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Cuticular hydrocarbons (CHCs) are important in mate choice in many insects, and may

be used for species recognition if CHC profiles differ between potentially hybridizing

species. In the sibling field cricket species Gryllus campestris and G. bimaculatus,

females of G. bimaculatus are tolerant toward G. campestris males and can mate

with them. However, G. campestris females are highly aggressive toward heterospecific

G. bimaculatusmales, and matings between them never happen. We examined whether

cricket females might use CHCs to determine the species identity of their potential mates.

We firstly analyzed the cuticular chemical profile by gas chromatography and mass

spectrometry to assess the potential of CHCs to be used for species recognition in these

crickets. We then manipulated females’ ability to detect chemical cues by carrying out

chemical ablation of the antennae, and measured changes in aggressive responses to

heterospecific males. We show that there are significant interspecies differences in CHC

expression for both sexes, and that females with chemically ablated antennae reduce

aggressive behavior toward heterospecific males. Our findings support the prediction

that cuticular semiochemicals can play a key role in reproductive isolation between closely

related insect species.

Keywords: Gryllus bimaculatus, Gryllus campestris, speciation, reproductive isolation, chemoreception,

hybridization, aggression

Introduction

Mate choice decisions are based upon the traits of potential partners. If gene flow is restricted
between two populations, mating traits and preferences may diverge (Panhuis et al., 2001).
Eventually, individuals from divergent populations may no longer be recognized as potential
mates, at which point speciation has occurred (Mayr, 1942). Information about the traits used
in species recognition can be received through a range of sensory modalities, for example using
auditory, visual or tactile cues, likely in combination (Hebets and Papaj, 2005). Chemoreception
(comprised of olfactory and gustatory systems) is thought to be the most ubiquitous of the
sensory modalities (Ache and Young, 2005), and is used for species recognition across a broad
range of taxa (reviewed by Smadja and Butlin, 2008). For example, swordtail fish can scent the
water around them with olfactory cues, with female Xiphophorus nigrensis more attracted to
the cues from conspecific males than to those from heterospecific X. cortezi or X. montezumae
(McLennan and Ryan, 1999). In mice, olfactory signals found in urine are used to discriminate
between individuals, with Mus musculus musculus preferring the urine of conspecifics to urine
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of heterospecific M. m. domesticus (Smadja et al., 2004).
Wall lizards investigate chemical signals through tongue
flicks, with males of both Podarcis bocagei and P. hispanica
preferentially investigating the signals of conspecific females
(Barbosa et al., 2006). The cuticles of insect species are covered
with molecules that can be detected by chemoreceptors. For
example maleDrosophila mauritania reduce their efforts to court
conspecific females that carry chemical signals transferred from
heterospecific D. sechellia females (Coyne and Charlesworth,
1997). The males of leaf beetles Pyrrhalta maculicollis and
P. aenescens preferentially mate with females bearing conspecific
chemical profiles (Zhang et al., 2014). Three species of parasitoid
wasps Leptopilina heterotoma, L. boulardi, and L. victoriae use
combinations of different chemical cues to identify conspecific
mates (Weiss et al., 2015).

