage persists until
such time that the centroids evince nominal displacement, indicative of
a state of relative stasis, or alternately, upon the exhaustion of a
predetermined threshold pertaining to the maximum number of
iterative cycles. Concretely, the algorithm adheres to the following
sequential series of steps:

1. Initially, assign the data center vector with an appropriate value
based on the data characteristics (assuming an initial setting of
K = 3, representing three distinct types) (Eq. 1). In the case of
non-numeric data within the dataset, utilize the one-hot
encoding technique to initialize the category indicator
variable R, ensuring that all data instances are categorized
as type 1 (Eq. 2).
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Where K is the number of quasi-clustering clusters of the
dataset, uk is the center vector of the cluster, and 0 in uk0
indicates the first dimension (attribute).

2. Update data cluster type R in dataset according to the nearest
square Euclidean distance between uk and data (Eqs 3, 4).

xn − uk‖ ‖2 � xn0 − uk0( )2 + xn1 − uk1( )2 + . . . + xn,m − uk,m( )2 (3)
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.

0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Where xn are dataset matrix,m is the dimensionality of the data
(the number of datasets attributes).

3. Update uk according to R which makes the center of all data
points for each cluster is the new uk (Eq. 5).

uk � 1
Nk

∑
clusterk

xn (5)

4. Repeat steps 2 and 3 until the values of R and uk no
longer change.

5. Calculate the loss function J for evaluating the clustering results
using the provided loss measure illustrated in Figure 3 (Eq. 6).
This involves computing the sum of the squared Euclidean
distances between each data point and its corresponding
cluster center uk.

J�∑
cluster0

xn −u0‖ ‖2 +∑
cluster1

xn −u1‖ ‖2 +∑
cluster2

xn −u2‖ ‖2 (6)

3.2 Description of cluster dataset

The dataset emanates from engineering geological drilling
endeavors undertaken within the chronological span of
2019–2021, encapsulated within the tapestry of the urban
planning expanse. A cumulative tally of 29 boreholes stands
completed, although their distribution within the study area is
characterized by an asymmetric dispersion, prominently
accentuated by a concentration bias towards the western terrain,
with a meager representation on the eastern facet. The altitudinal
and profundity metrics span the spectrum from 409 to 236 m and
120.4 to 50 m, correspondingly. The boreholes were meticulously
executed in a vertical trajectory, thereby accommodating
comprehensive coring along the entire well section. Notably, the
coring extents oscillate within the bounds of 0.3–0.7 m, as delineated
in Figure 4. Every distinct section within this vertical continuum

FIGURE 3
Demonstration of loss function (J) calculation results (also
known as elbow chart).
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manifests as a distinctive datum within the comprehensive dataset.
Predicated upon the coring findings in tandem with the geological
contextual milieu, the lithological spectrum was systematically
categorized into five distinct strata, namely clay, sandstone,
mudstone, shaly sandstone, and sandy mudstone. The suite of
mechanical experiments concomitant with the coring processes
were seamlessly orchestrated by two duly accredited entities,
situated within Sichuan and Chongqing correspondingly.
Notably, the ambit of mechanical experimentation encompassed
tensile strength and shear strength assessments, undertook by the
southern construction engineering testing corporation in
Chongqing, while the remaining array of attribute experiments
were adroitly executed under the aegis of the geological
engineering exploration institute corporation in Sichuan.
Pertinently, in instances where particular attribute assessments
were repeated on a single coring specimen, an average value was
judiciously computed to bestow attribute modeling consistency. The
comprehensive dataset amalgamates an aggregate of 442 data points,
each imbued with an assortment of 9 distinct attributes. The
summative statistical portrait of this clustered dataset is
comprehensively documented within Table 1.

3.3 K-means cluster

3.3.1 Dataset scaling
As delineated in Tables 1, 2, the nine attributes exhibit conspicuous

disparities in scales or magnitudes. This discrepancy can potentially
hinder the performance ofmachine learning algorithms. To address this
issue, two distinct feature scaling methodologies emerge as viable
remedies: min-max scaling and standard scaling. Min-max scaling
transforms the values to a range of 0–1 in the scaled dataset. In
contrast, standard scaling does not rescale the values to a specific
range like min-max scaling but is less susceptible to the influence of
outliers or anomalous data. This characteristic is particularly
advantageous when working with large datasets. Therefore, for this
study, we have selected the standard scaling method to rescale the
datasets (Formula 7).

