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Future projection of the temperature-related health burden, including mortality
and hospital admissions, is a growing field of research. These studies aim to
provide crucial information for decision-makers considering existing health
policies as well as integrating targeted adaptation strategies to evade the
health burden. However, this field of research is still overshadowed by large
uncertainties. These uncertainties exist to an extent in the future climate and
population models used by such studies but largely in the disparities in
underlying assumptions. Existing studies differ in the factors incorporated for
projection and strategies for considering the future adaptation of the
population to temperature. These differences exist to a great degree because
of a lack of robust evidence as well as gaps in the field of climate
epidemiology that still require extensive input from the research community.
This narrative review summarizes the current status of projection studies of
temperature-attributable health burden, the guiding assumptions behind
them, the common grounds, as well as the differences. Overall, the review
aims to highlight existing evidence and knowledge gaps as a basis for
designing future studies on temperature-attributable health burden estimation.
Finding a robust methodology for projecting the future health burden could
be a milestone for climate epidemiologists as this would largely benefit the
world when applying this technique to project the climate-attributable cause-
specific health burden and adapt our existing health policies accordingly.
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Introduction

Projection studies estimate the future health burden directly or indirectly caused by

the changing climate. These studies, giving us a future picture of the climate-attributable

health burden, are crucial in that they urge stakeholders, policymakers, civil society,

scientists, and the public to practice and enforce mitigation measures for climate
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protection. Mitigation, as defined by the fourth assessment

report of the Intergovernmental Panel on Climate Change

(IPCC), is an “anthropogenic intervention to reduce the

sources or enhance the sinks of greenhouse gases” (1).

Management of the climate crisis through climate change

mitigation seemed hopeful until recently, when the recent

IPCC report was released. The report states that unless there

are immediate large-scale mitigation measures to reduce

greenhouse gas emissions, it is beyond reach to limit global

warming to 1.5°C or even 2°C (2). Therefore, mitigation is

not enough to combat the harms of the rapidly changing

climate. Amidst this crisis, adaptation strategies can help to

build climate resilience. The IPCC report defines adaptation

as “adjustment in natural or human systems in response to

actual or expected climatic stimuli or their effects, which

moderates harm or exploits beneficial opportunities” (1).

The goal of today is to build a climate-resilient society that

can be possible only in the presence of efficient adaptation

strategies in addition to mitigation measures. For this,

evidence-based planning of health policies and adaptation

measures need to be designed by public health professionals,

implemented by health authorities, and incorporated by

society. In this regard, studies projecting the climate-

attributable future health burden can support laying a

foundation of evidence and aid in planning effective

adaptation strategies. Projection studies help in the planning

of adaptation strategies in the following ways:

i. They estimate the future climate-related health burden,

allowing for the planning of healthcare resources.

ii. They estimate the climate-related health burden for different

causes, which enables us to focus on adaptation plans for

specific diseases or health outcomes.

iii. They estimate the climate-related health burden for

different population subgroups, which enables us to

identify those who are especially at risk of climate change,

allowing us to target and adapt our adaptation policies

for the vulnerable and susceptible population groups.

Projection studies emerged during the late 1900s (3, 4). Early

studies projected temperature-related deaths for 2020 and

2050 for selected cities. During the 2000s, research in the field

started growing (5–10); however, studies focused on North

America (5–8) and Europe (8–10). After 2010, climate

epidemiology started being prioritized, and projection studies

were expanding (11–21), with research still focused on the US

and Europe. In the mid-2010s, projection studies started in

China (22–29) and Latin America (30), while projection

studies in the US, Europe, and Australia continued to expand

(31–44). The era of 2010 was a remarkable period for climate

epidemiology, not only because of the expanding field with

large epidemiological studies incorporating methodological

advancements but also because projection on other critical

aspects related to climate change, apart from the previously
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explored temperature-related total mortality, was initiated.

Researchers started exploring the burden of cardiovascular

and respiratory diseases (27), vector-borne diseases like

Malaria (45), and sensitive issues like children’s health were

highlighted (46).

The field of climate-attributable health impact research is

expanding rapidly, however, still overshadowed by large

uncertainties and differing largely in their guiding principles.

