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A mechanistic analysis of density
dependence in algal population
dynamics
Adrian Borlestean, Paul C. Frost and Dennis L. Murray *

Department of Biology, Trent University, Peterborough, ON, Canada

Population density regulation is a fundamental principle in ecology, but the specific

process underlying functional expression of density dependence remains to be fully

elucidated. One view contends that patterns of density dependence are largely

fixed across a species irrespective of environmental conditions, whereas another is

that the strength and expression of density dependence are fundamentally variable

depending on the nature of exogenous or endogenous constraints acting on the

population. We conducted a study investigating the expression of density dependence

in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We

predicted that the relationship between per capita growth rate (pgr) and population

density would vary from concave up to concave down as nutrient density became less

limiting and populations experienced weaker density regulation. Contrary to prediction,

we found that the relationship between pgr and density became increasingly concave-up

as nutrient levels increased. We also found that variation in pgr increased, and pgr levels

reached higher maxima, in nutrient-limited environments. Most likely, these results are

attributable to population growth suppression in environments with high intraspecific

competition due to limited nutrient resources. Our results suggest that density regulation

is strongly variable depending on exogenous and endogenous processes acting on the

population, implying that expression of density dependence depends extensively on local

conditions. Additional experimental work should reveal the mechanisms influencing how

the expression of density dependence varies across populations through space and time.

Keywords:Chlamydomonas reinhartti, density dependence, logisticmodel, per capita growth rate, phytoplankton,

population dynamics, single species growth, theta-logistic model

Introduction

It is well-understood that natural populations are limited by both exogenous (e.g., climate) and
endogenous (e.g., predation, competition) processes, and that these forces can have profound
impacts on population growth and stability. Exogenous processes are density-independent in that
they do not return a population to a stable equilibrium but rather act by adding variability in the
population trajectory, whereas endogenous processes are density-dependent and promote reduced
growth and numerical stationarity around an equilibrium population size (Sinclair, 1989; Krebs,
1995b; Sinclair et al., 2006). Density dependence is a well-known process affecting virtually all nat-
ural populations, but there is considerable variability across species and systems in how this process
acts to constrain growth and how this translates to changes in abundance (Sæther and Engen, 2002;
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Sibly et al., 2005; Ross, 2009). For example, some populations
experience strong density-dependent regulation at low numbers
such that population growth is constrained well in advance of
reaching a stable equilibrium (carrying capacity), whereas in
others the full effects of density dependence are not manifest
until the population is resource-limited and closer to its carry-
ing capacity (Sibly et al., 2005). Sometimes there is a direct and
immediate relationship between population size and its density-
dependent constraints; in others the response is time-delayed
(Turchin, 2003). It may even be possible that individual popula-
tions experience variable density-dependent constraints depend-
ing on local conditions affecting growth rates or carrying capacity
(Sæther and Engen, 2002; Murray et al., 2010). It follows that
these variable scenarios highlight the challenges associated with
quantifying density dependence in natural populations, and the
uncertainty in our understanding of precisely how density depen-
dence acts to regulate growth across populations; this uncertainty
parallels the noted confusion and inconsistency in the use of
nomenclature surrounding density dependence (Herrando-Pérez
and Delean, 2012). Accordingly, these collective shortcomings
limit our ability to fully predict how natural populations are reg-
ulated as well as their likely responses to perturbation (Sinclair,
1989; Krebs, 1995a).

Phenomenological models have been developed for estimat-
ing density dependence from population abundance data, with
the standard logistic equation being the most commonly-used
heuristic (Tsoularis, 2001; Gabriel et al., 2005; Sakanoue, 2007).
Yet, the logistic model is limited by the assumption that there
is a negative linear relationship between per capita population
growth rate (pgr) and population size, without elaborating on
an underlying biological reasoning behind this simplifying con-
straint (Sibly et al., 2005). While alternate population models
relax this constraint by making allowance for nonlinearity in
the pgr-population size relationship (Tsoularis, 2001; Tsoularis
and Wallace, 2002), these modifications are driven perhaps more
strongly by a goal to fit models with high precision rather than
by first principles governing population dynamics. Indeed, a
cogent example is Sibly et al.’s (2005) use of the theta-Logistic
model to infer nonlinearity in density dependence across a broad
range of animal taxa. In an attempt to fit this model to pop-
ulation time series data, Sibly et al. (2005) assumed implicitly
that the expression of density dependence was fixed in a given
species and could be summarized by averaging the level of non-
linearity observed in the population growth-population size rela-
tionship, across multiple conspecific populations. However, it
remains plausible that the manner by which density dependence
is expressed is not a species-specific trait but rather that it varies
according to population-level circumstances like local resource
abundance, growth potential, or other exogenous or endogenous
constraints. More generally, this uncertainty highlights our lim-
ited perspective on how density dependence may vary through
space or time (Sibly et al., 2005), how to appropriately detect
density dependence in growing or declining populations (Getz
and Lloyd-Smith, 2006; Ross, 2006), and whether density depen-
dence can over-ride or otherwise mask the influence of density-
independent processes on population growth (Clark and Brook,
2010). Ultimately, we need a deeper understanding of why and
how density dependence is manifested to provide important

