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Effective population size (Ne) is an important parameter in conservation genetics because
it quantifies a population’s capacity to resist loss of genetic diversity due to inbreeding and
drift. The classical approach to estimate Ne from genetic data involves grouping sampled
individuals into discretely defined subpopulations assumed to be panmictic. Importantly,
this assumption does not capture the continuous nature of populations genetically
isolated by distance. Alternative approaches based on Wright’s genetic neighborhood
concept quantify the local number of breeding individuals (NS) in a continuous population
(as opposed to the global Ne). However, they do not reflect the potential for NS to
vary spatially nor do they account for the resistance of a heterogeneous landscape
to gene flow (isolation by resistance). Here, we describe an application of Wright’s
neighborhood concept that provides spatially-explicit estimates of local NS from genetic
data in continuous populations isolated by distance or resistance. We delineated local
neighborhoods surrounding each sampled individual based on sigma (σ), a measure of the
local extent of breeding. When σ was known, the linkage disequilibrium method applied to
local neighborhoods produced unbiased estimates of NS that were highly variable across
the landscape. NS near the periphery or areas surrounded by high resistance was as much
as an order of magnitude lower compared to the center, raising the potential for a spatial
component to extinction vortex dynamics in continuous populations. When σ is not known,
it may be estimated from genetic data, but two methods we evaluated identified analysis
extents that produced considerable bias or error in the estimate of NS. When σ is known or
accurately estimated, and the assumptions of Wright’s neighborhood are met, the method
we describe provides spatially explicit information regarding short-term genetic processes
that may inform conservation genetic analyses and management.
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INTRODUCTION
Populations lose allelic diversity and heterozygosity through the
processes of genetic drift and inbreeding, respectively (Amos and
Harwood, 1998). If this diversity is not replaced by the processes
of mutation and immigration, the population loses alleles and
heterozygosity at a rate proportional to the number of breed-
ing individuals (Wright, 1931). Diminished genetic diversity may
reduce a population’s capacity for adaptation in dynamic environ-
ments (though dominance, epistasis, and pleiotropy may strongly
affect this relationship; Reed and Frankham, 2001), lower the
frequency of heterozygotes (and therefore the prevalence of het-
erozygote vigor or heterosis), favor inbreeding depression, and
ultimately increase the risk of extinction (Frankham et al., 2002).

Wright (1931) first defined the concept of effective population
size (Ne) as the number of breeding individuals in an ideal popu-
lation experiencing the same rate of drift as the real population of
interest. Factors like unequal sex ratios, a fluctuating population
size, overlapping generations, high variability in the distribution
of offspring, and non-random mating make the effective size of a
population lower than the census size (Nc) because they influence

the number of individuals that contribute their genetic variation
to the next generation (Frankham et al., 2002). Therefore, the risk
of extinction posed by reduced genetic diversity is more closely
related to Ne than Nc, making Ne is an important parameter in
conservation genetics (Lande and Barrowclough, 1987).

Ne may be calculated from demographic data (Caballero, 1994;
Wang and Caballero, 1999) that are often difficult to acquire
from wild populations. Instead, Ne is more commonly estimated
from genetic data. Long-term genetic estimates of Ne may be
obtained from the relationship between genetic diversity (θ) and
the mutation rate (μ):

θ = 4Neμ

Alternatively, short-term genetic estimates of Ne may be derived
from genetic data sampled from one or more recent generations.
Single-sample methods reflect the effective number of breed-
ing individuals (Nb) in the sampled generation, and have been
based on rates of drift or inbreeding from heterozygote excess
(Pudovkin et al., 1996), linkage disequilibrium (Hill, 1981), and
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molecular co-ancestry (Wang, 2009). A two-sample temporal
method (Waples, 1989) estimates the harmonic mean of Ne from
genetic drift that occurs over the time between samples, but when
sampling intervals are from recent generations, it is also a contem-
porary measure of Ne. These contemporary estimates of Ne differ
from Wright’s original concept of Ne, which reflects the long-term
harmonic mean number of effective breeding individuals over
many generations.

Wright’s original concept of Ne assumes a closed panmictic
population. In many wild populations, however, individuals are
continuously distributed across a landscape, and mating prob-
abilities are a function of Euclidean distance (i.e., isolation by
distance or IBD; Wright, 1943) or effective distance given the
variable resistance of the landscape to gene flow (i.e., isolation
by resistance or IBR; McRae, 2006). Such populations become
internally structured into continuously overlapping local neigh-
borhoods of breeding individuals. To quantify Ne in continuous
populations isolated by distance, Wright proposed the concept of
a genetic neighborhood (Wright, 1946), defined as

NS = 4πσ 2D

where NS is the number of breeding individuals in the local
neighborhood, σ is the mean squared parent-offspring dispersal
distance along one axis in a two-dimensional habitat (assuming a
Gaussian dispersal function), and D is the ideal population den-
sity (i.e., the number of ideal individuals per unit area). A genetic
neighborhood under isolation by distance forms a circle with a
radius of 2σ, reflecting the local area within which gene flow
is high relative to drift (i.e., the neighborhood, rather than the
global population, approaches panmixia).

Maruyama (1972) demonstrated that if the local extent of
breeding is small relative to the global population, σ2D < 1 and
genetic diversity is lost from the global population at a rate
approximated by σ2D/(2N) per generation. Conversely, when the
local extent of breeding is large and approaches the global popula-
tion, σ2D > 1 and genetic diversity declines at approximately the
same rate as a panmictic population (i.e., 1/2N per generation).
Thus, in continuous populations highly structured by distance or
patterns of resistance, the capacity to retain genetic diversity is
driven by the local NS rather than the global effective size.

