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The Hehuang Valley (HV) is a key development area in the Qinghai Province;
understanding changes in the vegetation within this area is of great significance if
we are to maintain the ecological quality of this regional environment. Based on
the 30m spatial resolution Normalized difference vegetation index (NDVI) time
series dataset, this paper analyzes the spatial and temporal characteristics and
evolutionary trends of NDVI in the HV from 2001 to 2020 under the influences of
climate change and human activities, by applying Mann-Kendall trend analysis,
the Hurst index, and residual analysis. Analysis showed that firstly, high NDVI
values (>0.5) were distributed in the low elevation areas of the HV except for
towns and cropland, while the low NDVI values (<0.5) were mainly distributed in
the high elevation regions; the NDVI exhibited an increasing trend over the study
period. Second, human activities promoted NDVI growth in the HV by changing
land-use types, although there is a risk of vegetation degradation in the future.
Third, the proportion of NDVI changes affected by climate change and human
activities was determined to be 87.24% of the HV; furthermore, the contribution
of human activities was three-fold higher than that of climate change. Fourth,
managers should scientifically manage grasslands and forests and implement
specific anthropogenic interventions based on the characteristics of regional
NDVI degradation, to improve ecosystem resilience. These results can be used to
quantitatively analyze the relative contributions of natural and anthropogenic
factors to the ecological changes in the HV, and provide reference guidelines for
the management of ecological environments.
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1 Introduction

Vegetation is an important component of surface ecosystems,
playing a crucial role in the material cycle and energy exchange on the
Earth’s surface, and is crucial for maintaining the balance of terrestrial
ecosystems (Hu et al., 2021; Cai et al., 2022). The drivers of vegetation
greening/browning can be categorized into either natural factors or
human activities (Wang et al., 2022). Precipitation and temperature
are considered to be the two most important climate factors affecting
the dynamics of global vegetation (Lehnert et al., 2016; Guo et al.,
2022), and largely determine the spatial and temporal heterogeneity of
the geographic distribution of vegetation (Fibbi et al., 2019). Over
recent decades, there has been a clear trend of warming and
humidification on the Qinghai-Xizang Plateau (QZP) (Qin et al.,
2016; Yu et al., 2021), and there is a close relationship between
precipitation and the dynamics of vegetation (Qin et al., 2021; Sun
et al., 2022). Most vegetation in arid and semi-arid regions exhibits
strong sensitivity to a humidifying climate (Diao et al., 2021); rising
temperatures favor decomposition and the release of soil organic
matter and nutrients, and enhance photosynthesis by the vegetation
(Li et al., 2017); therefore, warming and humidification are considered
to be themain factors driving the restoration of vegetation on the QZP
(Qin et al., 2016; Yu et al., 2021). Since 2000, in order to restore
degraded environments caused by over-deforestation and soil erosion,
China has begun to implement ecological restoration projects
(Ouyang et al., 2016); for example, the 3-North Shelter Forest
Program plays a crucial role in increasing vegetation cover where
annual cumulative precipitation is greater than 300–400 mm (Hu
et al., 2021; Li et al., 2023), and has had a significant positive impact on
vegetation change (Ouyang et al., 2016; Gao et al., 2022). Increased
vegetation cover in China has improved regional ecological conditions
(Liu and Xin, 2021), and is also contributing to global greening (Chen
et al., 2019). The QZP has been facing serious ecological and
environmental problems since the 1980s, including grassland
degradation, soil erosion, desertification, and the loss of
biodiversity (Xi et al., 2023). The implementation of ecological
engineering projects, such as the Three-River Headwaters Region
Ecological Protection and Construction Project, has significantly
reduced the risk of ecosystem degradation, restored vegetation
cover, effectively improved the capacity of water containment in
ecologically sensitive and fragile areas (Gao et al., 2022), while
restoring the ecological environment via grazing bans and the
establishment of national parks. However, the QZP is a vast area;
the factors or combination of factors that determine changes in the
vegetation aremainly limited by local conditions (Lehnert et al., 2016).
It is also uncertain as to whether the contribution of each factor to
vegetation change or whether vegetation change is sustainable.
Ecological restoration projects play an important role in promoting
the growth of vegetation growth, whereas mining, overgrazing, and
urban expansion exert negative surface greening, all of which
represent regional effects (Wei et al., 2022). Therefore, quantifying
trends in vegetation change and the contribution of its drivers can be
beneficial for managers to promote regional sustainable development
by adjusting environmental policies and developing appropriate
strategies (Hu et al., 2021; Pei et al., 2021; Song et al., 2022).

Continuous changes in vegetation can be detected at both the
temporal and spatial levels because of their operability and
practicability (Piao et al., 2020). The normalized difference

