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War and conflict are global phenomena, identified as stress-inducing triggers for
epigenetic modifications. In this state-of-the-science narrative review based on
systematic principles, we summarise existing data to explore the outcomes of these
exposures especially in veterans and show that they may result in an increased likelihood
of developing gastrointestinal, auditory, metabolic and circadian issues, as well as post-
traumatic stress disorder (PTSD). We also note that, despite a potential “healthy soldier
effect”, both veterans and civilians with PTSD exhibit the altered DNA methylation status
in hypothalamic–pituitary–adrenal (HPA) axis regulatory genes such as NR3C1. Genes
associated with sleep (PAX8; LHX1) are seen to be differentially methylated in veterans. A
limited number of studies also revealed hereditary effects of war exposure across
groups: decreased cortisol levels and a heightened (sex-linked) mortality risk in
offspring. Future large-scale studies further identifying the heritable risks of war, as well
as any potential differences between military and civilian populations, would be valuable
to inform future healthcare directives.
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Background

The epigenome, a collaborative effort of DNA and its modifications, can be readily modified

in response to internal and external changes (1–9). Epigenetics may impact the individual, for

example, work-related stress and depression result in altered DNA methylation of the

glucocorticoid receptor (GR) gene (NR3C1; nuclear receptor subfamily 3 group C member 1),

an area well reviewed by Bakusic et al. (10). Epigenetic modifications may be inherited by

progeny, and even in the offspring of progeny. Such inheritance is termed “intergenerational”,
Abbreviations

ADCYAP1R1, pituitary adenylate cyclase-activating polypeptide type I receptor (PAC-1); AHRR, aryl-hydrocarbon
receptor repressor; BDNF, brain-derived neurotrophic factor; CpG, cytosine and guanine appearing consecutively
on the same strand of nucleic acid; gene methylation often occurring on the cytosine; DMP, differentially
methylated position; DMR, differentially methylated region; FKBP5, FK506 binding protein 5, involved in
assembly of glucocorticoid receptor complex; GC, glucocorticoid; GR, glucocorticoid receptor; IBS, irritable bowel
syndrome; MAO-A, monoamine oxidase-A; MAO-B, monoamine oxidase-B; PACAP, pituitary adenylate cyclase-
activating polypeptide; POW, prisoner of war; PTSD, post-traumatic stress disorder; SNP, single nucleotide
polymorphism; TBI, traumatic brain injury; HDAC, histone deacetylate; HPA, hypothalamic-pituitary-adrenal;
HSE, healthy soldier effect; MHC, major histocompatibility complex; NR3C1, nuclear receptor subfamily 3 group
C member 1, glucocorticoid receptor gene; NR3C2, nuclear receptor subfamily 3 group C member 2, mineral
glucocorticoid receptor gene; STAT5B, stat five B inhibitor, GR inhibitor; VPA, valproic acid, HDAC inhibitor.
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except in instances where the generation could never have been

exposed to stress stimuli (e.g., the grandparent was not pregnant at

the time), in which case it is “transgenerational” (11). Non-genetic

influence includes the impact of experiences from previous

generations, passed down through shared stories or the spoken

word, an effect referred to as “intergenerational trauma,” which

may contribute to PTSD (12–14).

Our review discusses epigenetic impacts and phenotypic outcomes

on individuals and families affected by conflict and war, summarised

in Figure 1. Exploring whether military populations differ

epigenetically in response to conflict when compared to civilians is

important. First, as the rigorous military selection process generates

a population of highly fit and healthy individuals compared to

general society. Second, both military and civilian populations may

witness and experience the long-term physical, psychological and

economic impacts of war, but it is, in most instances, only military

personnel who are expected to actively participate in planned,

targeted assault. Therefore, these differential impacts may result in

different health outcomes where a one-size-fits-all treatment

approach will be ineffective. Current research demonstrates the long-

reaching impacts of stressors, such as famine on metabolic,

cardiovascular and cerebral health (15). The current global issues,

including the war in Ukraine, civil unrest in Iran, upheaval in

Afghanistan, conflict in Ethiopia, South Sudan, and Syria (and

undoubtably numerous more yet less widely publicised unrest),

result in a drive to take in refugees. One review has noted primary

healthcare as the prevalent support type used by refugees (98.7%)

and found to be the most useful (27.5%) (16). This highlights
FIGURE 1

Epigenetic effects from exposure to war and conflict. Upon the individual: decrea
noradrenaline**, tinnitus, immune dysfunction, Alzheimer’s disease**, obesity, an
Inherited: decreased cortisol and mortality*, and increased risk of PTSD but also r
altered) that are associated with these pathologies and may occur different
confounding “healthy solider effect”. **Increased risk only in individuals with PT
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the necessity to understand epigenetic impacts that may

further contribute to, or drive, psychological and/or physiological

complications to improve support for vulnerable populations.
Post-Traumatic Stress Disorder

Hypothalamic–pituitary–adrenal (HPA) axis dysfunction is one

of the aetiological factors linked with PTSD (17, 18). The GR,

responding to cortisol, is a key player in this axis (19). Increases in

cortisol are often associated with higher levels of stress.

Paradoxically, patients with chronic PTSD may exhibit lower

cortisol, and lowered urinary cortisol after a traumatic event may

be predictive of PTSD development (18, 20). It is important to

note that cortisol levels are not pathologically low, and still follow

a circadian rhythm, but are significantly lower compared to

individuals without PTSD (18, 21). In PTSD, a spiking of cortisol

levels may also be seen in acute therapy stages, and the

administration of a low dose of cortisol may hold promise for

alleviation (18, 22). Indeed, administration of dexamethasone (to

suppress cortisol) in veterans resulted in a positive correlation

between suppression and the severity of PTSD symptoms (18, 23).