Species of true crickets, which have been intensively studied
in the context of reproductive isolation (reviewed by Veen
et al., 2013), are rarely reported to use chemoreception for
species recognition (but see Maroja et al., 2014). Like all other
insect species, the exoskeletons of crickets bear lipid molecules
known as cuticular hydrocarbons (CHCs). Primarily functioning
to prevent desiccation (Gibbs et al., 1997; Gibbs, 1998), they
also serve as cues for short-range chemical signaling (Blomquist
and Bagnères, 2010; Howard and Blomquist, 2005). There are
numerous molecular forms of CHCs, and individuals can gain
information about one another through the relative expression
of these molecules, primarily detected through the chemosensory
hairs covering the antennae. In crickets, CHCs are involved
in many aspects of mate choice. Female Gryllodes sigillatus
can detect their own chemical signature on males they have
already mated with, and can use this self-referent cue to mate
polyandrously (Ivy et al., 2005). Male Telelogryllus oceanicus can
detect the mating status of females, with non-virgin females
carrying the CHCs of males previously mated with (Thomas
and Simmons, 2009). Gryllus bimaculatus and T. oceanicus both
use CHCs to determine the genetic relatedness of potential
mates (Simmons, 1989, 1990; Thomas and Simmons, 2011).
G. bimaculatus, Acheta domesticus, G. integer, T. oceanicus, and
T. commodus respond to sex differences in chemosensory cues
(von Hörmann-Heck, 1957; Otte and Cade, 1976; Rence and
Loher, 1977; Hardy and Shaw, 1983; Tregenza and Wedell, 1997;
Nagamoto et al., 2005; Leonard and Hedrick, 2009), and in
some cases CHC profiles have been shown to differ between the
sexes (Warthen and Uebel, 1980; Tregenza and Wedell, 1997;
Thomas and Simmons, 2008). Given their general importance
in mate choice in crickets, we might also expect CHCs to play
an important role in species recognition. There are a few studies
implying that this may be the case inG. integer,G. lineaticeps, and
Allonemobius species (Otte and Cade, 1976; Paul, 1976; Leonard
and Hedrick, 2009), and differences in CHC profiles have been
found among species of rapidly diverging Laupala (Mullen et al.,
2007, 2008), however, other than Maroja et al. (2014), no studies
have explicitly tested this prediction. Here, we investigate the
role of chemical cues in species recognition between a pair of
European field crickets. We primarily focus upon CHCs, though
other chemicals may also be used in chemical communication
(Kühbandner et al., 2012).

G. campestris and G. bimaculatus are sister species (Huang
et al., 2000) that are considerably divergent; their morphologies
differ such that they are easily identifiable (von Hörmann-Heck,
1957), and interspecies matings in the laboratory rarely result in
viable offspring (Tyler et al., 2013b; Veen et al., 2013). They have
overlapping distributions through southern Europe and further
east (Popov and Shuvalov, 1977; Pardo et al., 1993; Gorochov and
Llorente, 2001). In Spain G. bimaculatus are distributed along
the Mediterranean coast occupying relatively arid conditions
(Gorochov and Llorente, 2001). They can be found sheltering
under rocks or logs, or in grass, and are predominantly nocturnal.
They are capable of flight, and are multivoltine, producing many
generations through the year. G. campestris occupy less arid
conditions, and are more common in northern and central Spain
(Gorochov and Llorente, 2001). They are more abundant in
grass lands, where they dig burrows in which to shelter. They
are territorial and flightless, which limits dispersal. They are
diurnal and univoltine. Despite these differences between the
species, their sequences of behaviors leading up to and during
mating are similar. The males produce long-range calling song
to attract mates. Once a female has encountered a male, the
male produces a courtship song that is distinct from the calling
song (Alexander, 1961). They touch antennae, and explore the
surface of each other’s bodies with their antennae, through
which they receive both mechanosensory and chemosensory
information (Balakrishnan and Pollack, 1997). The male then
presents himself to the female, and the female mounts the male
to begin copulation.

The characteristics of the long range calling songs differ
between the species. Despite these differences, females only
show weak (or no) preference for conspecific song. Female
G. bimaculatus show a moderate increase in turning effort
toward synthetic song typical of conspecific males, whereas
G. campestris females show no such change in turning effort
(Veen et al., 2013). Instead, close range species recognition seems
to play an important role (Veen et al., 2011, 2013). Though
G. bimaculatus females preferentially mate with conspecific
males, they will frequently engage in hybrid matings in the
laboratory, and only very rarely show aggressive behavior toward
males of either species. In contrast,G. campestris females will very
rarely mate with heterospecifics (Cousin, 1933; von Hörmann-
Heck, 1957; Veen et al., 2011, 2013). Despite regular attempts
by G. bimaculatus males to court G. campestris females, we
have only ever observed the females responding indifferently
or aggressively, evidence of discrimination against heterospecific
males in mate choice (Veen et al., 2011, 2013). In contrast, when
presented with a conspecific male, these females will readily
mount and mate. This discrimination at close-range may be
achieved through a number of sensory modalities, with detection
of species-specific chemical cues a likely contender.