vegetation index (NDVI) has been widely used as a common
indicator to indicate the state of vegetation cover, and long time-
series remote sensing data featuring vegetation indices and
environmental factors, such as Global Inventory Modeling and
Mapping Studies (GIMMS) NDVI and Moderate Resolution
Imaging Spectroradiometer (MODIS) NDVI, have been used
effectively in the study of vegetation dynamics (Pei et al., 2021).
Large scale NDVI trend analysis, such as national scale, the Silk
Road Economic Belt, and the agricultural pastoral ecotone, has
received significant attention, with data pixel sizes ranging from
1 to 8 km, thus providing a good global overview of large-scale
trends in vegetation change (Liu et al., 2021). However, for local
managers, a larger pixel size cannot provide more detailed features.
Therefore, it is necessary to combine fine spatial and high temporal
resolution remote sensing products to acquire more accurate
observations to enhance our understanding of the true state of
vegetation greening; low spatial resolution products may fail to
identify such information (Pei et al., 2021). The quality of existing
NDVI products in QZP including Enhanced Thematic Mapper
(ETM+), Operational Land Imager (OLI), MODIS, and
Advanced Very High Resolution Radiometer (AVHRR) sensors
have been evaluated previously; analysis indicated that OLI
slightly outperformed the other sensors in all performance
metrics, especially in mosaic natural vegetation, grassland, and
cropland (Sajadi et al., 2021). The purposes of this study are
four-fold: 1) to analyze the characteristics of spatial and temporal
changes in the NDVI from 2001 to 2020 in the HV using the Mann-
Kendall trend method based on NDVI time series data and
topographic data; 2) to determine the sustainability of the NDVI
trend and predict the future trend using the Hurst index; 3) to
determine the relative contributions of climate change and human
activities to NDVI variations using the residual analysis method; and
4) to propose measures to maintain and improve ecological
environment quality based on specific characteristics of the
changes in NDVI.

2 Materials and methods

2.1 Study area

The HV (100°52′-103°04′E, 35°01′-37°52′N) is located in the
northeast of Qinghai Province, covers a total area of 3.3 × 104 km2

and has altitudes ranging from 1614 m to 5238 m. The HV is formed
by the alluvial deposits of the Yellow River and the Huangshui River,
accounting for 4.5% of the total area of Qinghai Province. The HV is
extremely sensitive to climate change; in particular, the ecological
environment is relatively fragile and particularly important at the
intersection of the eastern monsoon region, the northwest arid
region, and the QZP region. The annual average temperature and
precipitation in this region lie between 5°C–9°C and 250–500 mm,
respectively. The HV features the most advantageous natural
geographical conditions in Qinghai Province; the administrative
jurisdiction includes a total of 17 counties and districts. The total
population in 2021 was 423.01×104, accounting for 71.40% of the
population of the Qinghai province. This region represents the key
development area in Qinghai Province and belongs to the Lanzhou
Xining Key Development Area (Figure 1).
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2.2 Data sources and processing

NDVI time series data (with a spatial resolution of 30 m) of
the HV between 2001 and 2020 was downloaded from the
Scientific Data Bank (https://www.scidb.cn); this dataset is
based on the Integrating ENvironmental VarIable
spatiotemporal fusion model (InENVI), which combines
environmental variables (including temperature, atmospheric
water vapor pressure difference, and downward shortwave
radiation), and simulates the non-linear relationship between
MODIS (Moderate Resolution Imaging Spectroradiometer)
NDVI and Landsat NDVI to reconstruct NDVI data of high
spatial resolution (Li et al., 2023). The dataset relating to
temperature and precipitation was spatially downscaled from
the 30′Climatic Research Unit (CRU) time series dataset with
the climatology dataset from WorldClim using delta spatial
downscaling and evaluated using observations collected
between 1951 and 2016 by 496 weather stations across China
(Peng et al., 2019); these data were downloaded from the
National Earth System Science Data Center (http://www.
geodata.cn). Land-use data (with 30 m spatial resolution)
were downloaded from the Resource and Environmental
Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn). Elevation data (with a spatial resolution
of 30 m) were downloaded from the Geospatial Data Cloud
(http://www.gscloud.cn). Map data were downloaded from the
National Geomatics Center of China (http://www.ngcc.cn).

In 2020, approximately 89.24% of cultivated land in the HV
was below 3000 m above sea level, and grasslands were
distributed below the snow line. Warm-temperate evergreen

coniferous forests can generally form pure forests between
1700 and 2100 m; between 3700 and 3800 m, this region is
mountainous and is in transition from cold-temperate
coniferous forests to thickets; between 4400 and 5000 m, this
region is an Alpine meadow zone; and above 5000 m, the region
is a sparse vegetation zone, featuring flowstone and a zone of
permanent ice and snow (Zhou et al., 1987); these differences
have been used to map different elevation gradients. The “Grain
for Green” project was mainly targeted at sloping farmland
higher than 15° or 25°; analysis showed that the distribution
of vegetation cover in the Qilian Mountains was relatively stable
within a range of slope between 15° and 25°(Li and Gong, 2021);
when the slope reaches 45°, the vegetation receives the greatest
amount of solar radiation energy, which may result in the
greatest NDVI value (Yang et al., 2021); this is used as a basis
for the delineation of different gradients of slope.

Data processing, including the mosaic, extract, and projection
transformation of NDVI, precipitation, and temperature, was
carried out in ArcGIS (version 10.8) software provided by
Environmental Systems Research Institute (ESRI). To reduce data
processing time, the NDVI data was resampled to 90 m by the mean
aggregation method, while data relating to precipitation and
temperature was resampled to the same size for the NDVI via
the cubic convolution algorithm.

2.3 Methods

2.3.1 The Theil-Sen median slope
Spatial variation trends of the NDVI time series were analyzed

by applying Theil-Sen analysis. This is a stable trend calculation
method for non-parametric statistics with high computational
efficiency that is insensitive to measurement error and discrete
data due to the fact that it requires a series of mutually
independent data (Sen, 1968). This method can indicate changes
on the trend of NDVI over a long time series at the pixel scale (Hu
et al., 2021; Pei et al., 2021; Wang et al., 2022), and utilizes the
following formula:

Slope � median
xj − xi
j − i

( ), 2001≤ i< j≤ 2020

In this formula, Slope refers to the slope value estimated by
the Theil-Sen median; x represents the value of the NDVI for
each year in the study; and i and j represent the different years
between 2001 and 2020. Slope<0 indicates a decreasing trend in
NDVI; in contrast, a Slope>0 indicates an NDVI with an
increasing trend.