insight into the complexity of factors associated with population
regulation.

Using a unicellular alga (Chlamydomonas spp.) as a model,
we examined the extent of variability in density dependence as
a function of resource (nutrient) level. Specifically, we used a
gradient of 12 nutrient concentrations to determine whether the
nature of density dependence differed according to resource level.
We predicted that differential resources would alter the expres-
sion of density dependence, such that the population growth
vs. population size relationship would not be fixed but rather
vary according to nutrient level. More specifically, we predicted
that at low resource levels pgr would be expressed as a con-
cave up relationship with population size, and that the relation-
ship would gradually transition to concave down, as resources
increased. This prediction makes intuitive sense because when
per capita resource levels are low, populations should experience
accelerated expression of density dependence due to rapid ini-
tial growth, which would translate to rapid decline in per capita
population growth at low population density (see Figure 1). In
contrast, when resources are abundant, the effects of density
dependence should be more consistent at higher population den-
sity. If density regulation in a given population is plastic based on
its environment, then the intensity of density regulation will vary
in correspondence with environmental quality. It follows that
an increase in resource level should correspond to an increase
in time before the effects of density dependence on population
growth are readily discerned. Under this scenario, we expected
additional nutrients to prolong the onset of population growth
rate deceleration from density dependence, again owing to the
slower time before resources become strongly limiting (Figure 1).
We note that because ours is among the first studies to explic-
itly test how density dependence varies in a single species across
multiple resource levels, we consider that our general findings
are helpful not only in terms of establishing a firmer grasp of
mechanistic processes underlying population dynamics, but also
in broadly elucidating how populations may respond to natural
or anthropogenic perturbation.

Materials and Methods

Algal Population Growth
We used Chlamydomonas reinhartti (Chlamydomonadaceae),
a unicellular green-algae, as our model system for examining
density-dependent processes (Renaut et al., 2006). Stock cultures
(Canadian Phycological Culture Centre: August 2012) were inoc-
ulated into sterile algal medium in a closed system, and cultures
were kept in an environmental chamber at 21◦C with a 16: 8 h
(light: dark) cycle (Harris, 1989; Renaut et al., 2006). Cultures
were grown in 2 L Pyrex Erlenmeyer flasks, with tubing extend-
ing from aerators and through syringe filters (0.22µm), which
ensured that the system remained sterile for the duration of the
experiment (Cunningham and Maas, 1978). To confirm that all
cells were at the maximal stage of growth at the outset of the
experiment, inoculum was only extracted between 7 and 10 days
after the stock culture was initiated. Prior to inoculation, cell den-
sity and cell diameter (µm) were recorded from the stock culture
to confirm initial concentration, size, and to calculate the initial
density (N0 = 1308 cells/ml). Cell diameter is also used to ensure
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FIGURE 1 | Illustration of the role of resource variability on

patterns of (A) abundance, and (B) per capita growth (pgr) in

population dynamics. The curves in (B) are defined as concave-up

(θ < 1) and concave-down (θ > 1). The legend refers to estimates of

parameter θ in the theta-Logistic equation, where population growth is

sigmoidal with the inflection point at K/2, and the decline in pgr with

population size is linear. Resource levels were arbitrarily chosen for

illustrative purposes.

synchrony in cell cycles and provides an indirect measure of cell
health. The stock was agitated continuously during inoculation
to ensure consistent concentration in each 1mL sample of algal
inoculum.