Yehuda et al. summarise from their research that reduced cortisol

may occur due to enhanced negative feedback sensitivity of the

HPA axis, i.e., cortisol suppression (18). As an increased number

of GRs are seen in individuals with PTSD, the physiological

response may still be high despite these lowered levels of cortisol (24).
sed cortisol, mortality* and sleep quality/quantity; increased mortality, PTSD,
xiety, depression, gastrointestinal ulcers and IBS in children exposed to war.
esilience. Noted are genes (and the microRNA miR-125a where expression is
ially methylated and/or expressed. *Decreased mortality, potentially as a
SD. IBS, irritable bowel syndrome; PTSD, post-traumatic stress disorder.
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Altered methylation may result in reduced (or increased) gene

expression and, in genes related to the HPA axis, influence the

suppression of the sympathetic nervous system. Individuals who

have experienced emotional and/or sexual trauma have been

reported to show both increased methylation at the promoter

region of the NR3C1 (the GR gene) and reduced messenger RNA

(mRNA) levels of the receptor (25, 26). Conversely, another study

reported that individuals with lifetime PTSD showed reduced

methylation of NR3C1 at promoter regions and an inverse

correlation with overall mRNA expression, which, in turn,

inversely correlated with cortisol levels (27). These data reveal the

complexity of the HPA axis effects from epigenetic changes; given

there are different promoter regions of the gene, this may play a

role in differential results. FK506 binding protein 5 (FKBP5) is a

negative regulator of GR via the signalling and translocation of

glucocorticoids to modulate sensitivity (28) and is also associated

with both genetic and environmental modifications (29, 30).

Decreased methylation of FKBP5 (predicating increased

expression) was found in individuals exposed to early trauma and

associated with the GR-induced transcription of FKBP5, resulting

in chronic dysregulation of stress hormones (30). Epigenetic marks,

i.e., methylation of FKBP5 and/or NR3C1, have been proposed as

a possible predictor for the severity of PTSD as well as to define

treatment outcome (31–33).

Other genes have also been linked to PTSD symptoms (26). A

sex-linked effect for higher levels of circulating peptide [pituitary

adenylate cyclase-activating polypeptide (PACAP)], which binds to

the pituitary adenylate cyclase-activating polypeptide type I

receptor (ADCYAP1R1; PAC-1), was seen for the female

symptoms/diagnosis of PTSD (34). Increased methylation of a CpG

island of PAC-1 was predictive of PTSD, in a non-sex-specific

manner (34) and found in male veterans with PTSD (35). This

suggests functionally relevant epigenetic effects may occur as a

result of PTSD exposure. Multiple microRNAs (miRNAs) have

been shown to play a significant role in the regulation of fear, with

differential expression observed in individuals with PTSD (36).

Understanding the role of epigenetics in the pathogenesis of

PTSD has allowed for research to be conducted into the

therapeutic uses of these epigenetic modifications. A common

focus of PTSD treatment is the extinction of memories that cause

fear (37). Studies on mice have revealed histone acetylation,

methylation, and DNA methylation all contribute to memory

extinction (38). Valproic acid (VPA), a histone deacetylate

(HDAC) inhibitor, enhances extinction memory for fear associated

with audio (39). Murphy and Singewald suggest increasing the

occurrence of acetylation promotes de novo transcription,

translation and gene expression to allow for the consolidation of

long-term extinction memory (36). The use of VPA, an established

mood stabiliser for bipolar disorders, has been suggested for the

treatment of PTSD alongside psychotherapy (40, 41). Potential

treatments, underpinned by epigenetic changes, indicate the

importance of understanding these underlying modifications to

better aid patients in future.

To summarise, a number of players (e.g., FKBP5, NR3C1,

PACAP, PAC-1, and HDAC) can be linked to the pathophysiology

of PTSD, likely due to influences on the HPA axis. Next, we will

discuss how the trauma of war may evoke these symptoms.
Frontiers in Epidemiology 03
War and military personnel

Trauma, the exposure to a distressing or disturbing experience,

can have long-term negative impacts on individuals that may lead

to PTSD (a common diagnosis made in the aftermath of war and

conflict) (17, 42). As PTSD-related epigenetic modifications may

impact the longevity of individuals, we first evaluate the normal

longevity seen in military personnel.

Hartal et al. compared the life expectancy of retired military

personnel to the general population and found the mean age at

death was greater in comparison to their sex- and birth-matched

equivalents in the civilian population. The average life expectancy

was found to be exceeded by 67.9% of retired service members (43).

The authors attributed many of these results to the “healthy soldier

effect” (HSE), which persists even 30 years after service (44), a

variation of the “healthy worker effect” (45). This is a tendency for

people who work in physically demanding environments—

particularly the military—to exhibit lower mortality and morbidity

rates relative to the general population, due to the exclusion of those

with poor health from participating (46). Soldiers in the US who are

wounded in battle receive a Purple Heart (PH) decoration. In

veterans aged 65 years and over, PH recipients with or without

PTSD showed halved rates of mortality in comparison to those

without the award (47). This could be attributed to a “survivor

effect,” where the less healthy in this cohort of injured veterans did

not survive to this timepoint. Alternatively, veterans who have been

injured during combat may receive priority medical care. The

epigenetic impact of stressors that military personnel experience may

be influenced by these factors.

Verhoeven et al. found the epigenetic age of veterans with PTSD,

defined by the methylation of leukocyte DNA, was significantly lower

than those without (48). This was partly explained through use of

antidepressants, which was associated with reducing telomerase

activity and, in turn, genetic aging. However, veterans with PTSD,

versus those who have been exposed to trauma but did not have

PTSD, have been shown to exhibit the following: (1) increased

plasma lipids (49); (2) an exacerbated startle response upon

exposure to yohimbine, a noradrenaline inhibitor antagonist (50);

and (3) a heightened experience of odour intensity with decreased

heart rate in response to burning rubber (a trauma cue) (51).

Therefore, despite a proposed increase in longevity among

veterans, the physiological impacts of PTSD persist. We next

consider how the epigenetic factors specifically may occur after

exposure to conflict.
Epigenetic impacts of war

Exposure to war results in a plethora of biological impacts,

described below and summarised in Figure 1. The physiological

effects of war trauma seen in veterans with PTSD include co-

morbid chronic pain (which may reduce alongside PTSD

treatment) (52, 53). These findings were applicable to both male

and female veterans (53), although the lack of data pertaining to

female veterans often makes sex-specific effects difficult to explore.