Methods have been developed to infer NS based on the approx-
imately linear relationship expected between the logarithm of
spatial distance and genetic distances among individuals (e.g.,
Rousset, 2000; Hardy and Vekemans, 2002; Rousset and Leblois,
2011). For diploid individuals in a two-dimensional habitat, NS
is equal to 1 divided by the slope of the regression between indi-
vidual genetic distance and the log of distance (Rousset, 2000).
Importantly, estimating NS using this approach, or from demo-
graphic estimates of σ2D, provides a single estimate of the local
NS for the entire population, assuming no spatial variation in NS.

In the center of a uniformly distributed population isolated
by distance, effective population density and neighborhood area
are constant, and there is no expectation for spatial variation in
NS. However, for genetic neighborhoods near the population’s
periphery, the edge would be expected to reduce the neighbor-
hood’s area, resulting in a lower NS, and giving rise to spatial

heterogeneity in NS. Similarly, spatial variation in effective pop-
ulation density (D) would also be expected to produce spatial
variation in NS. Furthermore, in populations inhabiting hetero-
geneous landscapes (i.e., isolation by resistance), patterns of resis-
tance may create variability in the area of genetic neighborhoods
and thereby produce spatial variation in NS.

To date, attempts to quantify NS in continuous populations
have not addressed the potential for spatial variation in NS.
Yet spatial genetic variation in genetic processes is an inherent
property of populations isolated by distance or resistance (Rohlf
and Schnell, 1971; Ibrahim et al., 1996; Miller, 2005; Shirk and
Cushman, 2011). Failure to detect this variation could lead to
incorrect inferences regarding the true range of NS across a study
area and potentially misinform conservation efforts, particularly
near the periphery or in areas where patterns of resistance or pop-
ulation density differ strongly from the rest of the population.
Indeed, all wild populations have edges, and they are often of
particular interest in conservation genetics (García-Ramos and
Kirkpatrick, 1997). A means of detecting spatial variation in
NS that provides unbiased estimates even near a population’s
periphery is needed.

Detecting spatial variation in NS for populations isolated by
resistance or distance requires a means to produce estimates of
NS across the population at multiple locations or as a continuous
surface while accounting for the continuous nature of the popula-
tion. We previously described an approach (Shirk and Cushman,
2011) to estimate genetic diversity indices spatially using Wright’s
concept of a genetic neighborhood. The outer extent of Wright’s
neighborhood in a continuous population isolated by distance is
a circle with a radius of 2σ. By placing this circular neighborhood
around each sampled individual, and estimating genetic diver-
sity indices from all individuals within the circle, we matched the
sampling unit to the local breeding extent. This produced a spa-
tially explicit estimate of genetic diversity that was not biased by
a Wahlund effect (Wahlund, 1928) that occurs when calculating
genetic indices at broad extents relative to the local population
structure. These analysis extents overlapped in space such that an
individual could belong to multiple neighborhoods, reflecting the
continuous nature of the population.

In addition to offering a spatially explicit and unbiased means
of estimating genetic diversity indices, in Shirk and Cushman
(2011), we extended Wright’s neighborhood concept to also
include populations fitting the IBR model by defining neigh-
borhoods in terms of effective rather than Euclidean distances
(e.g., based on cost-weighted distances given a raster model of
landscape resistance to gene flow). With this approach, the neigh-
borhood extent is an irregularly shaped kernel rather than a circle
(as is the case in an IBD population neighborhood; Figure 1).
Whether the neighborhood is a circle or a kernel, the outer edge
is 2σ from the center. If NS were estimated locally in analysis
neighborhoods centered on each sampled individual in the popu-
lation, it would provide a means to detect spatial variation in NS
in continuous populations isolated by distance or resistance.

Because analysis neighborhoods are defined by a radius of
2σ, σ is a critical parameter. Yet for most species, mean squared
parent-offspring dispersal distances are not known and difficult
to estimate from field data. Importantly, Neel et al. (2013) found
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FIGURE 1 | Simulated landscapes, populations, and neighborhoods.

The isolation by distance population (IBD; A) and the isolation by resistance
population (IBR; B) consisted of 1296 individuals (black dot) arrayed in a
36 × 36 regular grid. Mating and dispersal probabilities in the simulation
were probabilistic functions of the Euclidean distance or effective distance
between individuals in the IBD and IBR simulations, respectively. Effective
distances were based on cost-weighted distances given a raster model of
resistance to gene flow (example in B). Resistance varied from 1 (black) to
10 (white) and the spatial pattern differed between replicate IBR
simulations. The square landscapes measured 25.6 km per side. An
example of the extent of Wright’s genetic neighborhood is shown in each
panel (red line) for a single individual at the center (large white circle).

strong bias in the estimate of NS based on the linkage dise-
quilibrium (LD) method when the sampling extent over which
NS was calculated did not match the local breeding extent (2σ).
Furthermore, they reasoned that a positive or negative inbreed-
ing coefficient (FIS) would be apparent if the sampling extent
was larger or smaller than the extent of local breeding, respec-
tively. Iteratively exploring a range of neighborhood extents until
FIS approached zero could therefore be used to identify Wright’s
neighborhood extent (2σ). If this or other approaches based on
genetic data were to reliably identify the appropriate analysis
extent, it would allow for unbiased estimates of NS in continu-
ous populations without requiring the difficult task of inferring σ

from field data.
In this study, we used an approach analogous to Shirk and

Cushman (2011) to assess spatial variation in NS in both simu-
lated IBD and IBR populations and a real population of mountain
goats (Oreamnos americanus) inhabiting a complex landscape.
Based on these simulations, we explored several questions. First,

we evaluated the ability of our spatially-explicit implementa-
tion of Wright’s neighborhood concept to accurately estimate NS
in populations isolated by distance or resistance without bias.
Second, we evaluated two approaches to inferring σ from the same
genetic data used to estimate NS. Third, we examined whether
proximity to the population edge produced bias in the estimate
of NS. Lastly, we explored spatial variation in NS in the simu-
lated IBD and IBR populations as a real population of mountain
goats. We expected estimates of NS to be unbiased as long as the
radius of the neighborhood was equal to 2σ. We also expected
strong spatial variation in NS within the IBD, IBR, and mountain
goat populations, and that peripheral areas or regions isolated by
strong patterns of resistance would have the lower NS relative to
the population core.