Algae were grown in standard MPI medium; a mixture
designed to propagate consistent growth of phytoplankton
(Sterner and Hagemeier, 1993; Kilham et al., 1998). We pro-
vided nutrient levels in 12 different concentrations to establish
a gradient in resource availability; this was completed by dilution
and/or concentration of each nutrient in the formula.We consid-
ered 100% MPI as the baseline concentration, and our nutrient
gradient ranged from 20% (lowest) to 200% (highest) concen-
tration, with three replicates per individual nutrient level. Each
nutrient concentration level was produced individually to guar-
antee consistency across each replicate. Once neutralized to a pH
of 7, each container was autoclaved and subsequently inoculated
simultaneously at the onset of the experiment.

Cell concentration and cell dimensions were estimated daily
from a culture sample (∼1–2mL) using an automated cell
counter (Life Technologies: Grand Island, NY, USA). Cell density
counts were verified with a prior standardized analysis against
microscope cell density counts (Borlestean, unpublished). The
experiment continued until population size stabilized near a car-
rying capacity,∼15–20 days after inoculation.We considered the
occurrence of either 2 consecutive days where the algal popula-
tion experienced a population loss, or a sequence of 3 days in
which population increase and decrease alternated, as an indi-
cation that carrying capacity was reached; thereafter any further
population estimates were censored. Along with daily counts, cell
diameter was employed as an indicator of cell health.

Data Analysis
Theta-Ricker Model
Population growth and density dependence were examined using
the theta-Ricker equation;

Nt+1 = Nte

[

r

(

1−
(

Nt
K

)θ
)]

(1)

where N, rmax, and K are the population density, intrinsic rate
of population growth, and carrying capacity, respectively (Gilpin
and Ayala, 1973). The theta-Ricker model differs from the stan-
dard logistic model as a discrete function with explicit consider-
ation of the structure of density dependence, through the estima-
tion of parameter θ (Gilpin and Ayala, 1973; Sibly et al., 2005).
Parameter θ accounts for potential curvilinearity in patterns of
population growth across population size; functionally, param-
eter θ can fit a variable inflection point in the logistic growth
curve (i.e., a divergence from K/2), depending on the particu-
lar form of density dependence (Tsoularis, 2001; Gabriel et al.,
2005). Such flexibility is required to evaluate the variability in
density dependence across treatments. Parameter θ allows the
density feedback within a population to be easily computed. If
a population is affected by density dependence at low densi-
ties, then density regulation is stronger (θ < 1) and the curvi-

linear relationship is concave up (Sibly et al., 2005). If density
regulation is manifest especially at high density, density regula-

tion will be expressed more gradually (θ > 1) and the popula-

tion growth-population size relationship will be concave down
(Figure 1B) (Sibly et al., 2005). It follows that if parameter θ =1,

the theta-Ricker reduces to the more parsimonious Ricker model.

Although parameter θ is important for characterizing variabil-
ity in density dependence, its shortcoming is that it is sensitive

to patterns in population growth and variability that emerge
during the curve-fitting process (Clark and Brook, 2010). For

example, Sibly et al. (2005) fit the theta-Logistic model (i.e.,
continuous-time version of the theta-Ricker model) to datasets

from the Global Population Dynamics Database (GPDD) and
found that only 20.6% (n = 3269) of the total sample of popu-

lation time series could be reliably fit using this approach (Getz
and Lloyd-Smith, 2006; Ross, 2006; Clark and Brook, 2010).

Notwithstanding this, in a related exercise we used simulations to
evaluate the performance of the theta-Logistic model compared

to a set of three alternative population growth equations; our
results reveal that the theta-Logistic has superior performance

across a broad extent of realistic parameter space (Borlestean,
unpublished).
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Estimating Intrinsic Rate of Growth
There is a recognized lack of independence between the variables
within the theta-Logistic equation, more specifically, θ and rmax

are highly correlated (Clark and Brook, 2010) and these parame-
ters may be further related to K. It is notable that natural correla-
tion between rmax and parameter θ is an important consideration
when seeking to estimate density dependence, owing to the simi-
lar dependency on rmax and θ in determining population change
(Clark and Brook, 2010). Practically speaking, population growth
rate is commonly calculated using the growth rate experienced by
a population at a given time, whereas rmax is a theoretical con-
struct that is not realistically achieved in natural environments
(Birch, 1948; Caughley and Birch, 1971). This intrinsic growth
rate affects the velocity of the population size increase (the steep-
est slope of the curve) and therefore remains fixed (Caughley and
Birch, 1971). Conversely, parameter θ affects the change in veloc-
ity due to the size of the population (the inflection point of the
curve), which ultimately must be contingent upon resource levels
in the environment.