Other pathologies incurred from war include a higher incidence of

peptic ulcers in veterans and increases in dyspepsia and heartburn
frontiersin.org
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(2). Australian combat prisoners of war (POWs) in World War II

(WWII) Japanese camps exhibited an increased rate of

gastrointestinal ulcers (1). Children exposed to war exhibit an

increased likelihood of irritable bowel syndrome (IBS), a condition

also more common in veteran populations (4). An increased risk

of obesity was observed in male veterans but, when adjusted for,

were no more likely to exhibit hypertension or diabetes (7).

One group found no change in POW medical mortality (54) but,

later, found a clear increase at 5–14 years after WWII, which reduced

after this point. This indicates an individual’s age at the time of war

ending may influence mortality (55). Costa et al. also highlighted an

age-related effect; after 30, the age at which a POW became

imprisoned resulted in a range of differing effects during ageing.

Survivors with the worst conditions showed reduced mortality versus

non-POWs (or POWs when conditions were not so poor) 35 years

post-imprisonment (56). An established increased risk of mortality

through ischemic heart disease was found to be even more prevalent

after 75 years of age (57, 58). POWs aged younger than 30 years

showed an increased risk of cardio- and cerebrovascular disease as

well as morbidity from the former (56). As an increased risk of

cardiovascular disease is also seen in those prenatally exposed to

famine, the malnutrition experienced by POWs may therefore

convolute specific impacts of war (e.g., combat exposure) (59, 60).

During WWII, the genocide of six million European Jews and other

ethnic and societal minorities occurred. Studies on individuals

exposed to the Shoah provide information on those experiencing the

effects of war through torture, and genocide, but also severe famine.

Despite these impacts, small-scale Holocaust studies did not reveal

an increased risk of mortality at two timepoints [20–41 (61) and

40–50 (62) years after WWII].

As with other civilian populations, veterans (as well as those

exposed to the Holocaust 63), despite often showing increased

resilience, are at risk of mental health conditions such as depression

and anxiety, which negatively impact on quality of life (64–69). A

reduced expression of brain-derived neurotrophic factor (BDNF) is

exhibited in depression (70) and has been found to be dysregulated

in PTSD/traumatic brain injury (TBI) in veterans (71). In addition,

one study revealed the increased methylation of the BDNF promoter

region is associated with a PTSD diagnosis in Vietnam War veterans

(72). Furthermore, older veterans with PTSD exhibit a twofold

increase in the risk for dementia (73, 74). Veterans showed increased

levels of depression 40 years on compared to non-POWs; however, in

this study, there were no differences in alcohol issues or anxiety (54).

As mentioned above regarding civilian groups with PTSD,

lowered cortisol has also been shown in combat veterans and

Holocaust survivors with PTSD (75–77). The hormone and

neurotransmitter noradrenaline, the mediator of the HPA-stress

system, was present at the baseline in higher levels in the

cerebrospinal fluid (CSF) from male combat veterans with PTSD,

an effect not replicated in blood plasma (78). Blood plasma again

was reported by Yahyavi et al. to show normal levels of adrenaline

and noradrenaline in the plasma of veterans with PTSD (and their

offspring) but decreased cortisol in those with PTSD (79). A study

using CSF samples from 52 veterans with trauma revealed no

significant difference in noradrenaline levels between those with or

without PTSD/trauma when taking the medication prazosin (which

treats high blood pressure and heart failure). However, in those not
Frontiers in Epidemiology 04
taking the drug, a significantly positive correlation between

behavioural symptoms (e.g., depression and insomnia) and higher

noradrenaline levels was revealed (80). The authors suggest trauma

exposure may influence responsiveness to noradrenaline, and these

data reveal other medication may influence hormone levels.

Above, we have discussed the physiological ramifications of war

and conflict exposure, such as gastrointestinal upset (included in

Figure 1). We will further expand upon this in the next section

while specifically discussing epigenetic alterations (summarised in

Table 1), predominantly pertaining to gene methylation.

Monoamine oxidase A (MAO-A) is an enzyme critically involved

in catalysing adrenaline, noradrenaline, dopamine and serotonin

(102). Hypermethylation of the MAO-A gene is linked to PTSD

(35) and was suggested as a tool to assess the severity of the

disorder in male patients with PTSD due to war exposure; a sex-

linked effect was seen, although the female sample size was

comparatively small (see Table 1) (98). Gene hypermethylation

often results in reduced expression, in this case potentially

impeding catabolic activity on noradrenaline resulting in increased

circulating levels upon stress exposure. Such dysregulation of stress

hormones is a hallmark of PTSD.

In combat veteran studies, those with PTSD exhibited NR3C1

hypermethylation when compared to those without PTSD, an

effect not seen in those exposed to childhood trauma (31, 35, 100).

The impact of the Tutsi genocide in Rwanda was studied in 25

pregnant women and found higher CpG methylation in the

nuclear receptor subfamily 3 group C member 2 (NR3C2; a

mineralocorticoid receptor, also binds glucocorticoids) gene (103).

The increased methylation of spindle and kinetochore-associated

protein 2 (SKA2) plays a role in GR chaperoning, providing

negative feedback to the HPA by removing the receptor from the

cytoplasm and to the nucleus (104). Blood methylation of SKA2

and reduced expression, along with aberrant glucocorticoid

signalling, was identified as a potential indicator for suicide risk

(105, 106). In veterans, a positive correlation of SKA2 methylation

in the blood was seen with severity of PTSD symptoms (96).

