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Background: Diarrhea remains a significant public health problem and poses a

considerable financial burden on Ghana’s health insurance scheme. In order to prioritize

district-level hotspots of diarrhea incidence for effective targeted interventions, it is

important to understand the potential drivers of spatiotemporal patterns of diarrhea. We

aimed to identify the spatiotemporal heterogeneity of diarrhea incidence in Ghana and

explore how meteorological and socio-demographic factors influence the patterns.

Methods: We used monthly district-level clinically diagnosed diarrhea data between

2012 and 2018 obtained from the Center for Health Information and Management of

the Ghana Health Services. We utilized a hierarchical Bayesian spatiotemporal modeling

framework to evaluate potential associations between district-level monthly diarrhea

incidence and meteorological variables (mean temperature, diurnal temperature range,

surface water presence) and socio-demographic factors (population density, Gini index,

District League Table score) in Ghana. In addition, we investigated whether these

associations were consistent across the four agro-ecological zones.

Results: There was considerable spatial heterogeneity in diarrhea patterns across the

districts, with clusters of high diarrhea risk areas mostly found in the transition and

savannah zones. The average monthly temporal patterns of diarrhea revealed a weak

biannual seasonality with major and minor peaks in June and October, respectively,

coinciding with the major and minor rainy seasons. We found a significant association

between both meteorological and socio-demographic factors and diarrhea risk, but the

strength and direction of associations differed across the four agro-ecological zones.

Surface water presence demonstrated consistently positive, while diurnal temperature

range and population density demonstrated consistently negative associations with

diarrhea both overall and across the agro-ecological zones.

Conclusions: Although overall diarrhea incidence is declining in Ghana, our results

revealed high-risk districts that could benefit from district-specific tailored intervention
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strategies to improve control efforts. Ghana health sector policy-makers can use these

results to assess the effectiveness of ongoing interventions at the district level and

prioritize resource allocation for diarrhea control.

Keywords: climate and diarrhea, socio-demographic factors and diarrhea, weather and diarrhea, diarrhea in

Ghana, diarrhea patterns, diarrhea modeling, diarrhea and floods

INTRODUCTION

An increase in diarrhea control strategies, particularly
improvements in water, sanitation, and hygiene (WASH)
infrastructure and improvements in access, treatment, and
quality of health services, has contributed to significant
reductions in diarrhea morbidity and mortality over the past
four decades (1). For instance, diarrhea has dropped from being
the second leading cause of global disease burden (as measured
by disability-adjusted life-years) in 1990 to the ninth leading
cause in 2020 (2). Nevertheless, diarrhea remains one of the
most common preventable causes of morbidity and mortality,
responsible for 1.6 and over 0.5 million deaths among all age
groups and children under 5, respectively (3). This highlights the
need to sustain current control interventions and identify novel
effective strategies, particularly in low-income settings where
diarrhea burden remains highest.

Diarrhea incidence is highly heterogeneous, both within
and between countries, exhibiting substantial spatial and
temporal variability (4–7). These variations are driven largely
by meteorological factors (8, 9), socio-economic status and
WASH infrastructure (10–15), and access and quality of health
services (16). The interaction of these factors can create spatial
and temporal hotspots of diarrhea incidence. For example,
Bandyopadhyay et al. (5) found a decrease in monthly rainfall
and increase in temperature during the dry season was
able to delineate hotspots of diarrhea prevalence in children
under the age of 3 years in sub-Saharan Africa. In Anhui
Province of China, Hao et al. (17) found a strong association
between socio-economic status and spatial clustering of diarrhea
incidence. These studies demonstrate that the combination of
meteorological and socio-demographic factors create different
suitable pathways for diarrhea transmission, which are likely to
be setting-specific. Understanding and identifying hotspots and
the potential driving factors is critical to develop setting-specific
control strategies to reduce diarrhea burden.

In Ghana, similar to other low-income countries, diarrhea

ranks among the top ten causes of morbidity and mortality.
In 2015, the estimated number of diarrhea-associated deaths

among all ages and children under 5 years were approximately
3,800 and 1,700, respectively (18). In addition to the health
burden of diarrhea, there is also a significant economic burden
on both individuals and the country (19). In northern Ghana,
Aikins et al. (20) estimated the treatment cost per outpatient
and inpatient diarrhea to be US$3.86–4.35 and US$65.14–
133.86 (based on 2003 and 2004 US dollars), respectively
depending upon treatment regime, which is high for the low-
income population. The main treatment for both inpatients
and outpatients with diarrhea includes administration of oral

rehydration solutions and antibiotics (20). Therefore, reducing
the diarrhea burden in Ghana should have both health and
economic benefits.