These differences exist to a great degree because of a lack of

robust evidence as well as gaps in the field of climate

epidemiology that still require extensive input from the

research community. In this context, the research community

would largely benefit from a review that summarizes current

status, assumptions, and evidences, which would facilitate the

planning of future studies. Existing reviews of the field either

focused only on heat-related mortality (47) or climate change

mitigation outcomes (48). This narrative review, therefore,

aims to summarize the current status of projection studies of

temperature-attributable health burden, the guiding

assumptions behind them, the common grounds, as well as

the differences. Overall, the review aims to highlight existing

evidence and knowledge gaps as a basis for designing future

studies on temperature-attributable health burden estimation.
Temperature attributable health
burden and earlier misconceptions

The results from early projection studies partly raised

misconceptions in that climate change looked beneficial. For

example, the study by Martens et al., which included various

cities from around the world, found for most cities that

climate change is likely to cause a reduction in mortality rates

due to decreasing winter mortality. The study claimed this

effect was more pronounced for cardiovascular mortality in

older people in cities with temperate or cold climates at

present (4). In addition, the result of the study was not

generalizable to other regions of the world with different

climatic conditions. Conversely, another study by Kalkstein

et al., projecting mortality in US cities for 2020 and 2050,

found summer mortality to increase dramatically while winter

mortality to decrease slightly, as a result of climate change

(3), illustrating that the net impact of climate change would

be more harmful than beneficial. Nevertheless, this study was

done in a single country and needed validation by a larger

study across regions of varying climatic and socio-economic

conditions.

From these studies, it was evident that there exists a

temperature-related health burden in association with future

temperatures, with losses from heat-related deaths on the one

hand and benefits from cold-related deaths on the other.

Therefore, for valid future projections, studies were needed

that estimated the net future temperature-related burden
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incorporating both heat and cold impacts. A 2011 study by

Ballester et al. (14) systematically estimated the heat- and

cold-related deaths in 200 European regions. The results

showed that the rise in deaths from heat would start to

compensate completely the reduction of cold-related mortality

during the second half of the 21st century. This study

provided evidence that climate change would not be beneficial

in the long run, at least for the European regions included in

the study. To validate the results, the climate epidemiology

community needed a large study investigating such

associations across regions with varying climatic and socio-

economic conditions. In 2017, a multi-country and multi-city

study by Gasparrini et al. (49) projected the net temperature-

related health burden in 451 locations from 23 countries. This

study is one of the most comprehensive studies in terms of

including cities from around the world in a single study. The

results were seen to vary across regions. In temperate areas

such as northern Europe, East Asia, and Australia, the less

intense warming and the large decrease in cold-related deaths

would induce a null or marginally negative net effect. In

contrast, warmer regions, including central and southern

America, Europe, and Southeast Asia, would expect steep

increases in heat-related mortality resulting in a large net

burden. The study concluded that the negative health impacts

of climate change would disproportionately affect warmer

regions of the world, and regions lagging in infrastructures

and technology. From this observation, it is clear that people

worldwide are vulnerable to climate change—but not equally.

Nevertheless, it is essential to note that this study did not

account for influential factors like differing health effects of

heat or cold across different population age groups and

changing demographic structures over time (i.e., population

aging). Therefore, the observed decrease in the net burden in

temperate first-world nations might have been rather biased.
Fundamental concepts: Exposure
response functions

Future projections of the health burden are primarily based

on present-day observations. Studies usually start with time-

series data of health outcome during a reference baseline

period to explore the association between temperature and the

health outcome of interest (49, 50). This association is often

termed Exposure Response Function (ERF). From the ERFs,

the risk of the health outcome at each temperature point is

obtained, which is then extrapolated to the future temperature

observations (50). Researchers obtain future temperature data

from climate modelers, estimate the future risk under these

temperature projections and quantify the differences in the

health burden in the future compared to the baseline.

Figure 1 summarizes the standard practiced methodology of

temperature-attributable health outcome projection.
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Until recent years, most studies have applied an overall

baseline ERF for future projections, assuming all population

subgroups to act similarly to a given temperature (49).