2.3.2 The Mann-Kendall test
The Mann-Kendall trend test is a non-parametric statistical test

that does not require the independence and normality of a time
series of data and can effectively detect long-term trends (Mann,
1945; Kendall, 1975). This test method has been widely utilized in
trend significance tests for long-term series of data, including
meteorological data, climate data and vegetation index data (Qi
et al., 2019; Feng et al., 2022); the test statistic Z was calculated
as follows:

FIGURE 1
The location of the Hehuang valley.
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S � ∑n−1
i�1

∑n
j�i+1

sgn NDVIj − NDVIi( )

sgn NDVIj − NDVIi( ) � 1,NDVIj − NDVIi > 0
0,NDVIj − NDVIi � 0
−1,NDVIj − NDVIi < 0

⎧⎪⎨⎪⎩
var S( ) � n n − 1( ) 2n + 5( )/18

Z �

S − 1������
var S( )√ , S> 0

0, S � 0

S + 1������
var S( )√ , S> 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
In these formulae, n represents the length of the time series,

NDVIj and NDVIj represent data values at times j and i (j > i), and
sgn (NDVIj -NDVIi) represents the symbolic function. Z > 0 and Z <
0 indicate an increasing or decreasing trend, respectively. When n ≥
8, the test statistic S was approximately normally distributed, and its
mean and variance are determined, as follows. Given an α

significance level, |Z|>u(1−α)/2 indicates that the assumption that
there was no trend was rejected and there was an obvious trend
change in NDVI over the time series. In this study, |Z|>1.65 and |Z|
>1.96 indicated that the trend passed significance tests at 90% and
95%, and symbolized more significant and significant changes,
respectively.

2.3.3 Hurst exponent index
The consistency of sequence trends can be quantitatively

assessed using the Hurst Index H) (Hurst, 1951; Mandelbrot and
Wallis, 1969), which is widely used for the trend analysis of
vegetation indices, including NDVI, Net Primary Productivity
(NPP), Fractional Vegetation Cover (FVC), and others (Li et al.,
2023; Qin et al., 2016; Xu et al., 2020). The Hurst index is calculated
based on the rescaling range analysis method (R/S), which can be
used to judge whether a time series of data represents a random walk
form or a biased random walk process. This reflects the
autocorrelation of a time series, especially with regards to long-
term trends that are hidden in the time series. The value of H lies
between 0 and 1. An H < 0.5 indicates that the data exhibit anti-
persistence within a certain time series; it is possible that the
opposite trend may occur in the future. An H = 0.5 indicates
that the time series of data is in the state of a random walk, and
that the future trend cannot be predicted. An H > 0.5 indicates that
the time series of data is persistent and will maintain the current
trend in change in the future (Hurst, 1951; Mandelbrot and Wallis,
1969). In the present study, H < 0.49 is defined as anti-sustainability,
0.49 <H < 0.51 as uncertain, and H > 0.51 as a stable trend of NDVI
in the future, respectively.

2.3.4 Residual analysis
In this study, we used the residual analysis method to separate

and quantify the anthropogenic and climatic impacts on NDVI
variations at a grid-scale, so as to further identify the main driver of
vegetation changes by comparing the residuals between observed
NDVI values and predicted NDVI values (Geerken and Ilaiwi, 2004;
Sajadi et al., 2021; Lai et al., 2023). We established a multiple
regression model between annual NDVI values and

corresponding climatic values (precipitation and temperature);
the assumption of this model was that the anthropogenic impact
on vegetation could be explained by the residual variations derived
from the observed values minus the climate-based predicted values
(Geerken and Ilaiwi, 2004; Huang et al., 2023). The equations for this
calculation are given below.

NDVIci � a × P + b × T

NDVIai � NDVIob − NDVIci

in which a and b represented regression coefficients; NDVIci
represents the predicted value based on the climatic influence of
precipitation (P) and temperature (T); NDVIai represents the
residual value, which was determined by the combination of
NDVIob (the value of NDVI time series data) and NDVIci. The
slopes of NDVIci, NDVIai, and NDVIob correspond to Slopeci, Slopeai,
and Slopeob, respectively. The relative contributions of climatic and
anthropogenic impacts on vegetation dynamics were calculated with
reference to published data (Geerken and Ilaiwi, 2004).

3 Results

3.1 Spatiotemporal variation of NDVI in HV

3.1.1 The temporal variations of NDVI
The NDVI value of the HV between 2001 and 2020 ranged from

0.010 to 0.886, with an average of 0.589. The low value areas
(NDVI <0.5) accounted for 29.86% of the study area, and were
mainly distributed in high-altitude areas, including the Qilian

FIGURE 2
Spatial distribution of the average annual NDVI in theHV between
2001 and 2020.
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Mountain (the Northern part of Mengyuan County) and Laji
Mountain (from Guide County to the Salar autonomous county
of Xunhua), and the Huangshui River Valley (HRV). The different
types of land-use in high-altitude areas were mainly non-utilized
land, low coverage grasslands, and permanent snow cover, while the
HRV mainly featured urban and agricultural areas. Overall, the
NDVI in other regions was >0.5, accounting for 70.14% of the HV
with scattered low value areas which were mainly forest and
grassland (Figure 2).