In most qualitative studies, ecologists estimate all variables
within population growth equations simultaneously. However,
owing to the inherent correlation between rmax and θ , in our
study we estimated each parameter separately (Clark and Brook,
2010). Although there lacks a standard method for estimating
rmax, we used three different approaches to reach a consensus.
First, we estimated rmax from the literature; Grover (1989) used
the Monod model to compute the µmax (limnological rmax) of
Chlamydomonas as 0.79 (± 0.18, 95% CI); this was among the
highest µmax recorded for any algal species (Grover, 1989; Kargi,
2009). Second, we determined the greatest instantaneous per
capita increase in population size observed in our study; this
value corresponded to 1.70 (log[Nt+1/Nt] = log[6.6 × 105/1.2 ×
105]). Third, we used the standard logistic model (i.e., theta-
Ricker where θ = 1) to estimate rmax from our data. To account
for the variation in rmax estimates between each nutrient treat-
ment, the mean across all treatments was computed as 1.29
(± 0.24, 95% CI) after confirming that the rmax estimate was
not closely related to nutrient level (Borlestean, unpublished).
Notably, rmax from Method #2 was the largest and produced
erratic results by generating large confidence intervals and model
non-convergence. Conversely, the rmax converted from Grover
(1989) and the one we generated (Method #3) provided quali-
tatively similar results (Borlestean, unpublished). Hereafter, we
focus on results using the rmax from Method #3.

Direct Measure of Density Dependence
The primary metric used to estimate density dependence was
the relationship between per capita growth rate and population
density. Per capita growth rate (pgr) was computed by calculat-
ing the rate of growth (ri) relative to the population size at the
given time-step (Sibly et al., 2005; Clark and Brook, 2010). Linear
models were examined first to determine whether nutrient con-
centration affected per capita growth rate as density increased.
Next, the theta-Logistic equation was fit to these data via least
squares, transforming the discrete data points to continuous for-
mat. Estimates of density dependence (θ) were further compared
to their respective nutrient concentrations in order to elucidate

the relationship between resource limitation and the nature of
density dependence.

Indices of Density Dependence
We also used two additional approaches to further characterize
the patterns by which density dependence was expressed by our
experimental conditions: (1) variability of pgr; and (2) population
size at the inflection point of the standard (linear) logistic curve
(Ninf ). The variability of pgr across a treatment reveals growth
rate constancy and can be used to identify highly variable pop-
ulations with dramatic changes in population growth rate and
size. A nonlinear change in the inflection points across treatments
would further reveal a departure from the traditional linear rela-
tionship of density dependence produced in the standard Ricker
model (where θ = 1 and inflection point = K/2). Estimating
population size relative to carrying capacity was achieved using
the following equation (from Tsoularis, 2001):

Nin f =

(

1

1+ θ

)1/θ

K (1.2)

where K and θ represent corresponding variables to Equation
1, while Ninf represents the instance when accelerated growth
changes to deceleration (inflection point of the sigmoidal growth
curve). Comparison of the theta-Logistic inflection to the stan-
dard logistic inflection reveals the strength of regulation upon
the population’s growth rate; with larger values implying lower
density-dependent constraints for that population. This metric
must be proportional to the population’s corresponding carry-
ing capacity, and the resulting ratios help identify the point
during the growth phase at which density-dependent regulation
begins affecting population growth rate. Finally, to ensure that
our analysis did not conflate nonlinearity in density dependence
with time-delayed density dependence, using the theta-Logistic
model we used AICc weights based on model likelihoods (Burn-
ham and Anderson, 2002) to compare fit for models with no
time delay [i.e., Nt−0 (Equation 1, where θ = 1)] versus mod-
els with time delays (Nt−1, Nt−2, Nt−3). Here we used popu-
lation size estimates collected during the initial growth phase
(14–18 days) of the experiment to fit a consistent number of
observations to our models. All analyses were conducted using
R software (R Core Team v3.1.1 2014) (Bolker, 2008; Stevens,
2009).