X scale � X- �X( ) /var (7)

Where X_scale signifies the scaled dataset, X corresponds to the
original dataset, �X represents the mean value, and “var” denotes
the variance.

3.3.2 Methods for determining the optimal value
of K

The K-means algorithmmandates the a priori definition of K for
clustering. This value bears substantial significance, exerting
considerable impact on the resultant clusters. The discernment of
an apt K value assumes paramount importance, given its pivotal role
in shaping the ensuing cluster architecture. A misjudged selection of
K can culminate in suboptimal clustering outcomes, thereby failing
to effectively discern the sought-after cluster delineation.
Consequently, the judicious determination of the optimal K value
emerges as a pivotal factor in the pursuit of attaining robust
clustering results.

For datasets encompassing merely two or three attributes, the
determination of the suitable K value, or rather the cluster count, can
be gleaned through discerning visual insights from intuitive plots.
However, when the attribute count surpasses four, a mathematical
methodology assumes precedence in the quest for selecting the
appropriate K value. In this context, the inertia (sum squared
errors, SSE, formula 8) and silhouette coefficient stand as
prominent mathematical instruments employed in the quest to
ascertain the optimal K. The inertia, meticulously formulated by
Eq. (8), emerges as a statistical metric affording quantification to the
extent of variability or dispersion inherently housed within a dataset.
It embodies the sum of squared discrepancies between each data
point and the mean manifestation of the dataset. In the evaluation of
clustering efficacy, should the ascertained K value fall short of the
optimal K, an augmentation of K will be mirrored by a pronounced
elevation in inter-class aggregation, thereby engendering a
commensurate diminution in the inertia value. Once the K value
aligns with the optimal quotient, the inertia value stabilizes,
exhibiting insubstantial oscillation upon further K escalation. It
follows, therefore, that the trajectory of the inertia value plot
typically conforms to an “elbow” configuration, and the value at
the juncture of this bend is conventionally regarded as the optimal K.

SSE � ∑ X − �X( )2 (8)

FIGURE 4
Coring samples in the study area (A): upper section, (B) bottom section).
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TABLE 1 Statistics summary of the cluster dataset.

Statistics
project

Density
(g/cm3)

Water
content (%)

Porosity
(%)

Compressive
strength (MPa)

Tensile
strength
(MPa)

Deformation
modulus (MPa)

Elastic
modulus
(MPa)

Poisson ratio
(None)

Soften
coefficient
(None)

Count 442 442 442 442 442 442 442 442 442

mean 2.54 3.61 9.64 16.18 1.37 3103.49 3239.49 0.31 0.37

STD 0.05 0.75 1.67 14.21 0.84 1865.06 1926.69 0.06 0.16

Min 2.44 1.36 4.13 1.03 0.20 420.66 469.53 0.17 0.12

25% 2.50 3.40 9.19 4.93 0.61 1342.14 1403.01 0.27 0.23

50% 2.53 3.83 10.14 11.26 1.22 2664.58 2808.19 0.31 0.33

75% 2.59 4.10 10.75 23.68 1.99 4591.23 4787.69 0.37 0.48

Max 2.65 5.00 12.52 64.13 3.34 7663.39 7878.93 0.42 0.74

TABLE 2 The average sector of each cluster.

Cluster Average
depth (m)

Density
(g/cm3)

Water
content (%)

Por
(%)

CS
(MPa)

Tensile
strength (MPa)

Deformation
modulus (MPa)

Elastic
modulus (MPa)

Poisson ratio
(None)

Soften
coefficient
(None)

0 33.60 2.51 3.82 10.16 18.21 1.79 4082.49 4276.91 0.28 0.41

1 21.25 2.48 4.26 11.08 5.87 0.72 1612.26 1704.99 0.35 0.25

4 41.91 2.51 3.75 9.72 38.35 2.60 5838.12 6052.65 0.23 0.61

2 45.72 2.59 3.65 9.84 5.42 0.61 1443.36 1511.18 0.36 0.24

3 33.71 2.62 1.89 5.84 26.43 1.85 4170.14 4336.31 0.27 0.49

Fro
n
tie

rs
in

E
n
viro

n
m
e
n
tal

Scie
n
ce

fro
n
tie

rsin
.o
rg

0
6

Z
h
o
u
e
t
al.