A number of models have been developed to predict
spatiotemporal patterns of diarrhea incidence using a
combination of environmental and socio-economic factors
(6, 9, 21, 22). While these models tend to provide reliable
estimates of diarrhea patterns, they are often carried out over
large spatial scales, particularly at country and state levels. Thus,
it is important to accurately model the spatiotemporal diarrhea
patterns at finer spatial scales to provide useful information to
evaluate current control programs at the local level.

To address this, we used a hierarchical Bayesian
spatiotemporal modeling framework to quantify associations
between meteorological and socio-demographic factors and
district-level diarrhea incidence in Ghana between 2012 and
2018. We also investigated variations in the impact of these
factors on diarrhea across the four agro-ecological zones in the
country. The results can help policy-makers to identify high-risk
diarrhea districts for which improved interventions are needed.

METHODS AND DATA

Diarrhea Data and Study Area Description
Monthly district-level diarrhea morbidity records were obtained
from the Center for Health Information and Management
(CHIM) of the Ghana Health Services (GHS) for 2012 to 2018.
Diarrhea was clinically diagnosed, and methods of detection
and reporting were consistent across districts. Currently, Ghana
consists of 16 regions and 260 districts. However, our data
consist of 216 districts between 2012 and 2014 and 260 districts
beginning in 2015. In order to use all the available data, we
merged the diarrhea data for districts that were split from the
original 216 in 2014. Annual district-level population estimates
were obtained from the Ghana Statistical Service (GSS). We
calculated the monthly crude incidence of diarrhea per 10,000
persons for each district by dividing the monthly diarrhea cases
by the district population.

Meteorological Data
We used daily rainfall estimates from the Climate Hazards
group Infrared Precipitation with Stations (CHIRPS) with
a spatial resolution of 0.05◦ X 0.05◦ (23). Monthly mean
(Tmean), minimum (Tmin), and maximum (Tmax) 2-meter air
temperature data were obtained from the European Center for
Medium-Range Weather Forecasts (ECMWF) fifth-generation
reanalysis ERA5 (24), which has a spatial resolution of 0.25◦ X
0.25◦. Both datasets were extracted over Ghana for the study
period 2012 to 2018. The daily Tmax and Tmin were used to
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TABLE 1 | Set of fixed parameters used in the surface water presence model

(Equation 1).

Parameter Value Reference

ωmax 0.1 (30)

ωref 0.005 (30)

href (mm) 250 (30)

ρs 1.5 (30)

CN 90 (29)

E (mm) 5 (30)

Imax (mm) 250 (30)

calculate the diurnal temperature range (dtr = Tmax-Tmin),
which is inversely associated with humidity. The daily dtr was
averaged for each month. Tmean and dtr were included as
explanatory variables because they have been shown to influence
the survival of diarrheal pathogens (25, 26).

The rainfall data were used to run a surface hydrology
model (used as a proxy for persistent flooding) developed
by Asare et al. (27, 28) that predicts fractional surface water
presence (wpre) in each grid cell at each time step. The
remaining model inputs are derived; the model equation
is given by:

dωpond

dt
=

2

ρhref

(

ωref

ωpond

)
ρs
2
((

Q
(

ωmax − ωpond

)

+ Pωpond

)

(

1− f
)

− ωpond

(

E+ fImax
))

(1)

where ωpond is the daily fractional water coverage in a grid cell,
ρs is the shape factor, ωmax is the maximum water coverage,
href is the reference water depth, ωref is the reference fractional
water coverage, Imax is the maximum infiltration which is
controlled by the scaling factor (f =

ωpond

ωmax
), P is the rainfall,

E is the evaporation, and Q is estimated based on the soil
conservation service curve number (SCS-CN) method (29). The
fixed model parameters are provided in Table 1. The daily
model output is aggregated to monthly temporal resolutions.
We included wpre in the model because it plays an important
role in the concentration, transport and distribution of diarrheal
pathogens (31–33).

As a preliminary analysis, we examined the Pearson’s
correlations between the meteorological factors and monthly
district-level diarrhea incidence.