Results

Populations across our nutrient treatments underwent numerical
changes that were characteristic of logistic growth (Figure 2A).
Overall, populations reached their maximum size (carrying
capacity) more rapidly in resource-limited treatments, and by
Day 18 all treatment groups reached our defined endpoint (range
8–18 days, see Figure 2A).

Cell diameter was consistent through time [F(17,619) =

1.0715, p = 0.37], with mean cell size averaging 6.51 (± 0.31,
95% CI)µm through the duration of the experiment (Table 1).
Although cell size varied between treatment groups [F(11,619) =
4.14, p < 0.001], post-hoc tests revealed no correlation between
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FIGURE 2 | (A) Mean population size for Chlamydomonas grown in variable nutrient concentrations. Mean values per replicate (n = 3) are provided. (B) Fitted

theta-Logistic models for Chlamydomonas grown in variable nutrient concentrations.

TABLE 1 | Summary statistics for Chlamydomonas across nutrient treatments.

Nutrient concentration (%) Carrying capacity (K) Density dependence (θ ) Inflection density (N) Inflection density/Carrying capacity

20 1.1× 106 ± 58.6 0.462 ± 0.051 0.493±34.272 0.440

40 1.8× 106 ± 338.5 0.473 ± 0.058 0.785±230.276 0.442

50 1.8× 106 ± 220.8 0.406 ± 0.079 0.778±157.390 0.433

60 3.3× 106 ± 2150.6 0.363 ± 0.320 1.369±1337.508 0.409

80 1.6× 106 ± 98.2 0.473 ± 0.029 0.707±64.452 0.441

100 1.7× 106 ± 298.9 0.226 ± 0.141 0.682±172.803 0.405

120 2.2× 106 ± 55.0 0.177 ± 0.146 0.879±52.947 0.398

140 2.9× 106 ± 606.0 0.132 ± 0.087 1.135±363.296 0.390

150 3.0× 106 ± 142.3 0.124 ± 0.017 1.159±86.094 0.389

160 2.6× 106 ± 191.8 0.121 ± 0.085 0.996±132.306 0.389

180 4.1× 106 ± 484.5 0.115 ± 0.107 1.582±285.787 0.387

200 3.5× 106 ± 358.1 0.132 ± 0.053 1.355±214.058 0.390

Carrying capacity and inflection density are in millions of cells (×106 ) and error is reported as SD. The theoretical constant intrinsic rate of increase (rmax ) used was 1.299.

cell size and nutrient level (R2 = 0.002, p = 0.13), however,
there was a qualitative increase in cell size variability among
the nutrient-limited groups. For example, variance in mean cell
size was 1.76 at 20% MPI and 0.43 at 200% MPI. Furthermore,
no significant correlation was detected between cell diameter
and time (Figure 2A), thereby allowing us to assume that cell
health was largely consistent across all treatments, irrespective of
nutrients.

Estimating Carrying Capacity (K)
Nutrient level affected population K [t(11) = 7.697, p < 0.001;
R2 = 0.64], with resource limitation reducing the carrying capac-
ity. Therefore, we infer that the nutrient treatment generated a
gradient in resource limitation. Overall, we observed a three-fold
increase in maximum cell density from the least (20%: 1.16× 106

cells/ml) tomost saturated solution (200%: 3.47×106 cells/ml, see
Figure 2A). We found a greater variability in the K estimates in
the low-nutrient treatments, with the exception of the 20% nutri-
ent level, which exhibited surprisingly low levels of variability in
estimated K (Table 1).

Assessment of Density Dependence
Estimated θ revealed that patterns of density dependence across
all treatments were concave up, more specifically all values
were <1.0 (Table 1). Based on 95% confidence intervals, all θ