10
.3
3
8
9
/fe

n
vs.2

0
2
4
.13

3
5
5
74

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1335574


However, it should be noted that the inertia method entails a
rather coarse estimation for determining the optimal K value. An
alternative avenue encompasses the computation of the
silhouette coefficient (SC, Eq. 9) across diverse K values. The
silhouette coefficient delineates the degree of similitude between
a data object and its affiliated cluster as juxtaposed against
alternative clusters. Its quantitative manifestation embodies
the amalgamation of clustering compactness and inter-cluster
separation. This metric, residing within a range spanning from
+1 to −1, holds profound explanatory power. A SC value of
+1 attests to the coherence of a data point with its corresponding
cluster while also highlighting its incongruity with adjacent
clusters. In contradistinction, a SC value of 0 bespeaks the
proximate alignment of data points with the inter-cluster
boundaries. Conversely, a SC value of −1 conveys the
misclassification of a data point within an erroneous
cluster context.

s i( ) � b i( )-a i( )( )/max a i( ), b i( )( ) (9)
Where s(i) represents the value of the i-th data point, a(i) denotes the
average dissimilarity value between i and all data points within its
own cluster, b(i) signifies the average dissimilarity value between i
and all data points within the nearest neighboring cluster, and max
(a(i), b(i)) conveys the pinnacle of dissimilarity observed between i
and any other data point.

To ensure the judicious choice of a clustering outcome, we will
employ both the inertia and silhouette coefficient methods. This
dual approach seeks to procure a reinforced validation of the optimal
K value, thus augmenting the thoroughness of our clustering
analysis while elevating its overall reliability.

The dataset underwent clustering using the Python
programming language, facilitated by the Scikit-Learn library
within the Spyder coding platform. The initialization of dataset
centroids was accomplished through the k-means++ algorithm,
introduced by David and Sergei (2007). The clustering procedure
retained the default parameter settings for all other aspects of
the process.

3.4 Principle component analysis (PCA)

Principal Component Analysis (PCA) stands as a widely
embraced statistical technique catering to dimensionality
reduction and data exploration purposes. It functions as a means
to transmute high-dimensional datasets into lower-dimensional
renditions, all the while preserving fundamental information.
PCA achieves this through the identification of principal
components, which are linear amalgamations of the original
variables. The fundamental underpinning of PCA lies in
discerning the directions, known as principal components, along
which data showcases its most pronounced variability. The
customary steps associated with PCA encompass the following:
①Computation of the covariance matrix; ②Computation of
eigenvectors and eigenvalues; ③Selection of principal
components; ④Data projection. For a more comprehensive
exposition, the exhaustive inquiry undertaken by Shlens (2014) is
recommended as a reference.

4 Results and discussion

4.1 Feature selection

Considering the intrinsic characteristics of the experimental
data attributes, a bifurcation into two principal categories is
discerned: physical properties and mechanical properties. The
former encapsulates density, porosity, and water content, while
the latter encompasses compressive strength, tensile strength,
deformation modulus, elastic modulus, Poisson’s ratio, and
softening coefficient. The selection of features for subsequent
clustering endeavors is fundamentally anchored in the
computation of correlation coefficients between these distinctive
attributes (Figures 5, 6).

On the whole, individual mechanical and physical properties
manifest a planar distribution concerning depth. The correlation
coefficient values span from −0.37 to −0.12 and from 0.2 to 0.29,
indicating a lack of pronounced correlation yet revealing distinct
zonations. Among these attributes, density can be dichotomized into
two classes based on a threshold of 2.55 g/cm3 (refer to Figure 5).
The left side is predominantly characterized by sandstone and shaly
sandstone, while the right side is predominantly occupied by
mudstone and sandy mudstone. This suggests that despite their
lithological similarities, these formations exhibit marked
divergences in their physical attributes. The categorization of
water content, porosity, and mechanical parameters proves to be
relatively intricate. Noteworthy is the significant differentiation
observed within the mudstone category, particularly between
mudstone and sandy mudstone. Additionally, several outliers are
evident within the sandstone category, resulting in a classification
that intersects between 3 and 4 categories.