The NDVI time series reflected temporal changes in the
characteristics of vegetation on the HV. The annual average
NDVI ranged from 0.548 to 0.638 and exhibited an overall
fluctuating rise of 0.0041/yr (p < 0.01) between 2001 and 2020.
The increase in NDVI was relatively slow between 2001 and 2005
(0.0042/yr, p < 0.01), with a growth rate of 0.006/yr between
2016 and 2013 (p < 0.01), a decreasing trend between 2013 and
2017 (0.003/yr, p < 0.01), and a relatively fast growth rate between
2017 and 2020 (0.0108/yr, p < 0.01) (Figure 3).

3.1.2 Spatial variations of NDVI
Theil-Sen Median trend analysis and the Mann-Kendall test

showed that the area associated with a significant increase in
NDVI accounted for 75.25% of the study area, and that 5.18% of
the area exhibited a medium increase; this was mainly
concentrated in the region below 3700 m above sea level and a
slope between 0° and 35°. This area featured a large amount of
grassland, cultivated land and forest; the amount of carbon
synthesized by plants increased gradually. In addition, the
vegetation cover and the quality of the ecological environment
improved under the interaction of human activities and obvious
humidification between 2001 and 2020. The areas with a
significant and more significant decline of NDVI accounted for
1.96% and 0.43% of the HV, respectively. Spatially, they were
situated along the east-west orientation distributed in the HRV
from Xining City to the Ledu districts, from Xining City to the
north along the valley to Huzhu county, and were sporadically
distributed in the remaining parts of the HV. Most of these areas
were below 3000 m of the elevation and with a slope of 0°–15°,
which were suitable for the layout of towns and industrial facilities,
with vegetation degradation and ecological fragility between
2000 and 2020. Furthermore, 17.07% of the NDVI stabilized
areas were distributed within the whole study area; 0.11% of

the region was not accounted for statistically or was associated
with a lack of data (Figure 4; Tables 1, 2).

3.2 Drivers of NDVI change in the HV

3.2.1 Synergy between climate change and human
activities with NDVI

Within the same period, the average annual temperature in the
study area fluctuated between 0.384°C and 1.485°C, increasing at a
rate of 0.0151°C/yr (p < 0.01), while the range of annual precipitation
was 441–656 mm, increasing at a rate of 4.1138 mm/yr (p < 0.01);
these data agreed with the overall increasing trend of NDVI
(Figure 5). Firstly, ecological promotion measures, such as the 3-
North Shelter Forest Program implemented since 1978 is the largest
ecological restoration system project in Qinghai Province, the
Greening Project of Nanshan and Beishan in Xining city and
Haidong city since 1989, and since 2002, the projects of grazing
bans and fencing, Pasture for Grass, livestock reduction, rodent
control, ecological migration, and the establishment of nature
reserves and national parks were successively implemented in
Qinghai Province, were all deployed within the HV. On the other
hand, For the existing forest or sand, the measures of setting apart
hills (including sand) area for tree growing, forest stand quality
conversion, middle-young-growth forest nurturing, and selecting
the best to create modern forest farms (including such as Beishan
Forest Farm Xining city, Beishan Forest Farm Huzhu county,
Xianmi Forest Farm Menyuan county, etc.) were adopted by
management. These measures were synergistic with warming and
humidification, effectively promoted the growth of NDVI and
restored the ecological environment in the HV.

FIGURE 3
Annual trend in NDVI for the HV between 2001 and 2020.

FIGURE 4
Changing trends in NDVI in the HV between 2001 and 2020.
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3.2.2 The contribution of climate change and
human activities to changes in NDVI

According to trends in the observed NDVI, we used predicted
NDVI and the residuals of NDVI to analyze the driving mechanisms
of NDVI change in the HV between 2001 and 2020. Analysis showed
that the proportion of NDVI improved and degraded areas in the
HV were 91.80% and 5.70%, respectively, and that the area with no
statistics accounted for 2.50%. Of these, 87.24% of the region showed
an improvement in NDVI in response to both climate change and
human activities; 23.75% and 76.25% of the contributions related to
climate change and human activities respectively. These changes
occurred in most parts of the study area except for cultivated land;
4.46% of the area was influenced by only human activities; this area
was located in the middle and low elevation mountains and along
the rivers. Only 0.10% of the area was improved by climate change;
these changes were sporadically distributed across the HV.

Approximately 88.20% of the area showing an increase in NDVI
was concentrated below 3700 m above sea level, thus indicating that
most of the area showing vegetation improvement in the HVwas not
higher than the upper line of the area suitable for the growth of
coniferous forest. The relevant greening policy of Qinghai Province
shows that the man-made greening activities are mainly distributed
around the town, administrative village, water and residential, and
besides of roads, as well as planting trees in the ridge to form a forest
network. It includes land-use types such as forestable barren land,
sandy land, non-utilized land, abandoned and damaged mountains,
and degraded grassland. The increased NDVI data indicate that the
Grain for Green strategy has been effective in the HV. Furthermore,
89.65% of the area showing an improvement in NDVI was
distributed in areas with a slope of less than 35°; these areas
featured more human activities, thus indicating that NDVI
growth is closely related to human activities (Figure 6; Tables 3, 4).

TABLE 1 The proportion of NDVI change in different elevation gradients (%).

DEM/m Significantly increase Medium increase Stabilized Medium decrease Significant decrease

<2100 2.37 0.09 0.52 0.04 0.22

2100–3000 32.50 1.75 6.41 0.22 1.26

3000–3700 32.58 2.32 6.59 0.12 0.41

3700–4400 7.46 0.92 3.08 0.04 0.09

>4400 0.42 0.10 0.49 0.00 0.00

TABLE 2 Proportion of NDVI change in different terrain gradients (%).