However, this approach underestimates the future health

burden as the most vulnerable and susceptible population

subgroups, like the elderly, are assumed to have the same

baseline rate of risk as the younger population. A study by

Rai et al. elaborates on this drawback of using an overall ERF

by projecting future temperature-related total mortality

burden by applying two frameworks; an overall ERF and age-

specific ERFs (42). The results show a considerable

underestimation of the health burden when not considering

the age-specific ERFs. Therefore, projection studies

incorporating age-specific ERFs might provide a more valid

estimation of the future health burden (19, 51–53).

Nonetheless, all the above principles of projection studies

assume that the ERFs of the future population remain

constant as the present-day ERF, i.e., no adaptation of the

human body to the changing climate occurs. This might

introduce large biases. So far, few studies have considered

population adaptation when estimating the future

temperature-related health burden (5, 6, 8, 9, 54–57). These

studies differ in their approaches. Some of the earlier

approaches used ERFs of analogous summers or cities for

future projections (5, 6); for example, a test city was assumed

to be similar to a larger reference city in the future. For

present-day large cities, some harsh summers with a

temperature distribution similar to the modelled future

temperature were selected as the reference summer. The

population of the test city was then assumed to react to

temperature increases in the same way as the population from

the reference city or the reference summer in the future.

However, these approaches were largely based on untestable

assumptions, resulting in large uncertainties. More recent

studies assume population acclimatization over a few degrees

(8, 9) or a shift in the ERF between temperature and health

outcomes (50). However, there is no established general

methodological procedure to account for physiological

adaptation to changing climate.
Scenarios

Projecting health burden is estimating health outcomes

under uncertainty in a number of systems including the

environmental, human, and socio-economic systems, and the

complex interaction between them. For this reason, climate

change research has been working with future scenarios,

which include a set of climatic and socio-economic assumed

conditions that we might experience in the future.

Earlier projection studies estimated the health burden under

different climate scenarios, i.e., the Representative Concentration

Pathways (RCPs) (19, 38, 49, 51, 52, 58). While these studies
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FIGURE 1

A flowchart of the standard methodology of temperature-attributable health outcome projections.

TABLE 1 Summary of uncertainties and assumptions in climate-
attributable health burden projection.

Sources of uncertainties Underlying assumptions

Climate models Assumptions made while defining
various atmospheric parameters under
future climate scenarios to obtain the
future temperature data.

Population projections Assumptions made while defining
future demographics, human
development (for example, health and
education), economic growth,
inequality, governance, technological
change, and policy orientations under
future socioeconomic scenarios to
obtain the future population data.

Physiological adaptation of human
body to the changing climate

Use of analogous cities or summers or
changing the slope of the baseline
ERFs.

Socioeconomic changes, technological
advancements and changes in
healthcare system and settings

Using GDP as a factor determining the
adaptive capacity and using it as a
factor potentially changing the
temperature-related health risk.
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addressed climate uncertainty and some aspects of population

and economic changes incorporated within the RCPs, they did

not account for other possible changes in societal factors such

as demographics, human development (for example, health

and education), economic growth, inequality, governance,

technological change, and policy orientations. All these factors

are considered by the different scenarios under the Shared

Socio-Economic Pathways (SSPs) (59). Comparatively few

studies have considered the SSP scenarios when estimating the

future temperature-related health burden (42, 53). Although

practiced, using a combination of all four RCPs (60) and five

SSPs (61) was not the most efficient and convincing

methodology because many RCP-SSP combinations seem

implausible. A publication by O’Neill et al., explains the

plausibility of various RCP-SSP scenario combinations (62). For

example, the combination of RCP 8.5 (the worst climate

change scenario) and SSP1 (the scenario with lowest challenge

to adaptation and mitigation) seems implausible. In 2021,

IPCC revised the RCPs and released an update of the climate

scenarios integrating the plausible SSP scenarios into the RCPs,

termed SSP- RCP scenarios (2).

Apart from the RCP-SSP scenarios, a crucial aspect to be

considered for a justifiable future projection is population

aging. The SSP scenarios consider the change in population;

however, like with the age-specific ERFs, a key aspect to be

integrated is the age-specific population growth (demographic

change), which had been ignored until recently (28, 29, 42).