Substantial positive or negative correlations are discernible
among the mechanical attributes, with correlation coefficient
values spanning from −0.86 to −0.97 and 0.86 to 0.99. The
demarcation between sandstone and mudstone is distinguishable,
although it lacks precise definition (refer to Figure 5). In broad
terms, the categorization can be roughly delineated into three
classes: ①predominantly consisting of mudstone; ②displaying a
mixed composition of shaly sandstone and sandy mudstone;
③primarily composed of sandstone.

The correlation coefficients among the physical parameters
manifest noteworthy disparities. The correlation coefficients
between density-porosity and density-water content are relatively
alike, spanning from −0.64 to −0.67, whereas the correlation
coefficient between porosity and water content approaches 1. The
correlation coefficient plot within the realm of physical properties
exhibits a relatively well-defined boundary, signifying substantial
stratification. It can be broadly categorized into 3–4 classes (refer
to Figure 5).

In the realm of supervised learning, it is typically advantageous
to opt for parameters that demonstrate a strong correlation with the
target data, especially for predictive tasks (Yu and Liu, 2003).
Conversely, within the domain of unsupervised clustering
learning, employing attributes with high correlations for
clustering can substantially elevate the influence of correlated
features and obscure inherent clusters, particularly in the
presence of noisy data (Parsons et al., 2004).
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To validate these concepts, we conducted unsupervised
clustering using six mechanical attributes. To compare the
clustering results of strongly correlated attributes across different
values of K (ranging from 2 to 15), we generated an elbow plot and
computed the silhouette coefficient values. The clustering results are
depicted in Figure 7. Initially, as K increases, the inertia values
exhibit a relatively smooth and insignificant variation, lacking a
distinct inflection point. This observation suggests that there may
not be a definitive optimal value of K. However, the silhouette
coefficient consistently decreases as K increases, indicating that with
the expansion of K, the boundaries between different clusters tend to
blur, resulting in a gradual decline in clustering performance.
Consequently, the optimal value of K likely falls within the range
of 2–4.

Therefore, we generated parallel coordinate clustering plots for
K = 2, 3, and 4 to visually elucidate the actual clustering results
(Figure 8). The observations drawn from these plots indicate that, as
K increases, the clusters tend to retain approximate parallelism.
Specifically, the softening coefficient, which exhibits the lowest
correlation coefficient with other mechanical attributes,
demonstrates noticeable intersections when K = 4. In contrast,
the remaining attributes do not manifest distinct intersections as
K increases. This discovery suggests that the choice of K has minimal
impact on the clustering results for strongly correlated attributes,
posing a challenge in ascertaining an optimal K value. Consequently,
it is recommended to consider data merging or dimensionality
reduction for strongly correlated attributes before embarking on

clustering, as this approach effectively mitigates computational
complexity and conserves processing time.

In light of these findings, this study incorporates PCA (Principal
Component Analysis) as a dimensionality reduction technique to
amalgamate porosity and water content into a singular attribute,
while condensing the six mechanical parameters into two attributes.
Following this transformation, a new dataset is created, and
subspace clustering is subsequently conducted upon it.

4.2 Optimal K

The new dataset is also assessed using inertia and silhouette
coefficient plots to ascertain the optimal K value. In the elbow plot,
the inertia values span from 300 to 2000, with the point of inflection
occurring between 4 and 7, signifying that the optimal K value falls
within the range of 4–7 (Figure 9). The silhouette coefficient plot
suggests that the ideal range for the optimal K value is between 3 and 7
(Figure 10). Upon closer inspection of the silhouette coefficient plot,
when K is set to 6 or 7, clusters with silhouette coefficients near the red
line (the average value) indicate blurred boundaries between different
clusters. However, when K is set to 4 or 5, the silhouette coefficients for
the clusters significantly surpass the average value, indicating strong
clustering performance. All things considered, in light of similar
conditions, the silhouette coefficient for K = 5 outperforms that for
K = 4. Consequently, K = 5 is chosen as the optimal number of clusters
for this clustering analysis. This result slightly deviates from the