MATERIALS AND METHODS
SIMULATED POPULATIONS, LANDSCAPES, AND DISTANCES
We simulated mating and dispersal in continuous populations
isolated by distance (IBD) or resistance (IBR). Each simulation
was replicated 100 times. In all simulations, the landscape was
represented by a square 256 × 256 cell raster grid with square
cells measuring 100 m per side. The populations were constant
in size (N = 1296) and distribution (a 36 × 36 uniform square
grid with 700 m between individuals), however, the IBD and
IBR landscapes differed in their capacity to limit the movement
of mating and dispersing individuals. In the IBD population,
mating and dispersal probabilities were based on the Euclidean
distance between individuals. Because the population size and
distribution was constant in all simulations, the Euclidean dis-
tance between individuals was constant in the IBD populations. In
the IBR populations, however, mating and dispersal probabilities
were a function of the Euclidean distance weighted by the land-
scape’s resistance to gene flow (i.e., the effective or cost-weighted
distance).

We used the program QRULE (Gardner, 1999) to create the
IBR landscapes, with resistance values ranging from 1 to 10 in
equal area proportions. These values represented resistance to
movement such that the “cost” to traverse a grid cell was equal
to the cell size (100 m) times the resistance. Thus, a value of one
implies that the Euclidean and effective distances are equal. A
population isolated by distance can be thought of as inhabiting a
raster landscape with a resistance of one in all cells. Values greater
than one indicate additional cost to movement beyond the effect
of distance alone (e.g., suboptimal habitat types). Resistance val-
ues were spatially distributed with a QRULE H parameter value
of 0.1, which produced clumped distributions that are commonly
observed in real landscapes (Figure 1). Because this pattern of
resistance varied between replicate runs, the effective distance
between individuals varied among the IBR simulations.

Mating and dispersal probabilities in the simulations were
based on the Euclidean (for the IBD population) or effective
(for the IBR population) distances between individuals. We cal-
culated pairwise Euclidean distances in an N × N matrix (N =
1296) using the Ecodist package (Goslee and Urban, 2007) in
R (R Development Core Team, 2013). We calculated effective
distances with the gdistance package (van Etten, 2011) in R
based on the cumulative cost of the least-cost path given the
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raster model of landscape resistance for each IBR simulation
replicate.

POPULATION GENETIC SIMULATIONS
We used the population genetic simulation software CDPOP
(Landguth and Cushman, 2010) to simulate mating and disper-
sal in IBD and IBR populations (100 replicates each). CDPOP
is an individual-based simulator of population genetic processes.
It simulates mating and dispersal in a finite population assigned
to fixed locations. Over a user-specified number of generations,
CDPOP records allele usage by all individuals per generation, and
computes various population genetic statistics. In each genera-
tion, adult individuals mate according to a user-specified mating
system and probability function based on proximity in Euclidean
or effective distance. Once mated, females give birth to a number
of offspring determined by a user-specified probability function
which can also control the sex ratio at birth. After birth, adult
mortality occurs probabilistically based on user-specified demo-
graphic information. Finally, vacant locations where adults have
died are filled by dispersing offspring. Dispersal probabilities fol-
low a user-specified function based on Euclidean or effective
distances to the vacant locations. If all locations are occupied, any
remaining offspring not yet assigned to a location are eliminated.
Unoccupied sites may be filled by immigrants or left open.

We parameterized the IBD and IBR CDPOP simulations to
reflect a hermaphroditic animal distributed at a moderate uni-
form density with limited movement capability relative to the
size of the landscape, thus allowing for spatial patterns in effec-
tive population size to emerge over time. Parameters matched the
assumptions of an ideal Wright-Fisher population and Wright’s
genetic neighborhood. Thus, the census number of individuals
within a genetic neighborhood was equal to effective number of
breeding individuals, allowing for genetic estimates of NS to be
related to the true NS. We specified mating and dispersal proba-
bilities to be a Gaussian function of Euclidean or effective distance
(for the IBD and IBR populations, respectively), with a maximum
equal to 30% of the landscape width (7680 m in Euclidean units).
Except for varying mating and dispersal probability as a function
of the landscape, the CDPOP parameters were the same in all sim-
ulations. Generations were discrete and non-overlapping. There
was no selection, mutation, or immigration from outside the
population. Individuals were diploid. Mating was sexual (equiv-
alent to hermaphroditic with selfing not allowed). The number
of offspring was based on a Poisson distribution with a mean
of 4, providing ample offspring to fill all vacant locations. The
simulation tracked alleles at 20 loci, with 20 alleles randomly
assigned per locus to the first generation. At the end of 300 gen-
erations, CDPOP recorded the genotypes of all individuals in the
population.