Not considering the increasing proportion of older people,

especially in first-world nations, would lead to

underestimating the climate-related health burden as this

population subgroup is one of the most susceptible.
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Uncertainties and assumptions

The field of climate epidemiology dominated largely by

uncertainties and assumptions. Some of the determining

sources of uncertainties are the modelled future climate and

societal scenarios, i.e., the RCPs and the SSPs. These

scenarios, providing us with a range of plausible future

scenarios, are largely based on assumptions. However, the

efforts to continuously reevaluate and update these scenarios

have helped in overcoming uncertainties (59). Table 1 lists

the major sources of uncertainties and underlying assumptions.
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Gaps

Although the field of climate epidemiology is progressing

rapidly, there still exist significant research gaps. The gaps

have been listed and elaborated in the following sections.
Focus on heat and not the entire
temperature range

One of the largest needs for climate epidemiology research is

to shift the focus from heat-related mortality projections to total

temperature-related mortality projections, which include both

heat- and cold-related mortality. Most earlier projection studies

focused on heat-related mortality (5, 8, 16, 18, 22, 27, 40, 63),

leaving behind the cold-related future attributable burden.

However, it is important to consider that cold-related mortality

is only minimally attributable to extreme cold but mostly to

moderate cold or air temperature changes (temperature

variability) that would persist in the future, even with a

warming climate. Therefore, projection studies would not be

complete without considering the cold-related mortality and

estimating the net temperature-related mortality burden (64).
Use of overall ERF rather than sub-group
specific ERF

Another overshadowed aspect is the failure to incorporate

the age-specific ERFs and the age-specific population growth

rates when estimating the future temperature-related health

burden. Although some recent studies considered this aspect

(28, 29), these studies focused only on heat-related impacts

and ignored the cold-related impacts. Only a handful of

studies have considered age-specific ERFs and population

growth rates to estimate the future net temperature-related

health burden (42). Moreover, other climate vulnerability and

susceptibility factors apart from age have been left entirely

unaddressed.
Considering a constant ERF

Majority of the projection studies consider constant

response of the population to a given temperature. However,

response of the human body to a given temperature might

change in the future, leading to either adaptation or

sensitivity. Only a small number of studies have considered

physiological adaptation of the human body (9, 55, 57) to

heat and no studies have considered the physiological changes

in response to cold. As discussed above, cold-related mortality

would continue to dominate a large fraction of temperature-
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complete without considering the future changes in the cold-

mortality relationships, i.e., taking into account also the

adaptation or increasing sensitivity to cold in the future (64).

Existing evidence on non-decreasing (65, 66) or even

increasing cold effects (67) over time suggests that together

with adaptation to heat, on the one hand, the future

population might be increasingly susceptible to cold on the

other (64). Furthermore, it is essential to note that

physiological adaptation pathways cannot be generalized but

need to be considered specifically for a population of interest.

A large multi-country study investigating the temporal

variation in the heat-mortality association has demonstrated

that the adaptation pattern or heat sensitivity varies across

locations (68).
Lack of simultaneous consideration of
socioeconomic adaptation

A crucial aspect not yet fully accounted for is the future

population adaptation particularly in the context of social and

economic inequalities. The future population is foreseen to

undergo not just single but multiple simultaneous adaptation

pathways (69). In addition to physiological adaptation, future

infrastructure changes, technological advancements, and socio-

economic challenges might play an important role in influencing

how the human body reacts to temperature. Some recent studies

(29) have explored this aspect of adaptation by defining future

adaptive capacity as a factor of the future Gross Domestic

Product (GDP). However, physiological and socioeconomic

adaptation have not been yet considered simultaneously but

rather independently. A recently proposed methodological

framework for health burden projections aims to overcome this

gap by systematically incorporating future physiological

adaptation-sensitivity and socio-economic adaptive capacities as

factors potentially changing the ERF in the future (69).

Future shifts in infrastructure, healthcare, as well as

technological advancements might change the mortality rate.