Sleep difficulties are often reported by veterans (8), including

those with PTSD (107), making these epigenetic changes an area of

interest. Indeed, an increase in methylation on the circadian clock

gene, LHX1, has been seen in veterans with PTSD (81). Impacts on

sleep-related genes were found in military personnel with chronic

blast exposure, including differential methylation of NTSR1 and

SPON1 (5), and differentially methylated regions (DMRs) for

CCDC68 and COMT (also linked to sleep difficulties experienced

by the individuals). An earlier study by the same group found,

concurrent with impacts on sleep, chronic exposure to blasts

resulted in the increased methylation of the paired box gene 8

(PAX8) antisense transcript, related to repressed gene expression

(6). However, another study found decreased PAX8 methylation in

veterans with PTSD (88). PAX8 is associated with thyroid function

(108) as well as sleep duration (109). Sleep after exposure to

emotional information was shown to consolidate memory up to 4

years later, so initial sleep disruption may be beneficial to reduce

PTSD severity (110). However, this is a short-term benefit, given

that persistently poor sleep impedes mental health (111). To

alleviate PTSD, attempts to restore effective sleep should be

undertaken; gene methylation may offer a useful marker of success.
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TABLE 1 Exposure to war and subsequent effects on epigenetics to individuals measured through gene methylation.

Study Gene implicated and methylation/expression status

Hammamieh et al. (81); veterans with PTSD (n = 99) and
without (n = 101). Age range 20–60 years. Cohort of men
only. Individuals with TBI, neurologic disorder and
psychiatric history excluded. Blood samples showing DMGs.

AKT1↑: network linked to anxiety and depression.

BDNF↑: expression high in serum and low in plasma.a

CNR1↑: SNP variants of this gene linked to PTSD.

CREB1↑: changes to expression seen in monocytes of individuals with PTSD.

EFS↑: —

ETS-2↑: genes associated with growth and development.

HES4↑: —

LHX1↑: circadian rhythms (82).

MET↑: immune system signalling (83).

NR2E1↑: loss of gene makes mice very aggressive (erroneously stated under human studies in

original table) (81).

PAX5↑: immune system (84).

PDGFB↑: platelets.

PSD↑: —

TRERF1↑: —

PTTG1IP↓: —

NFATC4↓: T-cells (85).

GATA3↓: —

ELK1↓: —

DMRTA2↓: —

Wang et al. (6); Participants from US Army explosive entry
training sites (n = 34); male cohort; mean age 30.79 years;
60% reported mild TBI. Blood samples before and after
training with exposure to blasts. Only results seen in
cumulative lifetime exposure, not pre- and post-training.

Cumulative exposure to blasts (e.g., high blast exposed
groups). Significantly DMRs and reported gene expression

PAX8↑: downregulated expression. Sleep.

SLFN3↓: no change in expression.

LOC643387↑: downregulated expression.

DSCR3↑: no change in expression.

SFAM53A↓: increased expression.

NRP2↑: downregulated expression.

NPHP1↑: downregulated expression.

Notable symptom-associated DNA methylation analyses
with reported gene expression; did not show statistically
significant genome-wide DMRs that tracked with reported
symptoms of headache post-blast exposure, after multiple
testing correction.

HCN2↑: expression not reported; prior

implication in auditory function.

DUSP22↓: no change in expression; prior

implication in auditory function.

KCNE↑: downregulated expression.

Associated with hearing loss.

CYP2E1↑: downregulated expression.

Rodent association with hearing loss.

KCTD12: no reported change to methylation. Downregulated expression; association with

tinnitus.

(continued)
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TABLE 1 Continued

Study Gene implicated and methylation/expression status

Wang et al. (5); military trainees; varying lifetime histories (n
= 59). Only results seen in cumulative lifetime exposure.
DNA methylation in blood samples.

Six significantly DMRs identified using the combined p-
value tool in high relative to low-blast exposed groups

PSORS1C3↑: Autoimmune disorders,

under glucocorticoid control (86).

GSDMD↑: IL-1 secretion (87).

NTSR1↑: dysregulated sleep and circadian

rhythms.

SPON1↓: dysregulated sleep and

circadian rhythms.

ZKSCAN4↓: Associated with autoimmune

disorders.

ACSM6↓: —

Symptoms seen in this study associated with DNA
methylation of known genes shown in high cumulative
exposed groups noted in the paper.

COMT↑: sleep disturbance.

CCDC68↑: sleep disturbance.

TNXB↑: headache (associated with

chronic pain, temporomandibular joint

dysfunction).

FMOD↓: headache (gene associated with

chronic pain, temporomandibular joint

dysfunction).

GALR1↑: tinnitus (auditory dysfunction)

KCNN3↓: tinnitus (auditory function).

MUC4↓: tinnitus (hearing loss).

SOD3↓: tinnitus (hearing impairment).

WDR45↓: tinnitus (auditory dysfunction).

Rutten et al. (88); Male Dutch military servicemen post
deployment; Group 1: High PTSD symptoms and high
combat trauma exposure, n = 32; Group 2: low PTSD
symptoms and high combat trauma exposure, n = 29 and
Group 3: low PTSD symptoms and low combat trauma
exposure. Mean age 27.5 years. Study and replicated in male
US marines (n = 98). Blood samples.

DMPs direction of effect for all identified DMPs was

negative (e.g., increased PTSD symptoms associated

with decreased DNA methylation over time). We

include associated links of these genes.

DUSP22↓: replicated but opposite

directionality

PAX8↓: sleep (6).

NINJ2↓: nerve injury (89).

HOOK2↓: —

COL1A2↓: collagen.

HIST1H2APS2↓: histones; replicated in

second data set.

SDK1↓: neurological conditions (90)

replicated but opposite directionality.

MYT1l↓: neurological conditions (91).

The strength of the observed associations between

traumatic stress and PTSD symptoms was mediated

by DNA methylation changes of seven DMRs.

Indication of increased PTSD symptom scores over

time associated with decreased DNA methylation

RNF39 ↓ associated with an increase in

PTSD symptoms over time. Replicated

in second data set.

HOOK2↓: —

PAX8↓: sleep.

(continued)
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TABLE 1 Continued

Study Gene implicated and methylation/expression status

levels at the DMR. We include associated links of

these genes.

SPATC1l↓: hearing loss.

PM20D1↓: Alzheimer’s disease (92).

SMAD5↓: haematopoiesis (93).

GPR12↓: neuronal development (94).

ZFP57↓: role in DNA methylation (95).

Replicated in second data set.