We firstly assess the potential of CHCs to be used for species
recognition in these crickets through comparison of CHCprofiles
using gas chromatography coupled with mass spectrometry,
predicting both sex and species differences among individuals.
Given that females are the choosy sex in these crickets, sexual
selection is likely to be acting on the males. If sexual selection
has driven divergence, we might expect to find greater species
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differences between the males than between the females. We
then aim to confirm that G. campestris females discriminate
between conspecific and heterospecific males using aggressive
behavior to indicate species recognition, and finally, determine
whether their ability to detect chemical cues alters the extent of
aggression toward heterospecific males. We manipulate females’
ability to detect chemical cues through chemical ablation of
the antennae, a method that prevents chemoreception without
impairing mechanoreception (Balakrishnan and Pollack, 1997).

Methods

Study Population
CHCs were sampled from 94 laboratory reared G. campestris
(49 male, 45 female), and 72 laboratory reared G. bimaculatus
(38 male, 34 female). G. campestris were the first generation
offspring of adults collected near Gijon, northern Spain, in spring
2013. G. bimaculatus were from a population that had been
maintained under laboratory conditions for 2 years, originally
collected near Valencia, southern Spain. Lab populations were
kept at 28◦C under a 16:8 light dark cycle, with food and water
provided ad libitum. Females were provided with damp sand to
lay eggs in, the progeny fromwhich were reared to adulthood. All
individuals were kept until death, after which they were preserved
at −20◦C. Behavioral assays were carried out with laboratory
reared G. bimaculatus from the same population and with wild-
caught G. campestris collected in spring 2012 and transferred
to the laboratory at least 2 weeks prior to use in trials. CHC
extraction and behavioral trials were carried out on different
groups of individuals due to the logistics of working with wild-
caught G. campestris. However, individuals were collected only
one generation apart, and from the same location. All individuals
were sexually mature, and had not mated for at least 7 days.
Female G. campestris will re-mate within ∼1–3 days (Tyler et al.,
2013a), and so a delay of at least 7 days is ample for them to
overcome the influence that a previous mating may have on their
behavior.

CHC Extraction and Analysis
38 G. bimaculatus males, 34 G. bimaculatus females, 49
G. campestris males and 46 female G campestris were assessed.
To extract the cuticular hydrocarbons we completely submerged
each cricket in 4ml of HPLC grade hexane. The hexane
contained dodecane as an internal standard at a concentration
of 10 ppm. The crickets were soaked for 5min before being
removed. 2µl of each sample was injected into a GC-MS [Agilent
7890A gas chromatograph coupled with an Agilent 5975B mass
spectrometer with electron impact ionization (70eV)]. This was
fitted with a DB-1ms column (30×0.25mm× 0.25µm); helium
(99.9% research grade) was used as a carrier gas. The inlet was
set at 250◦C, and the injection was run in constant flow mode
at 1.1ml/min. Separation of the extract was optimized by using
an oven program starting at 100◦C for 1min, increasing at
20◦C/min to 250◦C, then increasing at 5◦C/min to 320◦C. It was
then held at 320◦C for 2min. The MS transfer line was kept at
300◦C. Data were analyzed using MSD Chemstation software
version E.02.00.493 (Agilent Technologies).

Forty-four CHCswere quantified. Compounds were identified
on the basis of their retention time and mass spectra, the
diagnostic ions of each compound are given in Table 1. Relative

TABLE 1 | CHC profile, displaying hydrocarbon identity and diagnostic

ions.