EMPIRICAL LANDSCAPE AND GENETIC DATA
To explore spatial variation in the NS of a real population, we
used genetic data previously collected (Shirk et al., 2010) from
mountain goats in the Cascade Range in Washington State (USA).
The majority of the area is encompassed by national forests and
national parks. The landscape is mountainous and covered with
montane forests, except at elevations above about 1400 m, where

subalpine parkland, rocky alpine summits, and glaciers predom-
inate. Elevation varies from near sea level to almost 4400 m. One
major interstate highway, several state highways, and a network of
logging roads extend throughout the study area.

We previously genotyped 135 mountain goats sampled from
this region at 18 microsatellite loci (Shirk et al., 2010). These
genotypes were used to calculate pairwise inter-individual genetic
distances, which we related to effective distances (based on var-
ious resistance hypotheses) in a causal modeling framework
(Cushman et al., 2006; Shirk et al., 2010). This identified a model
of landscape resistance as causal relative to alternative resistance
models or null models of isolation by distance or barriers. The
causal model accounted for the influence of elevation, land cover,
and roads on gene flow. In the present analysis, we used this resis-
tance model to define genetic neighborhoods for mountain goats
within the study area, and the genotypes to estimate NS within
the neighborhoods.

INFERRING σ FROM GENETIC DATA
We evaluated two approaches to using genetic data to infer the
mean squared parent-offspring dispersal distance (σ) that deter-
mines the spatial extent of Wright’s neighborhood. We used
the program sGD (Shirk and Cushman, 2011) to calculate the
inbreeding coefficient (FIS) and a chi-square test for goodness-of-
fit to Hardy-Weinberg equilibrium (HWE) within genetic neigh-
borhoods centered on each individual’s location in the IBD and
IBR simulated populations. The outer extent of each neighbor-
hood was defined in terms of σ, which was recorded by CDPOP
during the simulations. Because of the Wahlund effect that occurs
when the analysis extent does not match Wright’s genetic neigh-
borhood (Neel et al., 2013), we expected FIS to be positive and the
HWE test p-value to be significant (α = 0.05; the null hypothesis
was that the sample was in HWE) when the analysis extent was >

2σ. Conversely, when the analysis extent was < 2σ, we expected
FIS to be negative and the HWE test p-value to not be significant.
To quantify bias and error when σ was not known, we estimated σ

by iteratively increasing the analysis neighborhood from 5 to 50%
of the Euclidean or effective distance (for the IBD and IBR simula-
tions, respectively) to cross the landscape, in 5% increments. The
estimated σ was defined by the distance at which FIS was closest
to zero or the HWE test p-value was closest to 0.05.

ESTIMATING NS
To estimate NS spatially, we modified the previously described
program sGD (Shirk and Cushman, 2011), which calculates
genetic diversity indices within genetic neighborhoods given a
spatially referenced set of co-dominant input genotypes and a
matrix of pairwise inter-individual landscape distances. Distances
may be calculated in Euclidean or effective units as appropriate
for the landscape and population of interest. For each genotyped
individual in the sample, sGD uses the distance matrix to iden-
tify all other individuals that are below a user specified threshold
distance (i.e., the neighborhood radius). Genetic diversity indices
are then calculated from the genotypes of all individuals within
each neighborhood. For this analysis, we modified sGD to also
estimate NS within the same genetic neighborhoods via a depen-
dency on the program NeEstimator (Do et al., 2014). NeEstimator
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implements the most widely used one-sample estimator, the
Burrow’s method based on linkage disequilibrium (LD) resulting
from genetic drift in a finite population (Cockerham and Weir,
1977; Hill, 1981; Weir, 1996). The LD method estimates the num-
ber of breeding individuals responsible for the sample (Nb), for
the parental generation (Hill, 1981; Waples, 2006; Waples and Do,
2008). The method to estimate NS spatially (as well as the origi-
nal methods to estimate common indices of genetic diversity) is
now implemented in the sGD package in R (R Development Core
Team, 2013).

For each replicate in the IBD and IBR simulations, we used
the sGD package to estimate NS within genetic neighborhoods
centered on each of the 1296 individuals in the population. The
radius of the neighborhood was determined by the mean squared
parent-offspring dispersal distance (σ), which was recorded by
CDPOP during the simulations. We varied this extent from 1 to
4σ, using Euclidean distances for the IBD populations and effec-
tive distances for the IBR populations (calculated as described
above). These pairwise distances defining the genetic neighbor-
hoods were the same distances that determined mating and
dispersal probabilities in the CDPOP simulations. After 300 simu-
lated generations, we used the sGD package to calculate N̂b within
neighborhoods with at least 20 individuals (to reduce error from
small sample sizes). To limit bias due to inclusion of rare alleles,
we included only alleles with a frequency > 0.01 (Waples and Do,
2010). Because our simulation parameters met the Wright-Fisher
assumptions of an ideal population, the number of individuals in
each genetic neighborhood of radius 2σ was equal to the NS based
on Wright’s definition. This provided a means to compare N̂b to
the true NS. We also used the sGD package to estimate NS spa-
tially from the mountain goat genotypes, resistance model, and
estimate of σ described above and published in Shirk et al. (2010).

RESULTS
In the CDPOP simulations, the lack of mutation and immigra-
tion allowed drift and inbreeding to reduce allelic diversity and
heterozygosity in the population over time (Figure 2). Observed
heterozygosity (Ho) was lower than expected heterozygosity (He),
resulting in a positive inbreeding coefficient (FIS). This reflects a
Wahlund effect due to substructure within the sampling extent
(i.e., the entire population). The population was more highly
structured in the IBR simulation compared to the IBD simula-
tion, and inbreeding was correspondingly higher. That inbreeding
plateaued after 20–30 generations indicates population genetic
structure formed very rapidly, and was stable for the remainder
of the simulation.