Sadeh et al. (96); white non-Hispanic service members (n =
200); consecutively enrolled in the Translational Research
Center for Traumatic Brain Injury and Stress Disorders.
Members excluded from neuroimaging but not blood
methylation measurements (n = 55) due to moderate/severe
TBI history.

SKA2↑: correlation of methylation (adjusted for phenotype) with increased PTSD severity and

associated with reduced cortical thickness in prefrontal cortex. SKA2 is a potential indicator for

suicide risk.

Smith et al. (97); Ten cohorts, military and civilian,
contribute blood-derived DNA methylation data from PTSD
cases and trauma-exposed controls (n = 1,896). Mixed
gender, black, white and Hispanic military (n = 1351) and
civilian (n = 545) populations.

AHRR↓: In individuals with PTSD vs. trauma-exposed controls. Decreased methylation also

associated lower kynurenine levels in individuals with PTSD, evident in non-smokers, suggesting

an underpinning factor for immune dysregulation.

Ziegler et al. (98); patients with current PTSD (n = 195; 140
men); remitted PTSD (n = 136) and healthy controls (n =
321). Blood samples for methylation analysis. Mean age
approximately 49 years.

MAO-A↑: at three CpG sites only in men vs. remitted and healthy controls. Potential tool for

assessment of PTSD severity post-war. Gene involved in catabolising noradrenaline.

Zhou et al. (99) Combat veterans with PTSD (n = 30; men =
27) and control group without. Age range 29–67 years. Blood
samples.

Many microRNAs upregulated in PTSD. Also in PTSD groups, downregulation of miR-125a (as

well as miR-181c); inhibitory effect of miR-125a on IFN-γ release in vitro. Interferon gamma (IFN-

γ) and IL-17 were also found in the plasma. Significant increase of peripheral blood

mononuclear cell numbers in PTSD patients vs. controls, which also correlated with anxiety.

Supports immune dysregulation in PTSD.

Yehuda et al. (31); veterans with PTSD received PE
psychotherapy, responders (n = 8, age approximately 41
years) and non-responders (n = 8, age approximately 58
years). Significant difference in ages. Two women in cohort.

FKBP5↓: decreased in association with recovery from PTSD (e.g., successful treatment), and

higher gene expression observed in a subset of responders during follow-up. Higher

methylation associated with lower plasma and urinary cortisol before treatment.

NR3C1 (GR; exon 1F promoter) ↑: increased methylation before treatment predicted positive

outcome (e.g., responders) and positively associated with post-treatment urinary cortisol. No

changes to methylation associated with post-treatment or follow-up.

Yehuda et al. (100); male combat veterans with PTSD (n =
61) and without PTSD (n = 61). Age approximately 34 years.
Blood samples for plasma for cell counts (PBMCs) and DNA
methylation. Urine samples for cortisol.

NR3C1 (GR; exon 1F promoter) ↓: in PBMCs from combat veterans with PTSD compared with

combat-exposed veterans who did not develop PTSD. Methylation inversely correlated with

clinical markers and symptoms associated with PTSD. This was also associated with functional

measures such as suppressed lysozyme (in vitro measure of GR sensitivity) and decreased

urinary cortisol.

Mehta et al. (35); Australian male veterans from the Vietnam
War with PTSD (n = 48) and without (n = 48); age range 62–
88 years. Replicated in a population of primarily African
American men from the Grady Trauma Project (n = 115).
Cross-sectional association study. Blood samples.

Candidate genes significant, after multiple testing

correction associated with symptom severity. Of the

genes, 43% identified with initial CpG significance

(including FKBP5, NR3C2, RORA) were initially

significant, but not after correction. No further

information from authors on which genes are hyper/

hypomethylated.

ADCYAP1R1 (PAC-1)

ANK3

BDNF

CNR1

COMT

CRHR1

CRHR2

DRD2

GR/NR3C1

MAOA

(continued)
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TABLE 1 Continued

Study Gene implicated and methylation/expression status

MAOB

NOS1AP

NPY

SLC6A3

STMN1

TPH1

WWC1

Genome-wide DNA methylation in PTSD among

combat veterans, associated with increased symptom

severity.

Intergenic CPG (43 kb from LRRC3B) ↓:

BRSK1↑:

NGF↑:

LCN8↑:

DOCK2↑: role in immune system and
neurodegeneration.

Kim et al. (72); male combat veterans with PTSD (n = 126)
and without (n = 122). Mean age approximately 63 years.
Peripheral blood to detect DNA methylation. Participants
with a history of head trauma were excluded.

BDNF↑: at four CPG sites, in individuals with PTSD vs. those without PTSD. PTSD diagnosis

significantly associated with high BDNF methylation, high combat exposure and issues with

alcohol.

Sarapas et al. (101); survivors of the 9/11 attacks with and
without PTSD. Individuals recovered from PTSD are also
included. Whole blood gene expression and cortisol levels as
well as genome-wide gene expression was analysed. 25 probe
sets were differentially expressed in PTSD.

STAT5B: reduced expression.

Nuclear factor I/A: reduced expression.

FKBP5: reduced expression.

MHC Class II: reduced expression.

BDNF, brain-derived neurotrophic factor; DMG, differentially methylated gene; DMP, differentially methylated position; DMR, differentially methylated region; GR,

glucocorticoid receptor; PBMC, peripheral blood mononuclear cell; PE, prolonged exposure; PTSD, post-traumatic stress disorder; SNP, single nucleotide polymorphism;

TBI, traumatic brain injury.

Citations included for implicated pathologies if not referenced in original study paper. Hypermethylated: ↑, hypomethylated: ↓.
aThe authors note the plasma result was not validated in the later study. Human studies unless otherwise stated.
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Chronic blast exposure also revealed the differential methylation

of auditory function genes (KCNN3, SOD3, MUC3, GALR1 and

WDR45B) which were associated with tinnitus, and the DMRs

within FMOD and TNXB were linked to headache and pain (5).