Slope/° Significant increase Medium increase Stabilized Medium decrease Significant decrease

<15° 28.43 2.16 8.47 0.30 1.64

15–25 22.58 1.45 4.46 0.08 0.22

25–35 16.44 1.04 2.82 0.03 0.08

35–45 6.89 0.46 1.18 0.01 0.02

>45 0.99 0.07 0.16 0.00 0.00

FIGURE 5
The trends in annual average NDVI, annual average temperature (A), and annual total precipitation (B) in the HV between 2001 and 2020.
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Analysis showed that 4.04% of the study region was degraded
due to climate change and human activities; the relative
contributions of climate change and human activities were
26.04% and 73.96%, respectively. The proportions of change
driven by climate change or human activities only were 0.19%
and 1.47%, respectively. Spatially, the NDVI degraded region was
distributed in the HRV, Yellow River Valley, and the central part of
the Menyuan county; these areas were dominated by cultivated land
and urban land. With regards to vertical gradient, 89.80% of the
degraded areas were distributed below 3700 m, particularly between
2100 and 3000 m and between 3000 and 3700 m; furthermore,

89.95% of the NDVI degraded areas had a slope lower than 25°.
This was mainly due to occupation of arable land and the expansion
of towns, thus representing topographic conditions that are
associated with urban development. By weighted summation, the
relative contributions of climate change and human activities to
NDVI changes over the past 20 years accounted for 23.85% and
76.15% of the jointly influenced area, respectively (Tables 3, 4).

3.3 NDVI sustainability trends in the
Hehuang Valley

Next, we used the Hurst index H) to judge the sustainability of the
future trend for NDVI changes in the HV; the value of H ranged from
0.04 to 1.0, with a mean value of 0.47 (H < 0.5). Overall, the NDVI was
approaching a future trend for degradation. The proportion of the area
of anti-sustained changes, sustained changes and stabilization were
61.25%, 31.23%, and 7.36%, respectively; 0.16% of the region was not
analyzed due to a lack of data (Figure 7). The region associated with
anti-sustained changes was mainly below 3700 m in elevation and
below a slope of 35°; the land-use type in this area was dominated by
grassland, woodland and cropland.

Next, we used ArcGIS software to overlay and analyze the slope of
change with the Hurst index to identify the future trends for NDVI
change. Analysis showed that in the future, 52.20% of the HVwas likely
to experience a trend for NDVI; furthermore, 1.50% of this area will
experience a continuous decline and 50.71% of the whole study area will
change from a rising to a declining trend. Analysis showed that 24.45%
of the area showed NDVI improvement, of which 23.71% showed a
continuous increase and 0.75% showed a change from a decreasing to
an increasing trend. In total, 23.08% of the area was stable; 0.27% of the
area was not associated with any statistical data. Generally, the
geographical location at the intersection of the monsoon and arid
zones features a fragile ecological background with more grassland,
forest and cropland and was classified as anti-sustained. Conflicts
between the protection of cropland, the expansion of towns, and
economic development were more evident, thus leading to the risk
of vegetation degradation in the future (Tables 5, 6).

FIGURE 6
The spatial distribution of factors that influenced NDVI in the HV
between 2001 and 2020.

TABLE 3 The identification of driving factors for NDVI change and the calculation of relative contribution rate.

slopeai slopeob slopeci Area ratio/% Driving factor Relative contribution/%

Climate change Human activities

| slopeci |/(| slopeci |+
| slopeob |)

| slopeob |/(| slopeci |+| slopeob)

>0 >0 >0 87.24 C&H 23.75 76.25

>0 <0 4.46 Human activities 100 0

<0 >0 0.10 Climate change 0 100

<0 <0 <0 4.04 C&Hs 26.04 73.96

<0 >0 1.47 Human activities 100 0

>0 <0 0.19 Climate change 0 100

Nodata 2.50

Note: slopeai, slopeob, slopeci represent the changing slope of residuals, observed value and predicted values of NDVI, slopeob , slopeci represent the mean changing slope of observed value and

predicted values of NDVI, respectively.

Frontiers in Environmental Science frontiersin.org07

Xu et al. 10.3389/fenvs.2024.1384032

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1384032


3.4 The association between NDVI and
changes in land-use

3.4.1 Characteristics of NDVI changes in land-use
transfer regions between 2000 and 2020

Statistical analysis of land-use transfer in the HV between
2000 and 2020 showed that the area occupied by non-utilized land,
cultivated land, and forest decreased were 524.67 km2, 129.71 km2

and 20.95 km2 in size, respectively. Furthermore, the areas

occupied by grassland, construction and water increased by
502.32 km2, 126.61 km2 and 46.47 km2, respectively. Of these,
the area of land that was transferred from non-utilized land to
grassland was 619.61 km2 in size while the areas of arable land that
were degraded to grassland, occupied by construction, and
converted to watershed were 165.70 km2, 124.70 km2, and
25.20 km2 in size, respectively. The areas reclaimed from
grassland and forest to cultivated land were 137.65 km2 and
161.36 km2 in size, respectively; the extent of transfers between
the remaining land categories was generally low (Figure 8; Table 7).
With regards to the area experienced by land-use transfer, the
average NDVI 0.523 slightly lower than the average NDVI 0.589 in
the HV; the NDVI growth area accounted for 99.16% of the area, of
which 94.66% and 4.51% of the area experienced significant and
more significant increases, respectively. Human activities
promoted the growth of NDVI in the HV by changing the use
of land (Table 8).