In the IBD simulations, mean σ across 100 replicates was
3058 m (SD 82 m) in Euclidean distance units. In the IBR sim-
ulations, mean σ was 10950 m (SD 650 m) in effective distance
units. As the analysis neighborhood radius was increased from 1
to 4σ, the number of individuals in the neighborhood (N) and
the estimate of NS (N̂b) increased (Figures 3A,B, respectively). In
both the IBD and IBR simulations, the mean N̂b:NS ratio for all
neighborhoods approached 1 only when the analysis extent radius
was 2σ (Figure 3C). Thus, N̂b was not biased when the analy-
sis extent matched the extent of Wright’s genetic neighborhood.
However, at analysis extents < 2σ, N̂b:NS was > 1, indicating

FIGURE 2 | Change in population genetic indices over 300 simulated

generations. Observed heterozygosity (Ho ; A), expected heterozygosity
(He; B), inbreeding coefficient (FIS ; C), and the number of alleles (A; D) in
the population were recorded for each generation, for both the isolation by
distance (IBD; gray line) and isolation by resistance (IBR; black line)
simulations. Each plot represents the mean and standard deviation of 100
replicate simulations.

bias toward overestimation. Conversely, at analysis extents > 2σ,
N̂b:NS was < 1, indicating a bias toward underestimation.

As the analysis neighborhood increased in radius from 1 to
4σ, the mean FIS within neighborhoods in the IBD and IBR
populations transitioned from negative to positive values at 2σ,
though the variance across replicate runs was high (Figure 4A).
Similarly, a chi-square test for HWE within each neighborhood
became significant at α = 0.05 when the analysis neighborhood
approached 2σ, though we observed high variability across repli-
cate runs (Figure 4B). Using the above relationships to infer σ

by iteratively increasing the analysis neighborhood, we found the
point at which the HWE test p-value became significant was often
less than σ. Estimating NS using this biased estimate of σ to define
the analysis neighborhoods added considerable error and a strong
bias toward overestimating NS, in both the IBD and IBR pop-
ulations (Table 1). The distance at which FIS transitions from
negative to positive produced highly variable estimates of σ, which
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FIGURE 3 | Bias in the estimate of NS as a function of the analysis

window extent. Simulated genotypes at generation 300 were grouped
into overlapping analysis neighborhoods of varying extents. The analysis
extents were defined in terms of σ, the mean squared parent-offspring
dispersal distance recorded during the simulations. In (A), the number of
individuals per neighborhood at each analysis extent is shown for both the
isolation by distance (IBD; gray line) and isolation by resistance (IBR)
simulations. In (B), N̂b (the estimated number of breeding individuals

responsible for the sample) calculated using the LD method (implemented
in the program NeEstimator) at varying analysis neighborhood extents is
shown. We used N̂b as an estimate of Wright’s neighborhood size (NS;
the actual number of breeding individuals in a neighborhood with a radius
of 2σ). Bias in this estimate at analysis neighborhood extents that do not
match the extent of local breeding becomes apparent when the ratio of
N̂b:NS is < or > 1.0 (C). Each plot represents the mean and standard
deviation of 100 replicated simulations.

FIGURE 4 | FIS and HWE test p-value as a function of the analysis

window extent. Simulated genotypes after 300 generations were grouped
into overlapping analysis neighborhoods of varying extents. The analysis
extents were defined in terms of σ, the mean squared parent-offspring
dispersal distance recorded during the simulations. The inbreeding
coefficient (FIS ; A) and the p-value for a chi-square test of Hardy-Weinberg
equilibrium (HWE; B) were calculated for each analysis neighborhood
extent in both the isolation by distance (IBD; gray lines) and isolation by
resistance (IBR; black lines) simulations. Each plot represents the mean and
standard deviation of 100 replicated simulations.

when used as the analysis neighborhood also added considerable
error to the estimate of NS, but no strong bias (Table 1).

When the analysis extent matched the extent of breeding at a
radius of 2σ, the distribution of N̂b:NS ratios was approximately

Table 1 | Mean ratio of ̂Nb (the estimated number of breeding

individuals in the neighborhood sample) to NS (the true

neighborhood size), and mean absolute error (MAE; as a percent of

the true neighborhood size) in the estimate of NS, over 100 replicate

simulations.

Method Landscape Mean N̂b:NS ratio MAE(%)

FIS IBD 1.05 28.5

HWE IBD 1.21 23.9

Known σ IBD 0.94 7.6

FIS IBR 1.04 32.4

HWE IBR 1.30 25.4

Known σ IBR 0.96 9.1

An unbiased estimate of NS without error would have a ratio of 1.0 and a MAE

of 0. Values are given for the inbreeding coefficient (FIS ) and Hardy-Weinberg

equilibrium (HWE) methods of inferring sigma (σ ) and when σ is known in

both the isolation by distance (IBD) and isolation by resistance (IBR) simulated

landscapes.

centered on 1 in neighborhoods at varying distances from the
edge, in both the IBD and IBR populations (Figure 5), indicating
no bias in the estimate of NS due to edge effects. Furthermore,
spatial variation in NS was highly apparent in all simulations.
In the IBD simulations, the mean NS across all simulations was
highest in the center of the landscape and decreased uniformly
toward the periphery (Figure 6A). In the IBR simulations, NS
also tended to be higher in the center of the landscape relative
to the periphery (Figure 6B). However, the complex pattern of
resistance created complex patterns in NS that varied between
each simulated IBR landscape. Spatial variation in NS was also
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FIGURE 5 | Spatial variation in ̂Nb . The number of breeding individuals
responsible for the sample (N̂b ) was calculated within genetic
neighborhoods with a radius of 2σ (the mean squared parent-offspring
dispersal distance) in both the isolation by distance (IBD; A) and isolation by
resistance (IBR; B) simulations after 300 generations. In (A), the mean N̂b

of 100 replicate simulations is shown. In (B), one example from the 100
replicate simulations is shown, because neighborhood extents varied
between replicates in the IBR simulations.

strong in a population of mountain goats in the Cascade Range,
Washington, USA (Figure 7). The southern part of the popu-
lation, which has a high local density of individuals, had the
largest relative NS whereas in the north, where mountain goats
are sparsely distributed, NS was comparatively low.