Symptoms of tinnitus in low versus high blast exposure groups

were also linked to DMRs in auditory genes KCNE1 and CYP2E1,

showing an inverse correlation with methylation and expression

(6). Finally, pre- versus post-blast exposure showed at least a 1.5-

fold difference in expression in 67 genes, such as UFC1 and YOD1

(ubiquitin related proteins; others have been linked to TBI). The

dysregulation of cytokine and chemokines was also exhibited in

MCP-1, GCSF, HGF, MCSF, and RANTES after acute exposure to

blasts (6). Blast exposure can result in neurological impacts, such

as brain swelling and neurotrauma; these epigenetic markers are

evidence of both the psychological and physical impacts of war (5, 6).

PTSD has been associated with increased immunological

inflammation (112). A number of immunological changes were

characterised in a study on combat veterans with PTSD (99). First,

there was a significant increase in the numbers of (1) T-helper 1

(Th1; CD4+), (2) Th17, (3) cytotoxic T (CD8+), and (4) B cells. It

was found that an increase in Th1 percentage was correlated with

severity of PTSD score, as well as a reduction in the number of T-

regulatory cells. These data suggest a heightened inflammatory
Frontiers in Epidemiology 08
response with reduced regulation. Reflecting this, upregulated levels of

the proinflammatory cytokines interferon gamma (IFN-γ) and IL-17

were seen in the plasma. Zhou et al. then revealed that these changes

were associated with the downregulation of the miRNA, miR-125a (as

well as miR-181c), and went on to show the inhibitory effect of miR-

125a on IFN-γ release in vitro (99). This signalling molecule has been

linked to the upregulation of another proinflammatory cytokine, NF-

κB, in human cancer cell lines (113). In rats, NF-κB is necessary for

memory reconsolidation (e.g., to allow for alterations of negative

associations) (114, 115). This suggests that the cytokine cascade in

PTSD is dysregulated. Regular amounts of miR-125a would control

the inflammatory response; by reducing IFN-γ and increasing NF-κB,

a reduction of trauma responses may occur.

Further exploring the immunological impacts, the largest

epigenetics study to date was performed on mixed veteran and

civilian populations with and without PTSD (see Table 1) (97). The

aryl-hydrocarbon receptor repressor (AHRR), a gene that regulates

transcription, revealed four CpG sites in which DNA methylation

was lower in individuals with PTSD versus the controls. This was

found to be associated with the reduced kynurenine levels also seen

in individuals with PTSD (97). The authors suggest that the reduced

levels of kynurenine (a metabolite that promotes T-regulatory cell

differentiation) may explain why increased inflammation is seen in
frontiersin.org
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individuals with PTSD. This form of gene methylation appears in both

military and civilian populations with PTSD, which suggests that the

HSE is not evident in this instance.

Differential expression of 25 genes associated with HPA, immune

and/or cerebral function was seen in survivors of the 9/11 attack with

PTSD (101). The altered expression of FKBP5 was revealed as an

acute state marker for PTSD as well as major histocompatibility

complex (MHC) Class II (vs. lifetime PTSD). In addition, the

reduced expression of Stat five B inhibitor (STAT5B; a GR

inhibitor 116) and nuclear factor I/A (key for astrocytic function

117) was seen in PTSD. These genes reveal that epigenetic impacts

from PTSD impact on both the HPA axis and the immune system.

Rutten et al. compared the longitudinal changes of genome-wide

blood DNA methylation profiles of two different subgroups of

soldiers and identified the genes associated with stress in a military

context (included in Table 1) (88). In the first cohort, consisting of

Dutch military personnel, they discovered 17 differentially

methylated positions (DMPs) and 12 DMRs in individuals after

they had been deployed to a combat zone. The DMPs and DMRs

were then used to explore replication in a different cohort of US

marines. In this group, a decrease in DNA methylation at the

genes ZFP57, RNF39, and HIST1H2APS2 was associated with an

increase in PTSD symptoms over time. They found that the

association between trauma exposure and PTSD symptoms was

mediated by DNA methylation; those who did not exhibit PTSD

symptoms showed increased methylation, but those who did

develop PTSD symptoms exhibited decreased DNA methylation at

the DMP and DMRs. Altered methylation on DUSP22 and PAX8

genes, earlier identified, revealed decreased methylation in both,

with no change in expression to the former but increased

expression in the latter (6, 88).

PTSD is often defined solely by symptom severity, despite the

heterogenous nature of the symptoms themselves. To challenge this

perception, Yang and colleagues defined the epigenetic biotypes of

veterans/active-duty personnel and propensity for PTSD (118). They

revealed two main subsets with opposing symptoms: G1 (faster

recovery from PTSD, lower methylation vs. controls) and G2

(increased risk of PTSD, higher methylation vs. controls), enriched

for individuals also exhibiting major depressive disorder (MDD). That

study highlights the complex aetiology of PTSD and variation within

military subsets. However, the authors did not discuss immunological

components or pro-inflammatory processes, which also contribute to

PTSD (99, 112, 119). The identification of if, and how, G1 and G2

express different immunological profiles would inform on whether

immune function also differs with opposing symptoms.

Therefore, there is a large body of research exploring a plethora of

epigenetic changes upon the individual exposed to war (listed with

details in Table 1), which we also attempt to summarise here. As

noted earlier, the FKBP5 and NR3C1 genes are epigenetically modified;

in addition, research on war and conflict exposure has revealed

epigenetic impacts to players in auditory, sleep and immune systems.
Intergenerational impacts of war

Paternal trauma experienced by the survivors of Confederate

POW camps, during the US Civil War (1861–1865), was found to
Frontiers in Epidemiology 09
impact the life expectancy of their children (see Table 2) (120).

During the first 2 years of conflict, there was an exchange period

during which prisoners were swapped between the warring sides.

However, a “no-exchange period” period occurred between July

1863 to 1864, during which increased camp populations resulted in

worsened conditions and many resultant deaths of POWs on both

sides. It was found that sons born post-war to POWs who

experienced the no-exchange period were 9% and 11% more likely

to die early in comparison to sons of exchange-period POWs and

non-POWs, respectively. Within families, when comparing sons

born pre-war to those born post-war from no-exchange POW

fathers, the latter were 2.23 times more likely to die early.

However, in this comparison, the authors note the caveat of small

sample size. No significance was seen on the daughters of POWs.