Socio-Demographic Data
We used the Gini index (34) as a proxy for socio-economic
inequality. The Gini index ranges from 0 to 100%, with the
highest values corresponding to high levels of income inequality.
The district-level Gini index data were obtained from the
2015 report on poverty mapping in Ghana (35), which was
derived based on the 2010 Population and Housing Census
Data. We assumed constant Gini index over the study period;

therefore, this variable only captures potential spatial variation
in diarrhea incidence.

We used the Ghana District League Table (DLT) score, an
index that represents the overall level of development across
the districts (36). The DLT index is generated by aggregating
seven key sector indicators (health, water, education, sanitation,
security, governance, and child protection) into a single score
ranging from 0 to 100%. Since the DLT index is only available
from 2014, we used the 2014 index for 2012 and 2013.

The population density data were obtained from the
WorldPop database (https://www.worldpop.org/). This gridded
dataset has a spatial resolution of 1 km. The district-level
population density data were estimated by averaging all the grid
cell values within each district polygon.

Statistical Analysis
We utilized a hierarchical Bayesian spatiotemporal modeling
framework to quantify how meteorological and socio-
demographic factors influence the spatiotemporal heterogeneity
of diarrhea incidence in Ghana. The number of diarrhea cases
in district k (k = 1, 2, . . . , 216) and month t (t = 1, 2, . . . , 84),
Ykt , were assumed to follow a Poisson distribution with mean λkt
such that

Ykt ∼ Poisson (λkt) ,

ln (λkt) = ln (Ekt) + ρkt (2)

where ρkt and Ekt represent the log relative risk (RR) and
expected number of cases in district k in month t, respectively.
The expected number of cases was calculated as the monthly
mean national diarrhea incidence rate multiplied by the
population at risk in each district for each month.

The log relative risk, ρkt , was modeled as a function of
covariates and random effects, such that

ρkt = β0 + β1
(

wprekt
)

+ β2
(

dtrkt
)

+ β3 (Tmeankt)

+ β4
(

popdenkt
)

+ β5 (Ginik) + β6 (DLTkt) + φk (3)

where β0 is the intercept; β1, β2, β3, β4, β5, β6 are the regression
coefficients for the explanatory variables, including the surface
water presence (wpre), diurnal temperature range (dtr), mean
temperature (Tmean), population density (popden), Gini index
(Gini), and District League Table (DLT) score, respectively; and
φk is the spatially-correlated random effect parameter from the
kth district. We considered linear terms for all covariates without
interactions because our focus was on the interpretability of
the main effects. We used Pearson’s correlation test to identify
possible collinearity amongst the explanatory variables. The
association between each of the covariates and diarrhea incidence
was quantified in terms of RR for a one standard deviation
increase in a covariate. The RR for the ith covariate (i.e., RRi) is
calculated as exp (βi).

We modeled the spatially correlated random effects using
the Leroux version of the conditional autoregressive model (37),
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which is best understood conditionally such that

φk|φ−k ∼ N

(

ρ
∑216

i=1 wkiφi

ρ
∑216

i=1 wki + 1− ρ
,

τ 2

ρ
∑216

i=1 wki + 1− ρ

)

(4)

where φ−k is the complete vector of spatial random effect
parameters with φk removed; wki = 1 if districts k and i share
a common border and ωki = 0 otherwise (wkk = 0 for all k by
definition); ρ ∈ (0, 1) controls the strength of spatial correlation
in the parameters with values near 1 indicating strong correlation
and values near 0 suggesting independence; and τ 2 is the variance
of the random effects. This model suggests that a priori the
random effect parameter from district k is normally distributed
with the mean equal to a weighted average of its neighbors’
values and variance defined as a function of the total number of
neighbors it has.

Prior Distributions
We used weakly informative prior distributions for each of
the unknown model parameters to allow the data to drive the
inference. The priors are specified as follows: β = (β1-β6) ∼N
(0,1002), σ2 ∼ InverseGamma (1.00,0.01), τ 2 ∼ InverseGamma
(1.00,0.01), and ρ ∼ uniform (0, 1).