These might be changes in the overall mortality rate (70) or

cause-specific mortality rates (71). Failure to incorporate these

changes in studies estimating the future overall or cause-

specific mortality might lead to overestimating the future

temperature-related burden. Only a limited number of

projection studies have so far incorporated expected changes

in mortality rates while estimating the future temperature-

related mortality burden (69).
Focus only on specific health outcomes

Another major gap is the focus of projection studies on total

mortality. Although recent studies also project cause-specific
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mortality under different ranges of future climate and

population change scenarios (42, 44, 49, 53, 43), these studies

are limited to specific regions. Furthermore, no studies have

looked into other critical aspects like cause-specific

hospitalizations.
No studies in rural areas

In addition, all projection studies, including the largest

multi-country study, have focused on cities (49) leaving

behind the rural areas. It is yet unknown if rural areas might

show different temperature effects in the future compared to

cities or rather similar effects as, depending on location,

exposure intensity, population structure, and susceptibility

might be quite different. The results from the EU

HORIZON2020 project EXHAUSTION show that

temperature effects vary among European regions. Within this

project, it was observed that the heat effects on mortality in

Northern Europe were stronger in urban areas than that in

rural areas, whereas, both heat and cold effects in the rural

areas were found to be similar to that observed in cities in

other parts of Europe (72). Extensive studies in other regions

with different climatic and socio-economic conditions are

required to verify this finding.
Lack of representation

One of the largest gaps of projection studies is that they are

limited to certain regions of the world, mostly North America,

Europe, and East Asia. Other regions of the world, which might

be facing the largest consequences of climate change (73), like

Africa, South Asia, and the Middle East have been largely

underrepresented. This issue also arises due to lack of data

availability from those regions.
Needs and recommendations

The following section lists and describes the needs and

recommendations:

a) Inclusion and representativeness

i. The climate epidemiology community needs more inclusive

projection studies from across regions of diverse

geographic, climatic, and socio-economic conditions.

ii. Studies from rural areas and less urbanized areas are needed

for a comprehensive understanding of climate-health

association. In addition, studies projecting health burden

at a finer geographical resolution with calibrated

temperature models would be helpful for stakeholders in
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understanding and addressing the future risks at a

community level.

b) Methodology

i. Projection studies need to be designed to look at not just the

heat- or cold-related burden separately, but a combined net

temperature-related burden.

ii. Future studies should incorporate sub-group specific ERFs

(e.g., age-specific ERFs), rather than the overall ERFs, as

they provide a reasonable and less biased estimation of the

future health burden (19, 51–53).

iii. Extensive baseline studies to explore susceptible and

vulnerable population subgroups other than the elderly are

recommended for a substantially valid projection of the

future health burden. To achieve this, establishment of

cohorts with all-encompassing individual characteristics

and large enough to cover regions of varying climatic and

socio-economic conditions is recommended.

iv. The establishment of a standard procedure for accounting

for future population adaptation is recommended.

c) For driving policy

i. Extensive investigation on potential further adaptation

factors which could be influenced by policy makers and

stakeholders and health care provides or public health

institutions is needed.

Summary

Projection studies estimating the future climate-attributable

health burden are crucial as they would aid in designing,

adapting, and implementing targeted adaptation measures, as

well as stressing the urgency of mitigation actions. This would

help public health professionals in building a climate change

resilient community.

Climate epidemiologists should focus on advancing

projection studies but also on gathering extensive and

unbiased baseline associations between temperature and

cause-specific health outcomes, identifying the most

vulnerable and susceptible population subgroups in regions

with varying climatic and socio-economic conditions. As these

baseline associations are the backbone of projection studies,

researchers should focus on gathering valid and extensive

baseline evidence.

Further validation studies are required to establish a

common framework and guidelines for future projection.

Future studies in the field should focus on other health

outcomes in addition to total mortality. The studies should

attempt to estimate the net temperature-related health burden

considering the subgroup-specific ERFs, future subgroup-

specific population change, future mortality or hospital

admission rates, and above all, the possible physiological and

socio-economic adaptation. To summarize, future studies

should account for all the complex dynamics, which play a

role in determining temperature-related mortality (Figure 2).
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FIGURE 2

Dynamics influencing the future temperature-related health burden.
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