Peak # Identification Diagnostic MS ions

1 C25:1 350

2 n-C25 352

3 11-MeC25 168/169, 224/225

4 7-; 5-MeC25 112/113, 280/281; 84/85, 308/309

5 11,15-diMeC25 168/169, 239, 365

6 3-MeC25 56, 308/309, 336/337

7 5,9-diMeC25 84/85, 154/155, 252/253, 323

8 n-C26 366

9 3,7-diMeC25 56/57, 126/127, 280/281, 351

10 13-; 12-; 11-MeC26 196/197, 210/211; 182/183, 224/225;

168/169, 238/239

11 C27:2 376

12 C27:1 378

13 C27:1 378

14 n-C27 380

15 13-; 11-; 9-MeC27 196/197, 224/225; 168/169, 252/253;

140/141, 280/281

16 7-MeC27 112/113, 308/309

17 5-MeC27 84/85, 336/337

18 11,15-diMeC27 168/169, 196/197, 238/239, 267

19 3-MeC27 56, 336/337, 364/365

20 C28:1 392

21 n-C28 394

22 3,9-; 3,7-diMeC27 56/57, 154/155, 280/281, 379; 126/127,

308/309, 379

23 14-; 12-; 10-MeC28 210/211, 224/225; 182/183, 252/253;

154/155, 280/281, 393

24 8-MeC28 126/127, 308/309, 393

25 6-MeC28 98/99, 336/337, 393

26 C29:2 404

27 C29:2 404

28 C29:1 406

29 C29:1 406

30 n-C29 408

31 9-; 7-MeC29 140/141, 308/309; 112/113, 336/337

32 9,15-diMeC29 140/141, 224/225, 239, 323

33 9,13-diMeC29 140/141, 210/211, 252/253, 322/323, 421

34 3-MeC29 56, 364/365, 392/393

35 5,9-diMeC29 85, 210/211, 252/253, 378/379, 421

36 n-C30 422

37 14-; 12-; 10-; 8-MeC30 210/211, 252/253; 182/183, 280/281;

154/155, 308/309, 126/127, 336/337, 421

38 8,12-diMeC30 126/127, 196/197, 280/281, 351, 435

39 6,14-diMeC30 98, 224/225, 378/379, 252/253, 435

40 C31:2 432

41 C31:2 432

42 C31:1 434

43 n-C31 436

44 9-MeC31 140/141, 336/337, 435
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peak size was calculated by dividing the peak areas of a given
compound by the peak area of the internal standard in that
sample (Table 2). These relative peak sizes were normalized with

TABLE 2 | Amount of each compound relative to the internal standard,

individuals split by species and by sex.