Post-war factors, such as paternal socioeconomic status, did not

impact these results. The sex-specific effects seen in this study

population are similar to an effect observed in the Överkalix

population of Sweden, where grandparents experiencing an

abundant harvest resulted in an increased risk of cardiovascular

disease and reduced longevity (131, 132). As in the Överkalix

studies, the authors propose that the epigenetic response is

transmitted via the Y chromosome, which could explain why the

effects are seen only in sons.

One recurrent effect noted in studies on the offspring of

Holocaust survivors with PTSD was the impact of reduced cortisol

levels and an increased risk of PTSD, with an association between

the two (76, 123, 125–129). These data have been highlighted with

the caveat of the family environment, which may influence

behaviour and mindset. However, for Holocaust survivors, in

keeping with the HPA axis effects, glucocorticoid sensitivity was

increased in the offspring with maternal exposure to PTSD, yet

decreased with paternal exposure, effects not influenced by parental

care (122, 133). The children of Holocaust survivors exhibit either

no prevalence towards psychiatric disorders (134), or in another

study, higher instances of mood and anxiety disorders (122). A

decreased cortisol effect was present in the offspring of veterans,

but only those with a parental history of PTSD (79).

Individuals exposed to the World Trade Centre attacks produced

both children and grandchildren who exhibit lower levels of salivary

cortisol (124). The data are referred to as transgenerational, but, as

grandmothers were pregnant at the time of the attacks, this, by

definition, is an intergenerational effect.

Epigenetic effects via gene methylation on the offspring of those

exposed to conflict have largely been shown in genes already

associated with PTSD. The study discussed earlier by Perroud et al.

on mothers exposed to the Tutsi genocide also explored impacts to

offspring; both groups showed higher levels of PTSD and decreased

cortisol in comparison to controls. Differential methylation was seen,

with elevated methylation of NR3C1 (promoter region) seen only in

offspring (vs. the increased level of NR3C2 methylation in mothers)

(103). Prenatal exposure to maternal depression/anxiety has been

associated with increased cortisol stress response at 3 months of age,

and an associated increase of NR3C1 (predicted NGFI-A binding

site) methylation (135). In the eastern Democratic Republic of

Congo, mothers and their offspring in utero were exposed to the

stressors of war. The offspring exhibited methylation on the NR3C1

(promoter region) gene, which differed from the mother, and
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TABLE 2 Exposure to war and subsequent inherited epigenetics to offspring.

Study details Outcome

Yehuda et al. (121); Holocaust survivors (n = 32), adult offspring (n = 22), control
parents (n = 8), their offspring (n = 9).

Correlation of increased methylation of FKBP5 in Holocaust survivors vs. decreased
methylation in their offspring.

Yehuda et al. (122); adult offspring of Holocaust survivors (n = 211), demographically
comparable Jewish controls (n = 73); subdivided on parental lifetime PTSD status.

Overall higher prevalence of mood, anxiety disorders, substance abuse and lifetime
PTSD seen in Holocaust survivors’ offspring. Maternal PTSD made a larger
contribution to PTSD risk in offspring.

Yehuda et al. (76); adult offspring of Holocaust survivors (n = 35), healthy comparison
controls (n = 15); PTSD and parental PTSD status; 24-h urinary cortisol levels
measured.

Significant association of low cortisol with PTSD in parents and lifetime PTSD in
individuals. Lowest cortisol seen in offspring with lifetime and parental PTSD.

Yehuda et al. (123); adult offspring of Holocaust survivors with parental PTSD (n = 13),
adult offspring of Holocaust survivors without parental PTSD (n = 12); controls (n =
16); blood cortisol after dexamethasone suppression.

Increased suppression of cortisol via dexamethasone administration predominantly
linked to status of parental PTSD.

Yahyavi et al. (79); veterans with PTSD (n = 41), their offspring (n = 41), veterans
without PTSD (n = 43), their offspring (n = 43); afternoon serum cortisol recorded.

Offspring of veterans with PTSD showed decreased cortisol, only when groups
arranged to show PTSD history. No changes to adrenaline or noradrenaline.

Yehuda et al. (124); women pregnant and present in World Trade Center attack (11
September 2001) (n = 38) and 1-year-old babies; salivary cortisol samples.

Significantly lower levels of cortisol in mothers with PTSD and their babies; most
significant in babies when exposed during third trimester.

Yehuda et al. (125); adult offspring of Holocaust survivors (n = 39) with parental and/or
lifetime PTSD, healthy comparison controls (n = 15); urinary cortisol.

Both parents must be affected with PTSD for offspring association with lower cortisol.
Significant negative correlation seen for severity of parental PTSD accounting for
offspring urinary cortisol, as well as offspring PTSD and said levels. No effect on age or
gender.

Yehuda et al. (126); adult offspring of Holocaust survivors with parental PTSD (n = 23),
10 comparison controls with non-exposed parents (n = 10); blood cortisol. No
participant had PTSD.

Lower mean and amplitude of cortisol in offspring with parental PTSD vs. without, and
offspring of non-exposed parents. Associated sex-specific (maternal PTSD) risk factor.

Yehuda et al. (127); prevalence of PTSD and other psychiatric diagnoses in adult
offspring of Holocaust survivors (n = 100), comparison controls (n = 44). Recruited
from clinical and non-clinical populations.

Adult offspring of Holocaust survivors show increased prevalence of PTSD and
psychiatric diagnoses (depression, anxiety, substance abuse, eating disorders).

Yehuda et al. (128); adult Holocaust survivors (n = 22) and their 22 offspring (n = 22). Increased likelihood of development of PTSD in offspring with traumatic events if
parents had PTSD.

Perroud (103); 25 women and offspring exposed to Tutsi genocide vs. 25 non-exposed
women and children of the same ethnicity.

Higher peripheral blood methylation in the exon 1F promoter of NR3C1 in mothers
and offspring (methylation higher in NR3C2 in mothers) and reduced cortisol levels in
mother and child.