FIGURE 5
The scatter matrix of the 9 attributes. DT-density; WAC-water content; POR-porosity; CS-compressive strength; TS-tensile strength; DM-
deformation modulus; EM-elastic modulus; PR-poisson ratio; SC- soften coefficient; Lithos-lithology.
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suggestion of 2–4 clusters in the correlation coefficient plot,
underscoring that the optimal number of clusters in multi-attribute
clustering, as determined through data analysis, may exhibit slight
variations from the outcomes depicted in intuitive charts and graphs.

4.3 Cluster results

From the clustering outcomes (Figures 11, 12), each cluster
demonstrates a predominant rock type, constituting more than 50%

of the total data points. Specifically, Cluster 0 (comprising 102 data
points), Cluster 1 (consisting of 70 data points), and Cluster 4
(encompassing 72 data points) predominantly consist of sandstone,
with no substantial disparities in their overall quantities. In Cluster
4, sandstone constitutes over 93% of the data points, while the
remaining 7% are also primarily sandstone. Clusters 0 and 1 both
exhibit a composition of over 80% sandstone and shaly sandstone
data points, suggesting significant variations in the properties and
attributes of sandstone. On the other hand, Cluster 2 (comprising
148 data points) and Cluster 3 (comprising 50 data points) are

FIGURE 6
Correlation coefficients values of the nine attributes.

FIGURE 7
Elbow (A) and silhouette coefficient (B) plots.
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predominantly composed of mudstone. Cluster 2, in particular,
contains over 88% mudstone data points, representing over 95%
of the total mudstone category. In Cluster 3, silty mudstone accounts
for over 60% of the data points. However, in terms of quantity,
Cluster 3 is considerably smaller than Cluster 2, implying that

mudstone may not exhibit as substantial variations in properties
as sandstone.

Through the computation of mean vectors for the identified
clusters (Clusters 0, 1, and 4), it becomes evident that there is no
significant disparity in rock density among them. Nevertheless, both

FIGURE 8
Different K (A): K = 2, (B) K = 3, (C) K = 4) values for parallel parameters.

Frontiers in Environmental Science frontiersin.org10

Zhou et al. 10.3389/fenvs.2024.1335574

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1335574


porosity and water content exhibit a discernible trend with depth.
Porosity gradually decreases from shallow to deep, following the
order of Cluster 1 (11.08%, 21.25 m) < Cluster 0 (10.16%, 33.6 m) <
Cluster 4 (9.27%, 41.91 m). Similarly, water content also decreases in
the same sequence: Cluster 1 (11.08%) < Cluster 0 (10.16%) <
Cluster 4 (9.72%). In parallel, physical parameters (e.g., CS) increase
following this order: Cluster 1 (5.87 MPa) < Cluster 0 (18.21 MPa) <
Cluster 4 (38.35 MPa).

Based on these observations, we deduce that the primary factor
contributing to the differentiation in sandstone properties is the
compaction effect. This effect results in reduced porosity, increased

rock densification, and consequent alterations in their mechanical
parameters. Furthermore, this discovery indirectly validates that
clustering algorithms can effectively perform the role of
conventional stratigraphic evaluation by identifying property
variations within the same rock type at different depths.

On the other hand, there exists a depth discrepancy of 12.1 m
and 8.3 m between Clusters 0, 1, and 4, with an average interval of
10.2 m (Table 2). Based on this observation, for urban areas situated
in the red bed hilly region, when employing a traditional
stratigraphic assessment of rock mass quality, we recommend
utilizing a depth interval of 10 m for stratification. Clusters 2 and

FIGURE 9
Elbow (A) and silhouette coefficient (B) plots.

FIGURE 10
Silhouette coefficient plots.
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3 also exhibit depth-related trends; however, owing to a substantial
shift in their predominant lithology, transitioning from fine-grained
sandy mudstone to mudstone, they are not directly comparable.