Model Fitting
Model parameters were estimated using a Markov chain Monte
Carlo (MCMC) sampling algorithm where we used three
independent chains. Variables were standardized prior to model
fitting for computational stability. We ran each chain for 320,000
iterations and discarded the first 220,000 as burn-in prior to
convergence of the model. The remaining samples were thinned
by a factor of 10, yielding 10,000 nearly independent posterior
samples per chain for post-processing. Convergence was assessed
by Geweke z-score diagnostics (38) for the model parameters.
The models were fitted to both the whole district-level data and
subsets of the data (the four agro-ecological zone: coastal, forest,
transition and savannah zones) using the multi-level function
S.CARmultilevel in the CAR-Bayes package in R (39).

RESULTS

Between 2012 and 2018, the mean monthly diarrhea incidence
was 643 (range: 4–7304) per 10,000 people (Table 2). The overall
average district-level diarrhea incidence between 2012 and 2018
ranged from 80 (Akwapem South) to 2,978 (Bia West) per 10,000
people. The summary descriptive statistics of the variables for the
agro-ecological zones are provided in Supplementary Table S1.
The average monthly temporal pattern revealed a biannual
incidence of diarrhea with slight peaks in June and October
(Figure 1A). There was no substantial change in themean annual
trend in the overall diarrhea incidence (Figure 1B).

The Gini index varied between 27% (Upper Manya) and 64%
(Sunyani Municipal), with a strong clustering along the western
border of the country (Table 2 and Supplementary Figure S1A).
The population density varied widely across the districts, ranging
from 9 (North Gonja) to 14,119 (Accra Metropolitan Assembly)
people per km2 (Table 2 and Supplementary Figure S1B). The

TABLE 2 | Summary statistics of raw diarrhea incidence and potential explanatory

variables.

Variable Mean (SD) Range Median (Quartiles)

Diarrhea (per 10,000) 643.4 (449.2) 4.0, 7304.0 542.0 (352.0, 819.2)

dtr (◦C) 0.547 (0.301) 0.000, 1.900 0.507 (0.321, 0.738)

Tmean (◦C) 27.21 (1.796) 23.02, 34.30 27.01 (25.95, 28.13)

wpre 0.006 (0.005) 0.000, 0.023 0.006 (0.002, 0.009)

Gini index (%) 38.94 (6.118) 27.2, 64.00 37.40 (34.67, 42.27)

DLT score (%) 57.25 (11.40) 0.00, 100.00 58.68 (52.15, 64.97)

Population density

(people/km2 )

504.39 (1609.9) 8.7, 14118.8 120.5 (68.0, 265.0)

wpre, surface water presence; dtr, diurnal temperature range; Tmean, mean temperature;

DLT score, District League Table score.

DLT score varied between 0% (Asokore Mampong) and 100%
(Asante Akim North) (Table 2 and Supplementary Figure S1C),
with a substantial concentration of poorly developed districts
mostly found in the eastern part of the country stretching
between savannah and forest agro-ecological zones.

The district-level correlation coefficients between monthly
diarrhea incidence and environmental factors ranged from
−0.52 to 0.48 for Tmean (Supplementary Figure S2A), −0.51
to 0.37 for dtr (Supplementary Figure S2B), and −0.33 to 0.44
for wpre (Supplementary Figure S2C). Tmean and dtr were
mostly positively correlated with diarrhea in the southern part
of the country, while positive correlations with wpre were
predominantly found in the northern part of Ghana. The
Pearson’s correlation matrix did not reveal high correlations
between the covariates (|r| < 0.7) (Supplementary Table S2),
suggesting the absence of collinearity.

For the spatiotemporal model, the Gini index, DLT score, and
surface water presence were positively associated with diarrhea
incidence, while mean temperature, diurnal temperature range,
and population density showed negative associations with
diarrhea incidence (Table 3). Population density had the most
significant impact on diarrhea; a standard deviation (SD)
decrease in population density was associated with a 50%
(1/0.667) increase in diarrhea incidence. This was followed by
the Gini index, for which a 1 SD increase was associated with a
16% increase in diarrhea incidence. The DLT score had the least
significant impact on diarrhea, with 1 SD increase in DLT score
associated with a 0.8% increase in diarrhea. The meteorological
variable that showed the strongest association with diarrhea
was diurnal temperature range, for which a 1 SD decrease was
associated with a 2% increase in diarrhea incidence, whereas
the effect of surface water presence and mean temperature were
similar but opposite in direction (a 1.4% and 1.3% increase
in diarrhea incidence for a 1 SD increase or decrease in wpre
and Tmean, respectively). The Geweke z-score diagnostics are
listed in Supplementary Table S3, with no obvious signs of non-
convergence observed.