estimates were significantly <1.0, implying that the relation-
ship between PGR and population density was nonlinear across
all treatments. There was a significant relationship between
estimated θ and nutrient concentration, but contrary to our
prediction as nutrient levels increased, θ decreased and den-
sity dependence became proportionally increasingly curvilinear
[regression equation: θ = − 6.99 × 10−7(% NUTRIENTS) +
2.50; t(11) = 5.432; p < 0.001; R2 = 0.49]. For example, esti-
mated θ ’s ranged from 0.462 (± 0.051) at 20% nutrient concen-
tration, to 0.132 (± 0.053) at the 200% nutrient concentration
(Table 1, Figure 3). Accordingly, contrary to what we expected,
density dependence shifted from being moderately concave up in
low nutrient availability, to being increasingly concave up in high
nutrient treatments. Most theta estimates had low variability (i.e.,
95% confidence intervals <0.10), with a few treatments (60, 100,
and 180%) serving as outliers. Not surprisingly, we also noted a
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correlation between θ and carrying capacity [regression equation:
θ = 2.50 − 6.99 × 10−7K; t(11) = 5.432; p < 0.001; R2 = 0.49]
(Figure 3).

Indirect Measures of Density Dependence
Populations exposed to nutrient limitation experienced higher
(and more variable) per capita growth rates compared to those
with saturated nutrients. Mean pgr values had a negative cor-
relation with treatment levels [regression equation: pgr= 298 –
538.40[nutrient concentration]; t(11) = 3.666, p < 0.01; R =

0.73], and the range of pgr values decreased from 20% (−0.247 to
1.70) to 200% (−0.355 to 0.548), thereby demonstratingmore sta-
ble growth in higher nutrient concentration (Figure 4). Further-
more, variance of these mean values follows the same declining
trend, decreasing from 0.200 (20%) to 0.027 (200%). The mean
pgr for all treatments was 0.166 (± 0.386), and treatment-specific
pgrs did not deviate significantly from themean. For example, the
limited (20%), normal (100%), and oversaturated (200%) nutri-
ent levels had mean pgr of 0.188 ± 0.433, 0.136 ± 0.380, and
0.158± 0.247, respectively.

The relationship between pgr and population density became
increasingly concave up with decreasing concentration of

FIGURE 3 | Density dependence curvilinearity (θ ) for Chlamydomonas

grown in variable nutrient concentrations.

FIGURE 4 | Mean per capita growth rate for Chlamydomonas grown in

variable nutrient concentrations, error bars represent variance.

nutrients. Examining the lowest nutrient concentration (20%)
[regression equation: pgr = 0.9241+ (−8.750× 10−7)N; t(17) =
5.583; p < 0.001; R2 = 0.65], the baseline (100%) [regression
equation: pgr = 0.7812 + (−6.119 × 10−7)N; t(17) = 5.241;
p < 0.001; R2 = 0.62], and the oversaturated treatment (200%)
[regression equation: pgr = 0.4168+ (−1.630× 10−7)N; t(17) =
3.575; p < 0.01; R2 = 0.42] shows that slopes between pgr and
population size approached 0 with a corresponding increase in
nutrients (Figure 2B).

We found that decreasing nutrients also exhibited a delay in
the time to reach inflection in population growth. It is impor-
tant to note, however, that this delay seems to be due to reach-
ing carrying capacity while growing at a less regulated pace,
rather than a classic expression of delayed density dependence.
The theta-Logistic model revealed an inflection point at higher
population density (>K/2) compared to the standard logistic
model. We found that as nutrient concentration increased, the
inflection point in the standard logistic model was reached at
proportionally lower population density [regression equation:
y = 0.4462 + (−3.401 × 10−4)x, t(35) = −5.961, p < 0.0001,
R2 = 0.76]. Therefore, populations that grow in nutrient rich
environments experience density regulation more consistently
throughout their logistic growth (Table 2). Note that this vari-
ability in inflection point further supports the primary use of
the theta-Logistic model (rather than standard logistic model) in
fitting our data to models.

To confirm that that the observed pattern of density depen-
dence in high nutrient treatments was due to fundamental
changes in the way that population growth was regulated rather
than simply a standard time-delayed density dependent response,
we compared theta-Logistic model’s fit with forced time delays
ranging from 0 to 3 days (t−0 to t−3). For 11 of 12 nutrient lev-
els, model fit was superior for the t = 0 model than for any
model including a t > 0 time delay. Mean AICc model weights
averaged across all 12 nutrient levels were 0.769 ± 0.181 for
t−0, 0.098 ± 0.084 for t−1, 0.089 ± 0.072 for t−2, and 0.104 ±

0.103 for t−3 (Table 2). Therefore, it is evident that the t−0 set of

TABLE 2 | Summary of AICc results from a curve-fitting exercise using a

range of time-delays (t
−0 . . . tx) in Chlamydomonas populations.