4.4 Assessment of rock mass

Based on the average vectors of the five clustering results,
excluding cluster 3, there is minimal disparity in the physical
parameters among the various lithological clusters. Consequently,

this study primarily stratifies the rock mass based on the mechanical
properties derived from the clustering outcomes. Cluster 4,
characterized by pure sandstone, manifests the highest
compressive strength, tensile strength, and deformation modulus,
positioning it as the category with relatively superior rock mass
quality within the study area. Clusters 1 and 2, possessing
comparable overall physical and mechanical parameters but the
lowest compressive strength, are categorized as having relatively
inferior quality within the study area. Clusters 0 and 3, due to
significant lithological distinctions leading to substantial variations

FIGURE 11
Parallel coordinate plot of cluster results, including all attributes (before PCA).

FIGURE 12
Parallel coordinate plot of cluster results (dataset after PCA).
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in physical parameters, exhibit minor deviations in the mean values
of the mechanical parameters, and are classified as intermediate
categories in terms of rock mass quality. Consequently, grounded in
the clustering results, the rock mass quality in the study area is
stratified into three levels: cluster 4 (optimal, grade 1) → clusters
0 and 3 (relatively good, grade 2) → clusters 1 and 2
(ordinary, grade 3).

Furthermore, cluster 1 is predominantly characterized by
sandstone, whereas cluster 2 is primarily composed of mudstone.
Despite substantial distinctions in lithology and depth between these
two clusters, their values for the nine attributes exhibit relatively
minor fluctuations. This implies that in the red bed hilly region,
there might not be a substantial correlation between rock mass
quality and either depth or lithology. This suggests that the
conventional stratified approach may not be imperative for rock
mass quality assessment in this context.

Based on the clustering outcomes, we constructed a three-
dimensional geological model of the study area for in-depth
exploration. Utilizing indicator kriging interpolation, we obtained
a grade distribution model for the rock mass quality assessment of
the study area (Figure 13). However, due to data concentration in the
central region, the kriging interpolation results were limited to this
area, leaving peripheral zones with sparse interpolated data. The
model indicates that Grade 1 represents 6.4%, Grade 2 comprises
50.8%, and Grade 3 constitutes 42.8% of the total. Grade 1 displays a
scattered distribution, primarily concentrated in the northern part of
the study area, while Grade 2 and 3 exhibit an interactive
distribution covering a significant portion of the area. In
summary, the rock mass quality across the entire study area
generally falls within the relatively good to ordinary range.
Considering other assessment factors, this dataset serves as
essential reference information for the comprehensive evaluation
of underground space suitability in this region.

5 Conclusion

The current investigation applied an unsupervised clustering
algorithm, K-means, coupled with PCA dimensionality reduction, to
appraise the geotechnical quality of a representative urban zone
within the red-bed hilly region. This strategy proficiently alleviated
the impact of subjective variables on the evaluation outcomes,
consequently attaining a heightened level of objectivity in the
assessment. The particular conclusions are delineated as follows:

1. The engineering geological drilling core test data from
Guang’an City were categorized into five clusters, and the
geotechnical quality was stratified into three levels. Cluster
4 signifies the highest quality (Level 1), primarily consisting of
pure sandstone, while clusters 0 and 3 denote a relatively
favorable quality (Level 2) characterized by the prevalence
of sandstone. Conversely, clusters 1 and 2 signify the lowest
quality (Level 3), predominantly comprised of mudstone. The
classification order is as follows: Cluster 4 (optimal, grade 1)→
Clusters 0 and 3 (relatively good, grade 2) → Clusters 1 and 2
(ordinary, grade 3). And the entire study area generally falls
within the relatively good to ordinary range.

2. The clustering results suggest that there is relatively minor
variation in the physical properties among distinct clusters,
whereas there is substantial variation in the mechanical
properties. Consequently, it is advisable to consider
compressive strength and the softening coefficient as
representative physical properties indicators for assessing
rock mass quality.

3. Within the red-bed hilly regions, there appears to be no notable
correlation between rock mass quality and depth. Therefore, it
is recommended to evaluate the underground space rock mass
as a unified entity. Nonetheless, for those employing the

FIGURE 13
3D model of assessment results using kriging interpolation.
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classical stratified evaluation method, a stratification interval of
10 m is suggested.
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