DISCUSSION
Spatial genetic variation is an expected property of continuous
populations when the extent of the population exceeds the local
extent of dispersal and mating (Ibrahim et al., 1996; Miller, 2005;
Shirk and Cushman, 2011). In this study, we describe an appli-
cation of Wright’s neighborhood concept designed to quantify
spatial variation in NS for continuous populations isolated by
distance or resistance. We previously applied this method to esti-
mating spatially-explicit indices of genetic diversity in Shirk and
Cushman (2011). Here, we extend this approach to also estimate
NS in local analysis neighborhoods surrounding each sample
location. Matching the analysis neighborhood to the local extent
of breeding in the population provided unbiased estimates even
near the periphery of a population, and revealed complex pat-
terns of NS that have important conservation implications for
continuous populations.

Neel et al. (2013) applied a similar approach to estimate
NS in local neighborhoods, but not in a spatially-explicit man-
ner and only for populations isolated by distance. There were
also differences between these studies in terms of how genetic

FIGURE 6 | Edge bias in ̂Nb . Simulated genotypes after 300 generations
were grouped into overlapping analysis neighborhoods with a radius of
twice the mean squared parent-offspring dispersal distance (σ) recorded
during the simulations, for both the isolation by distance (IBD; A) and
isolation by resistance (IBR; B) populations. N̂b (the estimated number of
breeding individuals responsible for the sample) was calculated for each
neighborhood using the LD method (implemented in the program
NeEstimator). We used N̂b as an estimate of Wright’s neighborhood size
(NS; the actual number of breeding individuals in a neighborhood with a
radius of 2σ). Bias in the estimate of NS at varying percent distances from
the center of the population would be evident if the ratio of N̂b :NS is < or >

1.0 (C). The dark horizontal line in each boxplot represents in median ratio of
all neigborhodos and the top and bottom of the box depict the 25th and
75th percentile of ratios. The whiskers extend to the smallest and largest
values in the data that are not outliers (open circles). Each plot summarizes
100 replicate simulations.

neighborhoods were defined and simulated. Wright’s neighbor-
hood assumes a Gaussian dispersal function and an outer extent
that is a circle with a radius of 2σ. This extent contains about 87%
of the potential parents for an individual at the center. In Neel
et al. (2013), the genetic neighborhood was a square containing
100% of potential parents and the distances between parents and
offspring followed a uniform distribution. In the present analysis,
our simulations were based on a Gaussian dispersal function and
our estimate of NS was based on a neighborhood extent 2σ from
the center, thus matching Wright’s definition.

Despite these differences, both our study and Neel et al. (2013)
identified the same bias in IBD populations when the analysis

www.frontiersin.org October 2014 | Volume 2 | Article 62 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Shirk and Cushman Effective size of continuous populations

FIGURE 7 | Spatial variation in mountain goat ̂Nb . Genotypes sampled
from a population of mountain goats inhabiting the Cascade Range,
Washington, USA were grouped into overlapping neighborhoods based on
effective distances calculated from an empirical resistance model and a
radius defined by twice the estimated mean squared parent-offspring

dispersal distance (σ). The estimated number of breeding individuals
responsible for the sample (N̂b) was calculated for each neighborhood
using the LD method (implemented in the program NeEstimator). Warm
colors indicate higher relative N̂b and cool colors represent lower relative
N̂b values.

neighborhood was too large or small compared to Wright’s neigh-
borhood. Specifically, when the analysis neighborhood radius was
greater than Wright’s neighborhood, Neel et al. (2013) observed
a downward bias in NS (due to linkage disequilibrium aris-
ing from a two-locus Wahlund effect) and positive FIS values

(due a single locus Wahlund effect that produced fewer than
expected heterozygotes). Conversely, when the analysis neigh-
borhood radius was smaller than Wright’s neighborhood, the
bias was opposite; NS was overestimated and negative FIS val-
ues were observed due to an excess of heterozygotes compared
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to Hardy-Weinberg expectations. Our study confirms this bias
under a strict definition of Wright’s neighborhood.

We have extended Wright’s genetic neighborhood concept to
estimate NS in continuous populations isolated by resistance. The
key to this approach was to measure landscape distances, includ-
ing the neighborhood radius (2σ), in terms of effective rather
than Euclidean units. Placing a kernel with this effective distance
radius over each sampled individual defined an area within which
most mating occurs, and is completely analogous to the circu-
lar Wright’s neighborhood in a population isolated by distance.
Indeed, one can think of IBD and IBR as part of the same con-
tinuum. IBD is equivalent to a resistance surface where all cells
have a resistance of one (i.e., the cost of traversing a cell is equal
to one times the Euclidean distance across the cell). In more resis-
tant landscapes, values above one are present, and, for the same
neighborhood radius, the added resistance reduces the distance
to the outer edge. In this way, complex patterns of resistance
owing to landscape heterogeneity create irregularly shaped ker-
nels. However, as long as distance units are weighted to account
for resistance in the landscape (i.e., effective distances), in ecolog-
ical space, the neighborhood is still a circle. That our results were
very similar between the IBD and IBR simulations supports the
notion that Wright’s neighborhood concept is applicable to both
forms of continuous population structure.