Nutrient t0 t
−1 t

−2 t
−3

concentration (%)

20 10.52±6.24 19.69±4.99 20.29±5.40 19.85±5.44

40 7.75±11.32 17.74±8.53 20.36±7.39 17.92±7.62

50 8.22±9.73 17.75±9.30 18.75±5.98 20.76±5.45

60 16.47±3.16 24.65±3.72 24.02±2.36 23.01 (NC)

80 −2.03±0.86 10.64±1.53 11.64±2.67 11.56±4.75

100 10.66±4.96 15.79±4.02 15.20±4.26 15.25±5.78

120 21.97±2.74 24.85±2.90 26.48±1.89 24.65±3.36

140 9.19±4.46 11.93±4.14 12.06±3.99 8.05 (NC)

150 9.27±4.46 11.61±4.15 13.40±5.49 8.99 (NC)

160 11.23±8.26 13.51±8.69 17.81±4.30 19.67 (NC)

180 7.24±11.31 9.82±11.23 3.11±5.66 6.24 (NC)

200 2.70±3.73 5.62±4.37 5.31±4.48 4.92±3.77
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models provided a superior fit to our data, and that the patterns
of population regulation at high nutrient concentrations were
not attributable to delayed expression of density dependence but
rather to more fundamental changes in the nonlinear properties
of density dependence.

Discussion

Our experiment, using an algal species as model, sought to dis-
entangle the complex relationship between variation in nutrient
availability and expression of density dependence. Overall, we
found that algal populations exposed to high nutrient concentra-
tions experienced both higher carrying capacity (K) and acceler-
ated onset of density dependence (θ), resulting in an increasingly
concave relationship between population growth and population
size (i.e., 1 > θ > 0). Thus, per capita density dependence was
generally less constant at higher nutrient levels, which was con-
trary to our prediction of increased concavity with nutrient con-
centration in nutrient-limited environments. It follows that there
are a number of biological factors that could have contributed
to the observed increase in curvilinearity at high nutrient con-
centration, and because density dependence was not found to
be time-delayed due to nutrient variation, observed differences
across nutrient treatments likely were associated with funda-
mental changes in the expression of density dependence. Col-
lectively, our results reveal strong plasticity in the expression of
density dependence depending on nutrient availability, meaning
that population regulation is influenced by exogenous factors in
the environment rather than being largely fixed to a particular
species or system.

The mechanisms underlying population regulation, including
how and when density dependence affects population growth and
abundance, are complex and to date have not been fully eluci-
dated in the ecological literature (Sibly et al., 2005; Krebs, 2008).
In particular, one major gap in knowledge concerns the level of
variability in the expression of density dependence across envi-
ronmental conditions. One possibility is that density dependent
processes are largely fixed in a given species, such that variability
in environmental conditions play a minor role in the timing and
intensity of density dependent constraints on population growth
(Reynolds and Brassil, 2013). This view has been expressed
implicitly in the literature (Sibly et al., 2005; Figure 3; see also
Clark and Brook, 2010). In contrast, the alternate view is that
expression of density dependence is more dynamic and reflects
a suite of environmental conditions that are experienced by a
given population. This view is supportedmainly by studies exam-
ining spatio-temporal variation in density dependence in natu-
ral populations (e.g., Sæther and Engen, 2002; Bull and Bonsall,
2008; Murray et al., 2010). However, the current uncertainty sur-
rounding density dependence is related, in part, to the paucity of
experimental studies seeking to isolate its influence under strictly
controlled conditions, and that much of our understanding is
based on phenomenological research seeking to explain patterns
of population change using relatively weak datasets and post-hoc
approaches (Doncaster, 2006; Getz and Lloyd-Smith, 2006; Pea-
cock and Garshelis, 2006; Ross, 2006). Certainly, it remains chal-
lenging to identify the patterns and processes underlying density

dependence even under controlled experimental conditions, so
the current state of uncertainty is not altogether surprising. Den-
sity regulation is difficult to recognize in larger taxa because of
the long generation times, strong environmental variability, and
the generally high level of noise that arises with wild popula-
tions. Conversely, model species such as Chlamydomonas pro-
vide the ability to more carefully examine underlying subtle eco-
logical processes in controlled environments and using replicated
conditions.