The socio-demographic and meteorological factors were
significant risk factors for diarrhea across the four agro-
ecological zones (Table 4). However, there were differences in
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FIGURE 1 | Average trends of diarrhea incidence across all districts between 2012 and 2018. (A) Monthly and (B) annual trends.

TABLE 3 | Relative risk of diarrhea associated with meteorological and

socio-demographic factors for the full spatiotemporal model.

Variable RR 2.5% 97.5%

wpre 1.014 1.013 1.014

dtr 0.980 0.978 0.982

Tmean 0.987 0.986 0.988

Population density 0.667 0.659 0.673

Gini index 1.155 1.045 1.294

DLT score 1.008 1.007 1.009

The posterior median and 95% quantile-based credible intervals are given for each

covariate on the relative risk scale, with a one standard deviation change in covariate

value interpretation (see Table 2). wpre, surface water presence; dtr, diurnal temperature

range; Tmean, mean temperature; DLT score, District League Table score.

the strength and direction of associations across the different
zones. Population density showed the greatest difference in
relative risk across the agro-ecological zones; 165% (1/0.377)
for the coastal zone and 4% (1/0.961) for the savannah zone.
All the socio-demographic factors showed significant negative
associations with diarrhea in the coastal zone. Surface water
presence, diurnal temperature range and population density
exhibited consistent but opposite directions of association with
diarrhea incidence across the agro-ecological zones; surface
water presence was positively associated with diarrhea incidence,
while diurnal temperature range and population density were
negatively associated (Table 4). There was a positive association
between diarrhea incidence and mean temperature, except in the
savannah zone. Positive associations between diarrhea incidence
and DLT score were observed in the forest and savannah zones,

whereas negative associations were found in the coastal and
transition zones.

Spatial and temporal patterns in the modeled average
diarrhea incidence were consistent with the observed patterns
(Supplementary Figures S3, S4). Figure 2 shows the posterior
median estimates of the exponentiated spatial random effect
parameters (φk), resulting in a RR interpretation. These
parameters represent excess spatial risk of diarrhea after
adjustment for the included covariates (i.e., residual risk). The
RRs vary between 0.07 and 6.66. More than a third (38%) of
the districts had a relative risk >1; most of the higher risk
districts were located in the western part of the country. A
south to north gradient increase in RR was also evident when
the model was fitted separately for the four agro-ecological
zones (Supplementary Figure S5). The lowest RR was present in
urban districts within Accra and Kumasi, the two major cities in
the country.

DISCUSSION

Our results highlight the extent to which the spatiotemporal
distribution of diarrhea incidence in Ghana is associated
with meteorological and socio-demographic factors. All of
the explanatory variables we explored exhibited significant
associations with diarrhea incidence. However, there
were clear differences in the strength and direction of
associations between these explanatory variables and diarrhea
across the four agro-ecological zones. We find that socio-
demographic factors (particularly population density and
Gini index) rather than meteorological factors are the
strongest predictors of the spatiotemporal distribution of
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TABLE 4 | Relative risk of diarrhea associated with meteorological and socio-demographic factors for the models fitted to each agro-ecological zone.

Variable Coastal Forest Transition Savannah

RR (95% CrI) RR (95% CrI) RR (95% CrI) RR (95% CrI)

wpre 1.021 (1.019, 1.023) 1.006 (1.004, 1.008) 1.016 (1.014, 1.017) 1.012 (1.010, 1.015)

dtr 0.973 (0.967, 0.982) 0.994 (0.991, 0.997) 0.960 (0.957, 0.963) 0.966 (0.963, 0.969)

Tmean 1.005 (1.002, 1.007) 1.009 (1.008, 1.011) 1.049 (1.047, 1.051) 0.941 (0.940, 0.943)

Population density 0.377 (0.366, 0.390) 0.868 (0.852, 0.884) 0.958 (0.946, 0.971) 0.961 (0.938, 0.983)

Gini index 0.884 (0.820, 0.934) 1.138 (1.011, 1.186) 1.203 (1.072, 1.324) 1.230 (1.182, 1.446)

DLT score 0.967 (0.965, 0.970) 1.027 (1.025, 1.029) 0.995 (0.993, 0.997) 1.017 (1.015, 1.019)

The posterior median and 95% quantile-based credible intervals (95% Crl) are shown for each covariate for the four agro-ecological zones on the relative risk scale, with a one standard

deviation change in covariate value interpretation. wpre, surface water presence; dtr, diurnal temperature range; Tmean, mean temperature; DLT score, District League Table score.