3.4.2 The characteristics of land-use transfer in
regions exhibiting different NDVI changes in theHV
between 2000 and 2020

The trend for NDVI change in the HV between 2001 and
2020 was divided into improved areas (including obviously
improved areas and mildly improved areas), stabilized areas, and
degraded areas (including obviously degraded areas and mildly
degraded areas), while land-use transfers were counted separately
within each area. Within the NDVI improvement, stabilization and
degradation zones, the proportions of reduction for non-utilized
land were 94.59%, 5.02% and 0.39%, respectively. The proportions of
non-utilized land conversion to grassland were 91.88%, 7.74% and
0.38%, respectively. The proportions showing the reduction of
arable land were 11.73%, 28.34%, and 59.93%, respectively. Areas
involving construction increased by 18.72%, 26.36%, 54.92%,
respectively, while 96.95% and 3.05% of the areas showed an
increase in the NDVI improved and stabilized zones (Table 9).

TABLE 4 The proportion of areas showing changes in NDVI with different topographic features (%).

Topographic
features

NDVI decreased
by C&H/%

NDVI increased
by C&H/%

Topographic
features

NDVI decreased
by C&H/%

NDVI increased
by C&H/%

<2100 9.03 2.99 <15° 73.73 38.67

2100–3000 56.92 41.86 15–25 16.22 29.61

3000–3700 23.93 43.35 25–35 7.04 21.37

3700–4400 8.92 10.96 35–45 2.58 8.97

>4400 1.21 0.84 >45 0.42 1.38

FIGURE 7
Hurst index for NDVI in the HV between 2001 and 2020.

TABLE 5 Division in trends according to the Hurst exponent (%).

Significant
decrease

Medium
decrease

Stabilized Medium
increase

Significant
increase

Total

Anti-sustainability
(H < 0.49)

0.56 0.18 9.73 3.06 47.65 61.19

Stabilized (0.49–0.51) 0.12 0.03 1.32 0.39 5.50 7.35

Sustainability (H > 0.51) 1.28 0.22 5.99 1.72 21.99 31.19

nodata 0.27
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The area of NDVI improvement was approximately
28,342.44 km2 in size, and land-use transfer was mostly
distributed in the north and south of the HV. In the north of the
HV (Menyuan County), land-use changes were mainly manifested
by the conversion of grassland to cropland and forest land, non-
utilized land to grassland, watersheds to grassland, the degradation
of forest to grassland, and the degradation of grassland to non-
utilized land. The south of the HV (Guide County, Jianzha County,
Tongren County, Hualong County) was mainly associated with the
transfer of non-utilized land and cropland being converted to
grassland. The remainder of NDVI improvement only featured a
small proportion of land-use transfers. These changes led to a
reduction of non-utilized land by 496.33 km2 and an increase of
grassland by 496.08 km2; only small changes were recorded for other
types of land-use. The NDVI stabilization zone was 6054.17 km2 in
size; the land-use changes in this area showed that cultivated land,
non-utilized land and forest decreased by 36.76 km2, 26.33 km2 and
2.96 km2, respectively, while grassland, water and construction

increased by 15.59 km2, 17.08 km2 and 33.37 km2, respectively.
Overall, the extent of land-use changes was relatively small,
therefore implying that the NDVI of the region remained
relatively stable. The region exhibiting NDVI degradation was
approximately 6841.90 km2 in size, while forest, cultivated land,
and non-utilized land decreased by 20.70 km2, 17.55 km2, and
15.52 km2, respectively. Furthermore, watershed and construction
increased by 146.33 km2 and 94.37 km2, respectively, thus leading to
NDVI degradation in this zone.

4 Discussion

4.1 Response of NDVI to influencing factors
in the HV

The spatial and temporal heterogeneity of the geographic
distribution of vegetation is obvious, and this distribution is

FIGURE 8
The spatial distribution of land-use in 2000 (A) and transfer between 2000 and 2020 (B) in the HV.

TABLE 6 The surface characteristics of regions showing anti-sustained changes in NDVI.

Land-use type Area ratio % elevation/m Area ratio % Slope/° Area ratio %

Cropland 11.80 <2100 2.35 <15° 39.05

Forest 29.48 2100–3000 42.95 15°–25° 30.05

Grassland 52.37 3000–3700 37.11 25°–35° 21.13

Water 0.64 3700–4400 16.71 35°–45° 8.57

Construction 1.10 >4400 0.87 >45° 1.20

Non-utilized land 4.61
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changed more rapidly by climate warming (Fibbi et al., 2019).
Climate warming may extend the growing season for vegetation
and accelerate greening in the northern regions of China (Piao et al.,
2019). Warming and humidification trends are considered to be the
main factors responsible for vegetation recovery on the QZP (Qin
et al., 2016; Yu et al., 2021). Due to the warm and humid climate
environment in this region, vegetation activity was less sensitive to
the climate factors in the HV. The lagged correlation between the
precipitation in the growing season of the previous year and
vegetation activity has been reported to be significant, while a
significant positive correlation was detected between precipitation
in the spring and vegetation activity in the HV(Hua et al., 2015).