Our work represents an important step in reconciling the
uncertainty associated with density dependence expression, by
showing that under strict experimental conditions population
regulation varies according to nutrients. This finding contradicts
the general consensus that population attributes are intrinsic to
a species, and thus do not vary across variable resource levels
(Sinclair and Krebs, 2002; Sibly and Brown, 2007). Population
parameters such as density dependence are often assumed to be
variable across populations depending exclusively upon changes
in estimated carrying capacity (e.g., γ = rmax/K, see McCallum,
2000) and thus by ignoring other potential sources of variability.
In the case of density dependence estimated by parameter γ, the
standard assumption is that the relationship between pgr and Nt

is linear, which may represent an important oversimplification.
The variation in density dependence observed across the gra-

dient in nutrient concentration means that growth patterns in
populations are strongly influenced by local conditions. Yet, our
prediction that the per capita growth rate (pgr) population den-
sity curve would become concave-down with additional nutri-
ents was not supported. Our findings are surprising in that high
nutrient environments generated greater density regulation even
at low densities and earlier in the growth phase. The possible
explanations for this phenomenon are likely rooted in the phys-
iological responses of individual algal cells to the gradient of
nutrient supply provided in each replicate. For example, exces-
sively high nutrient concentrations can be acutely toxic to algae
(e.g., Lehman, 1976), which have delayed initial growth during
acclimation to these stressful conditions (Cunningham andMaas,
1978). Alternatively, high phosphorus (P) concentrations may
have resulted in rapid P uptake and the storage of polyphosphate,
and thereby delayed the onset of growth in P-saturated algal cells
(Pascual and Caswell, 1997; Xenopoulos et al., 2002). A third
possibility is that algal inoculates contained multiple strains that
are uniquely suited to different nutrient conditions. A delayed
growth response under high nutrient supply may have resulted
from the longer time period for a few fast growing cells to replace
their slow growing counterparts (Droop, 1974). It is unclear
whether we should expect gradual decline in density-dependent
constraints on population growth if the above mechanisms were
in play.

On the level of population growth, we surmise that the above
possibilities could be manifest by divergences in the expression
of density dependence in environments where cell numbers are
low and nutrient levels are highly limiting. In such environments,
populations may simply be unable to grow at levels that would
allow expression of density dependence and rather that positive
effects of grouping (i.e., Allee effects) shape the patterns of density
dependence (Courchamp et al., 1999). Indeed, the observed high
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variation in density dependence in our low nutrient treatments,
as well as those seen more generally in natural systems (Sæther
and Engen, 2002; Sibly et al., 2005), indicates that density depen-
dence is strongly affected by exogenous processes. It follows that
such processes require further evaluation before they can be
satisfactorily described from a purely mechanistic perspective.

Delayed density dependence was absent in our system, with
population abundance at t0 beingmost strongly related to current
(t0) rather than later (t−1, t−2, t−3) time lags. This finding fur-
ther supports that the structural features of density dependence
changed patterns of growth regulation rather than were driven
by a change in the timing of the expression of density depen-
dence per se. This observation is perhaps surprising in light of
the apparent delay in population growth in our highest nutri-
ent treatments, and likely reflects that constraints occurred in
the ability for populations to grow effectively when they were
below numerical thresholds (i.e., Allee effect), despite abundant
resources. Furthermore, the lack of density-related change in cell
size implies that density dependence was either not sufficiently
strong to constrain cell quality or that the primary avenue by
which density feedback is manifested is through a change in
demography (i.e., cell productivity) rather than cell condition.

In sum, our study reveals the demographic effect of den-
sity regulation as a proportional response to nutrient variation;
this supports our hypothesis that population regulation varies
in response to variable environments. Density regulation has

been observed in a broad range of taxa, including through the
expression of trade-offs between costs of current versus future
reproductive opportunities in relation to resource levels (Engen
et al., 2001; Reznick et al., 2012). For micro-organisms, due to
their more limited lifespan and restricted life history variability,
growth versus reproduction trade-offs may be more restricted.
Ultimately, the mechanism driving changes in population regu-
lation must be examined further using experimental approaches
across a variety of taxa and under natural and experimental
conditions, to provide a deeper understanding of the gamut
of complexities associated with density dependent population
regulation.
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