FIGURE 2 | Map of posterior median estimates of the spatial random effects.

Districts with lower than expected risk (RR <1) are in blue, while those with

excess risk (RR >1) are in red. The black bold line indicates agro-ecological

zone boundaries. CO, Coastal zone; FO, Forest zone; TR, Transition zone; SA,

Savannah zone.

diarrhea risk. The results have identified clusters of districts
in Ghana associated with a higher than expected incidence of
diarrhea, which could inform policy-makers when planning
intervention strategies.

The seemingly high incidence of diarrhea in the northern part
of the country (transition and savannah zones) may be a result
of multiple factors. One possible explanation is the differential
performance of rotavirus vaccine in Ghana, where vaccine impact
has been lower in the northern part of the country (40). Rotavirus
is the leading diarrheal pathogen among children under 5 years
of age, and children account for a high proportion of diarrhea

incidence in Ghana (41). Secondly, the low coverage of WASH
infrastructure mostly in the transition and savannah zones
could be a contributing factor. For instance, the proportion of
households without toilets (42) and that practice open defecation
(43), which are important risk factors of diarrhea, are high in
the transition and savannah zones compared to the rest of the
country, particularly in the upper East region, where we observed
clusters of diarrhea risk (43). In addition, prevalence of childhood
malnutrition is higher in the savannah zone, accounting for
55% of the country’s malnutrition (44). The overall high level of
poverty and inequality (Gini index) and low level of development
(DLT score) across the districts within these two zones (36, 45)
also contributed to the estimated high diarrhea risk.

The overall low relative risk of diarrhea in the coastal agro-
ecological zone may be attributed to the combination of Gini
index, overall level of poverty, population density, and DLT
score. Similar to other low-income settings, there is a negative
association between poverty and income inequality in Ghana
(46, 47). There is a sharp decrease in Gini index and increase
in poverty as you move from urban toward peri-urban and rural
districts in Ghana.While population density is high in the coastal
zone, there is also more highly developed water and sanitation
infrastructure compared to other zones. The DLT score is highest
in Greater Accra region followed by Central region (both within
the coastal zone) (36).

The direction of associations between Gini index and DLT
score covariates with diarrhea were significant and similar
with the exception of the transition zone. Both covariates
can indicate levels of inequality across the districts leading
to hotspots of diarrhea. For instance, when Gini index is
high, the uneven distribution of wealth can lead to disparity
in the level of development (DLT score) particularly related
to household WASH infrastructure. Thus, policies aiming at
reducing Gini index and increasing DLT score indicators across
the districts are likely to reduce the overall diarrhea burden in
the country.

Our results indicate a consistent significant negative
association between population density and diarrhea incidence
in Ghana and across the agro-ecological zones. This finding
agrees with a negative association found between cholera risk
and population density (48). However, the strength of the
association decreases substantially toward the northern part of
the country, with about a 2.5-fold difference in the relative risk
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of diarrhea between the coastal and savannah agro-ecological
zones. This difference in the relative risk between these two
zones can be partly explained by the relationship between
disparity in the level of development (based on DLT score), level
of sanitation infrastructure development, and the population
growth rate. There is a clear substantial south-north decreasing
trend in DLT score (36). The coastal zone is densely populated
(including Accra, the capital city), but has more developed
water and sanitation infrastructure and a higher DLT score,
thus associating with an overall lower risk of diarrhea. On the
contrary, the savannah zone exhibits low population density,
inadequate WASH infrastructure, and lower DLT scores,
associating with a high diarrhea risk. The DLT score could
be useful to identify and inform the development of effective
interventions to reduce diarrhea in the high-risk districts.

Generally, the relative risk of diarrhea tends to be
greater in peri-urban districts compared with urban and
rural districts, which agrees with previous studies (49, 50).
Population spill-over from the urban districts and high
levels of rural-urban migration have led to high population
density in peri-urban districts. Peri-urban districts are
usually characterized by inadequate sanitation facilities and
a high proportion of households living in slum conditions.
These slums tend to be hotspots for diarrhea. Similar high
diarrhea risk in slums compared with rural settings has
been found elsewhere (51, 52). Thus, improvements in
sanitation in peri-urban districts in Ghana will likely reduce the
diarrhea burden.