In most wild populations, individuals mate and disperse over
limited distances relative to the extent of the population. For this
reason, wild populations generally exhibit some form of IBD or
IBR, and are therefore not panmictic. However, many studies
overlook this possibility, and instead estimate Ne from discrete
groups of sampled individuals assumed to be panmictic (e.g., the
Aspi et al., 2006 estimate of Ne assumes the border of Finland
delineates a closed panmictic population of wolves). Neel et al.
(2013) and this study suggest assuming panmixia when in fact
the population is continuous creates a mismatch between the
sampling extent and the extent over which local breeding occurs,
resulting in a biased and unreliable estimate that does not reflect
Ne for the global population nor the local NS. Moreover, the sin-
gle estimate for an entire sampling area may mask substantial
spatial heterogeneity in the local NS. This is troubling because it
suggests past studies that have not accounted for the continuous
nature of the population under study may have produced biased
and spatially inaccurate inferences regarding the true pattern
of NS on the landscape, potentially misinforming conservation
planning.

The bias and error that result from violating the assumption of
a closed, panmictic population within the sampling extent under-
scores the need to rigorously identify the mode of genetic isolation
prior to estimating Ne, NS, and other population genetic indices.
We have already discussed the risk in assuming a discrete pan-
mictic subpopulation structure when the population is actually
continuous. However, there is also risk in misconstruing IBD
and IBR in a continuous population. Many studies of popula-
tion genetic structure explore the fit of IBD to the population of
interest, and most find a negative relationship between distance
and relatedness, at least when the sampling extent is large rela-
tive to area of local breeding. However, most populations inhabit
heterogeneous landscapes that variably resist movement and gene

flow, raising the potential that IBR models outperform the IBD
model in reflecting the true pattern of genetic isolation on the
landscape. Yet few studies rigorously compare IBD to alternative
IBR models. If we were to assume IBD in our analysis of the IBR
simulations, the extent of our analysis neighborhoods (a circle)
would not have matched the irregular kernel characterizing the
true breeding neighborhood, likely leading to bias and increasing
error. The converse is also true. Thus, a thorough examination of
the mechanism driving population genetic structure is an essen-
tial preliminary step. Recent studies have described approaches to
compete various models of genetic isolation against each other
to infer the most likely to be causal (Cushman et al., 2006, 2013;
Shirk et al., 2010), facilitating this task.

An important component of spatial variation in NS is the edge
effect that appears at the periphery of a population. If a popu-
lation is genetically structured, the theoretical expectation is for
reduced gene flow, NS, and neutral genetic diversity near the
periphery relative to the core (Caughley, 1994; García-Ramos and
Kirkpatrick, 1997), though variation in local population densities
and resistance could create more complex patterns. This expec-
tation has been empirically observed in both plant and animal
populations, though not consistently (Eckert et al., 2008). In the
IBD simulation, where the population density was uniform and
genetic isolation a constant function of Euclidean distance, this
theoretical expectation was clearly observed. An edge effect was
also apparent in peripheral areas in the IBR simulation, though
the spatial variation in NS also appeared to be influenced by the
complex patterns of resistance. Interestingly, the pattern of NS
on the landscape in the empirical mountain goat population was
dominated by the variable density of individuals in the popula-
tion (which much greater in the south than the north), rather
than the edge proximity. This demonstrates how heterogeneous
landscapes and variable population density can create complex
spatial patterns of NS (and concomitant spatial variation in man-
agement implications) that can only be elucidated with a spatially
explicit approach such as the one described here.

Spatial variation in NS apparent in the simulated and empir-
ical mountain goat populations raises the potential for a spatial
component to extinction dynamics in continuous populations.
For example, NS near the periphery of the simulated IBR pop-
ulation shown in Figure 6B was as low as 10, while in the center
it approached 300. Franklin (1980) proposed a minimum effec-
tive size of 50 is required to avoid inbreeding depression in the
short term, though some reports consider the minimum num-
ber to be greater (Reed and Bryant, 2000). In this example, the
periphery of the population would be at risk of decline, even
though the core might initially remain viable. Eventually, how-
ever, the decline of the edge neighborhoods may contract the
population inward, lowering NS in areas adjacent to the original
periphery, and potentially creating a wave of inbreeding depres-
sion that could threaten even the centermost neighborhoods. If
this dynamic occurs in wild populations, it suggests maintaining a
sufficiently large NS in the periphery is an important conservation
target to avoid a greater threat to the entire population.

While the neighborhood approach implemented in the sGD
package affords a means to detect spatial variation in NS
and thereby provide new information for conservation genetic
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analyses and genetic management of populations, we note several
important limitations and assumptions that need to be met for
reliable estimates. First, to produce a strong spatial representation
of variation in NS requires a large number of sample genotypes
distributed over a broad area yet with sufficient local density to
supply a sufficient sample size. This is not possible for rare or very
difficult to sample species. Because rare species are often the most
threatened and of high interest to conservation genetics, this is
a major limitation. For this reason, the neighborhood approach
implemented in sGD may be most applicable for larger popu-
lations or simulations. In the context of conservation genetics,
sGD may be particularly useful for predicting the change and spa-
tial variation in NS for simulated continuous populations under
scenarios of future landscape change due to disturbance, climate
change, or conservation efforts (see Wasserman et al., 2013 for an
example).