Our analysis found that NDVI increased significantly (0.0041/
yr) in the HV between 2001 and 2020; this finding was consistent
with the results of previous studies (Wang et al., 2022; Zhu et al.,
2022). Temporal variations of moisture content in the surface and
middle layers of the soil in alpine meadows and alpine shrubs on the
QZP are consistent with precipitation patterns, and negatively
correlated with temperature (Dai et al., 2022). Vegetation
browning may occur when temperatures increase while
precipitation is maintained or decreased (Wang et al., 2022; Wei
et al., 2022). Therefore, between 2013 and 2017, with a relatively
high mean annual temperature and a relatively low annual
precipitation, the annual mean NDVI showed a decreasing trend.
Overall, the temperature and precipitation in the HV between
2001 and 2020 showed an increasing trend; however, the
greening or degradation of vegetation caused only by climate
change factors was sporadically distributed. Climate change

factors were mainly coordinated with human activities, such as
returning grazing to grasslands, afforestation, and forest protection
projects; these gradually improved the photosynthetic efficiency of
the vegetation, thus improving NDVI in the HV.

4.2 The response of NDVI to land-use
changes in the HV

Since land represents a location for human production and living, a
change in land utilization can reflect the impact of human activities on
the surface, aswell as changes ofNDVI. Forests, wetlands, and grasslands
exhibit a greater carbon storage capacity than other ecosystems (Pagiola,
2008). Ecological engineering increases carbon storage by increasing the
proportion with higher carbon storage land, including woodlands,
scrublands, wetlands and high cover grasslands (Zhao et al., 2019).
This process significantly reduces the risk of ecosystem degradation in
ecologically sensitive and fragile areas and restores vegetation more
effectively (Gao et al., 2022). The positive impacts of greening measures
on vegetation in the northeastern of QZP are gradually increasing (Chen
et al., 2020); these measures are also the main drivers of vegetation
greening on the Loess Plateau and the Three-River Headwaters region
(contributing to more than 70% of the increase in greening), as well as
increasing NPP values in the eastern part of the Hoh Xil Nature Reserve
(Naeem et al., 2020). The ecological projects implemented in Qinghai
Province include the 3-North Shelter Forest Program, the Greening
Project of Nanshan and Beishan, grazing bans and fencing, returning
grazing to grass, the prevention and control of rodent infestations,

TABLE 8 NDVI attributes of land-use in transfer areas in the HV between 2000 and 2020.

Average NDVI value Area/hm2 Ratio/% Trend in NDVI change Area/hm2 Ratio/%

<0.1 631.8 0.80 Significant decrease 25.11 0.03

0.1–0.3 17,515.44 22.26 Medium decrease 6.48 0.01

0.3–0.5 25,625.16 32.57 stabilized 626.94 0.80

0.5–0.7 22,663.8 28.81 Medium increase 3545.37 4.51

>0.7 12,242.34 15.56 Significant increase 74,474.64 94.66

TABLE 7 Land-use transfer matrix in the HV between 2000 and 2020 (km2).

2020 Grassland Construction Cropland Forest Water Non-
utilized
land

Total_2000 Amount
of change

Rate of
change/

%2000

Grassland 18,990.06 13.21 161.36 137.65 27.85 92.56 19,422.68 502.32 2.59

Construction 4.08 476.04 15.27 0.60 1.00 0.01 496.99 126.61 25.48

Cropland 165.70 124.07 4808.34 12.50 25.20 0.69 5136.49 −129.71 −2.53

Forest 140.85 3.64 13.33 6951.07 20.47 2.82 7132.16 −20.95 −0.29

Water 4.70 6.33 5.81 2.51 335.27 9.36 363.96 46.47 12.77

Non-utilized
land

619.61 0.31 2.67 6.88 0.64 2056.11 2686.22 −524.67 −19.53

Total_2020 19,925.00 623.60 5006.78 7111.21 410.43 2161.55 35,238.50 — —
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TABLE 9 Land-use transfer matrix showing different NDVI degraded areas in the HV between 2000 and 2020 (km2).

2020 Grassland Construction Cropland Forest Water Non-utilized land Total_2000 Amount of change Rate of change/%

2000

NDVI improved areas Grassland 15,665.05 7.12 122.61 113.57 5.51 71.24 15,985.1 496.08 3.1

Construction 2.91 284.43 8.38 0.39 0.34 — 296.45 23.70 7.99

Cropland 120.29 24.01 3454.64 9.7 6.91 0.53 3616.07 −15.21 −0.42

Forest 119.94 1.12 8.55 5911.85 3.09 2.41 6046.95 −3.34 −0.06

Water 3.69 3.35 4.24 1.68 223.88 8.25 245.08 −4.91 −2.00

Non-utilized land 569.32 0.12 2.43 6.43 0.45 1574.04 2152.79 −496.33 −23.06

Total_2020 16,481.18 320.15 3600.86 6043.61 240.17 1656.47 28,342.44 — —

NDVI stable areas Grassland 3130.08 3.72 34.08 22.59 8.16 21.04 3219.67 15.59 0.48

Construction 0.92 120.83 4.57 0.19 0.36 — 126.85 33.37 26.31

Cropland 35.28 32.3 996.81 2.3 10.59 0.14 1077.41 −36.76 −3.41

Forest 20.27 0.75 3.89 985.2 3.9 0.37 1014.38 −2.96 −0.29

Water 0.77 2.46 1.09 0.69 89.38 1.09 95.47 17.08 17.89

Non-utilized land 47.95 0.16 0.22 0.45 0.19 471.42 520.38 −26.33 −5.06

Total_2020 3235.26 160.23 1040.66 1011.41 112.56 494.06 6054.17 — —

NDVI decreased areas Grassland 194.93 2.37 4.67 1.49 14.18 0.28 217.91 −9.38 −4.30