We found significant positive associations between surface
water presence (a proxy for persistent flooding) and diarrhea
for the entire country and across the four agro-ecological
zones. This consistent positive association based on a surface
hydrology model is different from studies that have reported
both positive and negative associations between diarrhea and
rainfall/flooding (8, 31–33, 53). Different rainfall regimes
can have varied associations with diarrhea depending on the
surface antecedent conditions (54). Non-linear associations
between rainfall and diarrhea may also be due to differences
in climatic conditions and dominant diarrheal pathogens
across study areas. Our results highlight that a rainfall-driven
surface hydrology model can better account for pathogen
concentration and dilution effects, since it incorporates
the surface antecedent conditions, thus making it a better
predictor of diarrhea risk than rainfall alone. Despite the
estimated positive associations across different climatic
conditions found in Ghana, future studies should explore
whether surface water presence is an important diarrhea risk
factor across different climatic conditions and under future
climate change.

While the effect of mean temperature on diarrhea has
been extensively studied, both significant positive and negative
associations with diarrhea risk have been reported (9, 55–58).
There are multiple factors that may contribute to this, including
climatic conditions of the study region, dominant diarrheal
pathogens, demographics of the study population (i.e., all ages,
or restricted categories of age groups, particularly children
<5 years old) and the temporal resolution of the data. In

Afghanistan, positive and negative associations with diarrhea
were found with daily and annual temperatures, respectively
(9). Despite the overall significant negative association between
mean temperature and diarrhea, three (coastal, forest and
transition) out of four agro-ecological zones exhibited a positive
association, which may be due to the marked difference
in climatic conditions between the savannah (which has a
prolonged dry season with high temperatures) and the three
other zones, as well as the predominant pathogens in the
different regions. The impact of temperature on the survival
and replication of diarrheal pathogens differs. For instance,
viral pathogen activity tends to be highest during the cooler
dry season, while bacterial pathogens tend to predominate
during the warmer rainy season (25). The similarity in both
direction and strength of association for the overall and the
savannah zone likely reflects the high diarrhea incidence in
this zone.

The diurnal temperature range showed a consistent significant
negative association with diarrhea, suggesting that highly
variable monthly temperature fluctuations could affect diarrhea
incidence in Ghana. A possible reason is that diarrhea peaks
during the rainy season, which coincides with the period
of low temperature variation. This result differs from the
reported positive association between diurnal temperature range
and childhood diarrhea in Brisbane, Australia (59), which
may be partly due to the study population and dominant
diarrheal pathogens. Since diurnal temperature range is an
important indicator of climate change, additional studies are
required to quantify the impact of diurnal temperature variation
across different diarrheal pathogens and age groups under
future climates.

There are several factors that could potentially impact our
results. First, disparities in access and proximity to health
facilities across the districts may affect diarrhea reporting. While
those living in districts with readily available health facilities
may seek care for both mild and severe cases of diarrhea, those
living in districts with limited health facilitates may not seek care
except for severe cases due to the distance. There is also the
possibility that some people attend hospitals in a different district
from where they live. Second, although we observed a significant
association between Gini index and diarrhea risk, it is noteworthy
to point out that the Gini index was calculated based on 2010
census data; thus, not accounting for temporal changes in Gini
index may impact the strength and direction of the associations
we found. Third, our data were not stratified by age, and it is
possible that associations may differ across age groups. Children
under 5 years of age are the most susceptible to diarrhea. Further
efforts should be directed at examining how heterogeneity in
this age group across the districts may influence the direction
of associations between meteorological and socio-demographic
factors and diarrhea.

In summary, the burden of diarrhea in Ghana is concentrated
in the western part of the country, particularly within the
transition and savannah agro-ecological zones. As most of
the districts within these two zones exhibit poorer levels of
development (based on DLT score), future studies should
consider evaluating separately the impact of the indicators
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(particularly potable water and sanitation coverage) used to
estimate the DLT score on household diarrhea incidence. Ghana
health sector policy-makers can use the DLT score to formulate
appropriate control strategies aimed at prioritizing resource
allocation for diarrhea control.
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