Costa et al. (120); children born after the US Civil War (1861–1865) to survivors of
Confederate POW camps; children (n = 2,342) of no-exchange period ex-POWs (n =
732), children (n = 2,416) of exchange-period ex-POWs (n = 715), children (n = 15,145)
of non-POW veterans (n = 4,920). All born after 1866, surviving to age 45 years.

Sex-specific impacts from father to son; no impact seen on daughters. Sons born post-
war to POWs who endured prison during the no-exchange period were 11% more
likely to die early vs. non-POW sons and 9% more than sons of exchange-period
POWs. Within families, sons of no-exchange ex-POW fathers born after the war died at
2.23 times the rate of those born before the war.

Solomon et al. (129); Israeli combat participants in 1982 Lebanon war, offspring of
Holocaust survivors (n = 44), offspring of non-Holocaust survivor parents (n = 52).
PTSD inventory scores taken from questionnaires.

Higher rates of PTSD in the Holocaust survivor children cohort, 1–3 years after
participation in the Lebanon war. Suggested that recovery from PTSD was also slower
in veterans with Holocaust survivor parents.

Mulligan et al. (130); women from the Democratic Republic of Congo who had
experienced war and violence in 2010 (n = 25). Whole blood and umbilical cord blood
samples.

Methylation of NR3C1 in new-born infants correlated with increased severity of war
stress. Also decreased birthweight correlated with increased NR3C1 methylation.

POW, prisoner of war; PTSD, post-traumatic stress disorder.

This includes study details and descriptive outcomes including both alterations to genes, as well as physiological effects.
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correlated with prenatal exposure to stress (130). Finally, Yehuda et al.

revealed, when compared to controls, enhanced methylation of FKBP5

(intron 7) in Holocaust survivors versus the lower levels of methylation

in their offspring, outcomes that were significantly correlated (121).

Differential methylation patterns between parent and offspring have

been suggested as a form of compensation for the trauma

experienced by the parents (136), further supported by a meta-

analysis finding children of Holocaust survivors were generally well

adapted, with little evidence to suggest secondary traumatisation (137).

To conclude this section, in comparison to the epigenetic effects

impacting the individual, such as DNA methylation on a number of

genes, data on inter- and transgenerational epigenetic effects of war
Frontiers in Epidemiology 10
and conflict are mainly limited to the well-established NR3C1 and

FKBP5 genes, mortality, cortisol levels and risk of PTSD

(summarised in Table 2). This highlights a large gap in the field;

we do not know whether the progeny of those exposed to war may

also exhibit higher risks of pathologies, such as sleep disruption,

and metabolic and/or gastrointestinal effects as seen in their

parent/s. Immunological dysfunction is linked to the HPA axis

(138) and PTSD (112), so lowered cortisol levels in the progeny of

those exposed to war could result in impacts on the immune

system. To improve the health and well-being of those exposed to

war, and their families, such effects should be defined to allow for

appropriate and timely intervention.
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Discussion

The present article shows that stressors associated with war and

conflict have epigenetic impacts on health, at individual, inter- and/

or transgenerational levels. Individual impacts uninfluenced by PTSD

may present as gastrointestinal (1–4), auditory (5, 6), metabolic (7)

and circadian (8) effects (see Figure 1). Shared effects between

individuals and their progeny include an increased risk of PTSD

(and co-occurring lowered cortisol), as well as changes to

mortality; in some cases, these effects are sex-linked (120).

Persistent epigenetic markers across generations exposed to war are

seen in NR3C1, NR3C2, and FKBP5 genes, known players in the

HPA axis. Future work may wish to consider the inter- and

transgenerational inheritance of other genetic factors shown in

Figure 1, such as whether AHRR methylation or reduced miR-

125a expression in veterans (99) also occurs in the progeny of

veterans and trauma-exposed civilians. We do not know what the

long-term effects of the numerous conflicts mentioned in our

introduction (e.g., the war in Ukraine or in Iran with the

aggressive government measures against citizens during civil

unrest) will be. However, we propose that there may be an

increased risk of the pathologies described above. Thus, when

providing effective international aid and support to individuals

seeking refuge in the UK, being cognisant of such downstream

epigenetic effects could inform mitigation strategies through short-

and long-term health and social care. The British Medical

Association (BMA) currently suggests a number of guidelines,

named “Refugee and Asylum Seeker Health Toolkit,” which

include issues refugees may have in general regarding the control

of blood sugar and advises screening for communicable diseases.

The GOV.UK “Migrant Health Guide” also provides specific guides

for nutrition and mental health support, noting impacts of

depression and anxiety. This highlights a focus on PTSD,

recognising the necessity of addressing the pathology. We would

propose additionally considering gastrointestinal dysfunction,

impacts to hearing due to explosives and attempts to provide

education on sleep.

We note potentially confounding (but unavoidable) factors from

the sequalae of war. First, TBI from military trauma is known as a

causative factor for PTSD and/or dementia (107). This therefore

includes a psychological and physical influence upon PTSD.

Another issue is concurrent malnutrition experienced in POW

studies; famine results in cardiovascular impacts and the sole study

revealing a cardiac effect (ischaemic heart disease) where POWs

were reported as experiencing severe malnutrition (57, 58).

Noxious auditory stimuli (e.g., blast exposure) may vary depending

on the war environment, or job role within the military, and
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significant epigenetic effects occur with lifetime blast exposure. Age

may also impact the prevalence of morbidity (55, 56). We mention

the HSE influencing increased longevity in military personnel, but

in more recent populations this effect appears eroded (139). As

noted in Tables 1 and 2, most war-related studies have been

conducted on Caucasian male veterans or African American

individuals who have experienced trauma. More diverse studies,

such as that of Smith and colleagues, are required to truly

understand the possible contribution of factors such as race, sex,

and cultural experiences (97). Despite the unique nature of military

populations, many PTSD-linked alterations appear similar across

veteran PTSD and PTSD linked to non-military adult trauma, e.g.,

AHRR methylation as a predicator for PTSD in both military and

civilian populations (97). Thus far, when considering exposure to

war, there is limited evidence to suggest, without PTSD or

exposure to famine, that veterans specifically transmit substantive

epigenetic impacts.
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