Construction 0.25 70.78 2.32 0.02 0.30 0.01 73.69 69.54 94.37

Cropland 10.13 67.76 356.89 0.50 7.70 0.02 443.01 −77.73 −17.55

Forest 0.64 1.77 0.89 54.02 13.48 0.04 70.83 −14.66 −20.70

Water 0.24 0.52 0.48 0.14 22.01 0.02 23.41 34.25 146.33

Non-utilized land 2.34 0.03 0.02 — — 10.65 13.05 −2.03 −15.52

Total_2020 208.53 143.22 365.28 56.17 57.66 11.02 841.90 — —
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ecological migration, and the establishment of nature reserves and
national parks. These measures changed the spatial pattern of land-
use in the HV and transferred a large amount of non-utilized land into
grassland and forest, and degraded cropland to grassland. As a result,
these measures increase the area occupied by ecosystems with a stronger
carbon storage capacity such as forest and grassland, enhance ecological
quality, and promote the improvement of NDVI. In addition, a small
portion of arable land was occupied for construction, and grasslands and
forests have been reclaimed as cropland, thus causing the
degradation of NDVI.

4.3 Regional territorial management
strategies based on NDVI changes

Approximately 52.20% of the NDVI in the HV is expected to
experience a trend for degradation in the future; the area undergoing
degradation accounted for 50.71% of the HV, and was distributed
across the whole region.

The regions showing NDVI improvement was more related
to the distribution of grassland, unutilized land, forested land,
and the upper limit of elevation and slope of human activities
(such as grazing, afforestation, etc.), and NDVI degradation area
was more consistent with the conditions of agricultural and
economic development in the HV. Thus reflecting that the
impact of human activities on vegetation has obvious spatial
heterogeneity (Xiong et al., 2021; Zhang et al., 2021). This may
corroborate the fact that the contribution of NDVI increase
caused by human activities has been greater than climate change
over the past 20 years.

In the future, managers should analyze the natural geographic
conditions, the background characteristics of the ecological
environment, and the main functional orientation of the HV
under warm temperatures and humidification. Based on those
conditions to evaluate regional environmental carrying capacity
and development suitability, distribute urban boundaries more
rationally, implement policies related to the economical and
intensive utilization of land. It is important that delineating the
scope of permanent basic farmland to ensure farmland is not
occupied, to mitigate the deterioration of farmland ecosystems
caused by a decline in natural recovery capacity. It is important
to obey the Ecological Protection Red Line, prevent the infestation of
grassland by rodents, and prohibit overgrazing to ensure the self-
recovery ability of plants. It is also important to implement
corresponding vegetation restoration measures according to
different degradation risk levels to improve the recovery capacity
of natural ecosystems in regions at potential risk of degradation (Cao
et al., 2018; Teng et al., 2020). Furthermore, it is important to
increase water conservation areas, construct a regional ecological
security pattern, and promote the conservation of biodiversity, so as
to ensure regional ecological balance and provide ecosystem services
on a larger scale during the process of land development in the HV.

4.4 Uncertainties and limitations

It should be noted that there are some limitations in this
paper. Only the two main climatic factors, temperature and

precipitation, were considered, whereas NDVI changes are also
controlled by various factors such as soil moisture and
temperature (Rivas-Tabares et al., 2021), solar radiation, and
fertilizer effect, etc (Xie et al., 2022). NDVI changes have a
hysteresis effect on rainfall and temperature (Zhe and Zhang,
2021), and it is also not possible to explicitly quantify the
impacts of specific human activities, such as urban expansion,
returning farmland to forests, and afforestation, on vegetation
change (Wang et al., 2023), those may introduce some
uncertainty in the results of this paper. Therefore, in the
future, it will be necessary to further refine the influencing
factors of vegetation or NDVI change, to map the spatial
distribution of specific human activities, and to improve the
precision of the evaluation results by combining technical means
such as field surveys, which may help to understand the specific
causes of vegetation change.

5 Conclusion

Based on the InENVI NDVI time series dataset, this paper
analyzed characteristics associated with the spatial and temporal
changes of NDVI, the sustainability of the evolutionary trend
and its influencing factors in the HV between 2001 and 2020 by
applying Mann-Kendall trend analysis, the Hurst index, and
residual analysis. First, the average multi-year NDVI value
between 2001 and 2020 in the HV was generally higher in the
low elevation areas except for towns and croplands, but was
generally lower in the high elevation areas, towns, and
agricultural land. Secondly, NDVI showed an increasing trend
between 2001 and 2020; most of the NDVI improvement area
was not higher than the upper line of the area suitable for the
growth of coniferous forest with a terrain below 35°; this is
because the greening of the non-utilized land area was larger
than the degradation of NDVI caused by human activities. These
data also showed that the efficacy of the strategy of returning
farmland to forest and grassland was higher than the negative
impacts of urban expansion. Third, the trend of NDVI change
between 2001 and 2020 was less influenced by single factors of
climate change (e.g., temperature and precipitation) or human
activities (e.g., grazing bans, greening projects, or urban
construction). The area of common impact accounted for
91.28% of the HV, in which the climate change and human
activities were responsible for 23.85% and 76.15% of the effect,
respectively. Finally, the NDVI in localized areas was at risk of
degradation in response to warm humidification in the HV.
Managers should implement different levels of anthropogenic
interventions to improve the recovery capacity of the natural
ecosystem and ensure regional ecological balance based on the
topography and vegetation characteristics in different
degraded regions.
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