Another important limitation of the neighborhood approach
to estimating NS is the need for an accurate estimate of σ. This
parameter is not known for most wild populations. Inferring σ

from the same genetic data used to estimate NS would avoid the
need to collect additional data. Neel et al. (2013) proposed that
if genetic samples were collected broadly, FIS values could be cal-
culated iteratively over a range of analysis window extents, and
the transition from negative to positive FIS values might be used
to estimate σ. Our study confirms this expectation in terms of
the mean distance at which FIS approached zero, but the vari-
ance was high, adding substantial error to the estimate of σ and
NS. Similarly, a chi-squared test for HWE generally became sig-
nificant at a neighborhood radius of 2σ in our simulations, with
somewhat lower error, but was biased toward underestimating σ

(and therefore overestimating NS). This bias was likely driven by
lower sample sizes at smaller analysis extents not having sufficient
power to reject the null hypothesis that the samples were in HWE.
The magnitude of spatial variation in NS we observed in both the
IBD and IBR populations when σ was known was much greater
than the error and bias introduced when σ was estimated using
the HWE and FIS methods, suggesting these methods may still
provide insight into the relative patterns of NS on the landscape,
but more robust methods are clearly needed.

Other alternatives to estimating σ have been explored. The
autocorrelation in genetic distances as a function of landscape
distance has been related to dispersal distances in several stud-
ies (Sokal and Wartenberg, 1983; Hardy and Vekemans, 1999;
Smouse and Peakall, 1999). In addition, the approximately linear
relationship expected between the logarithm of spatial distance
and genetic distances among individuals has been used to infer
both σ and NS (Rousset, 2000; Hardy and Vekemans, 2002;
Rousset and Leblois, 2011). For diploid individuals in a two-
dimensional habitat, NS is equal to 1 divided by the slope of the
regression between individual genetic distance (ar ; Rousset, 2000)
and the log of distance. With this estimate of NS and when the
effective density of individuals (D) is known, then

σ = √
NS/(4πD)

This approach provides a single estimate of NS across the entire
population, rather than spatially explicit estimates of NS that

we sought to produce. Moreover, inferring σ from the equation
above requires knowledge of D, which is readily quantified in
simulations, but difficult to estimate in wild populations. The
methods to infer σ explored in this analysis do not require a priori
knowledge of D.

In this analysis, we used a global population estimate of σ

(calculated from the mean squared dispersal distances in the sim-
ulations or estimated from FIS or HWE tests) to define analysis
extents around sampled individuals. However, local variation in
σ could produce local neighborhoods that are not adequately
defined by the global mean estimate. For example, dispersal dis-
tances could be influenced by local population density (Herzig,
1995). In such instances, estimating σ locally for each neighbor-
hood surrounding a sampled individual may be necessary.

Another important limitation of this approach applies only
to populations isolated by resistance. In such cases, a resistance
model is required to measure effective distances that define the
extent of neighborhoods, yet these are available for relatively few
species. Moreover, error in a resistance model would be man-
ifest in inter-individual effective distances that define analysis
neighborhood boundaries, potentially adding error or bias to
local estimates of NS. Accurately quantifying landscape effects on
genetic isolation is a primary focus in the field of landscape genet-
ics. Methods have now been developed to parameterize resistance
models based on maximizing the relationship between genetic
relatedness and various hypotheses of how the landscape resists
gene flow (Cushman et al., 2006, 2013; Shirk et al., 2010). As
advances are made in this field and as empirical resistance models
become increasing available, the potential for spatial analysis of
NS in IBR populations will grow.

Importantly, the implications of violating Wright’s genetic
neighborhood assumptions have not been explored as they relate
to the spatially explicit method we describe. Wright’s neigh-
borhood concept assumes a uniform population density and
Gaussian dispersal. However, in wild populations, dispersal has
often been observed to be leptokurtic (Kot et al., 1996) and
population density often varies over space and time. Robledo-
Arnuncio and Rousset (2010) examined bias and error in the
regression-based estimate of NS described above (Rousset, 2000)
as a function of population aggregation and dispersal kurtosis.
They found the method was robust to departures from Gaussian
dispersal and population aggregation as long as NS was inter-
preted as the speed of genetic differentiation with distance (not
the number of effective individuals within a radius of 2σ) and σ2

was interpreted as the asymptotic mean rate of increase in mean-
squared dispersal distance of a gene lineage. Whether the spatially
explicit estimates of NS provided by our approach is similarly
robust needs to be evaluated in populations exhibiting spatial
demographic variability and non-Gaussian dispersal.

CONCLUSIONS
Existing methods to quantify NS in continuous populations pro-
duce a single estimate reflecting the aggregate behavior of all
neighborhoods in the population. We have shown the poten-
tial for profound spatial variation in NS that is masked by the
population mean estimate and described a method to detect this
variation (implemented in the R package sGD). The magnitude
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of spatial variation in NS may be sufficient to create conditions
for inbreeding depression at the periphery or in areas isolated
by strong patterns of resistance, even though the core remains
viable. This raises the potential for a spatial component to extinc-
tion vortex dynamics in continuous populations. Spatially explicit
estimates of NS may be used to asses genetic viability risk patterns
across a landscape, thereby aiding conservation genetic analyses
and management. However, the method we propose is predicated
on sufficient sampling density, an accurate estimate of σ, an accu-
rate landscape genetic model (IBD or IBR), and assumptions of
Wright’s neighborhood that may be violated in real populations
(e.g., Gaussian dispersal). New studies that examine the accu-
racy of this method under variable sample size and population
demographic qualities are needed.
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