Peak # G. bim male G. camp male G. bim female G. camp female

1 0.027586 0.036274 0.012655 0.002937

2 0.080579 0.036023 0.098689 0.050734

3 0.231668 0.009645 0.595369 0.085775

4 0.042323 0.012154 0.05255 0.027516

5 0.037729 0.053618 0.07323 0.044709

6 0.113707 0.043642 0.250469 0.062559

7 0.055883 0.038333 0.049766 0.023739

8 0.083497 0.060794 0.088974 0.176908

9 0.031466 0.015948 0.051717 0.057257

10 0.0537 0.101953 0.17711 0.142713

11 0.07793 2.518739 0.056078 0.420414

12 0.779652 2.959034 0.155698 0.153409

13 0.124339 1.719233 0.032796 0.053981

14 0.736448 2.688587 0.527719 1.752654

15 0.285797 0.253643 0.786082 0.758072

16 0.059669 0.22381 0.156058 1.354118

17 0.089455 0.150981 0.113743 0.703369

18 0.349316 3.29497 0.194292 0.757132

19 0.300819 0.665019 0.366311 1.500471

20 0.13241 0.318383 0.117383 0.308439

21 0.132324 0.299338 0.103494 0.897072

22 0.041362 0.110142 0.07191 0.494169

23 0.016849 0.060592 0.084557 0.285525

24 0.00825 0.068694 0.027043 0.468161

25 0.013337 0.106891 0.021326 0.379408

26 0.146756 1.237979 0.050605 0.953388

27 1.04141 8.456601 0.133006 0.285302

28 0.407878 4.15939 0.061319 0.135516

29 0.297459 2.167223 0.045681 0.147892

30 0.309554 2.597633 0.263604 1.63458

31 0.066764 0.341765 0.320808 1.227634

32 0.021887 0.152354 0.065974 0.550371

33 0.063061 0.607058 0.084415 0.577866

34 0.051936 0.33054 0.109926 0.622123

35 0.020125 0.128825 0.057037 0.18431

36 0.012129 0.058039 0.042908 0.089558

37 0.010373 0.04466 0.030038 0.116499

38 0.00587 0.020548 0.030055 0.105702

39 0.004672 0.018526 0.014843 0.072672

40 0.03217 0.591842 0.023246 0.091793

41 0.01419 0.221449 0.013555 0.036167

42 0.014663 0.201824 0.010036 0.022665

43 0.009115 0.051492 0.018219 0.034228

44 0.013022 0.015776 0.060092 0.103236

Mean 0.146571 0.84659 0.129554 0.408017

SD 0.222634 1.58706 0.163337 0.474121

Values greater than the mean across all compounds are highlighted in bold.

a log transformation, and principal components analyses (PCA)
were run (JMP v9). We used a correlation matrix to extract PCs
with eigenvectors greater than 1 (Norman and Streiner, 1984)
(Table 3). PC factor loadings greater than 0.25, or less than -
0.25, were considered biologically important (Tabachnick and
Fidell, 1989) (Table 4). We also calculated diagnostic power (DP)
for each of the peaks. The standardized peak areas were used
to calculate a standard deviation across all of the individuals,
and a pooled standard deviation within each sex or species. The
global standard deviation was divided by the pooled standard
deviation to obtain a DP value (Table 4) (Christensen et al.,
2005; van Zweden et al., 2009). We tested for species and sex
differences in CHC expression using a multivariate analysis of
variance (MANOVA) in R v3.0.2 (R Core Team, 2013). The first
four PCs of CHC expression were entered as response variables,
and species, sex, and the species:sex interaction entered as fixed
effects (Table 5).

Behavioral Assays
Males were silenced prior to use in behavioral trials so that the
females had to use cues other than song to assess species identity
of the males. To do this they were anesthetized by exposing them
to CO2 gas until they stopped moving (∼20 s), and the small
sections of the wings which are used to create song (the file and
scraper) were removed with fine dissection scissors, leaving the
wings predominantly intact. The procedure was carried out at
least 24 h before use in trials.

Behavioral trials were carried out in 20 cm ⊘ plastic arenas,
which were cleaned between trials. A silenced male, of either
G. bimaculatus or G. campestris, and a G. campestris female were
placed either side of a temporary divider. They were allowed
to settle for at least 1min before the divider was removed.
The trial started when the pair made first physical contact
(including antennal contact), after which they were observed for
5min (trials were terminated if the female mounted the male,
and the pair immediately separated to prevent mating). The
number of times the female flared her mandibles at the male
was recorded, as well as the number of seconds spent performing
aggressive behavior. Aggressive behavior was defined as antennal
fencing, mandible flaring, biting, or attempts to attack the male
(Alexander, 1961; Wilson et al., 2010). Where possible, for each
female two pre-treatment trials were carried out, one with a
heterospecific male and one with a conspecific male, in either
order, allowing us to confirm that female aggression is dependent
upon male species rather than being directed toward all males.

After the pre-treatment trials, females were assigned to
chemical ablation or control treatment groups. Balakrishnan and
Pollack (1997) demonstrated, through the use of electrophysical

TABLE 3 | Principle component analysis of CHCs.

Eigenvalue % of Variance Cumulative %

PC1 18.7596 42.635 42.635

PC2 9.8743 22.442 65.077

PC3 7.9476 18.063 83.14

PC4 1.8018 4.095 87.235
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TABLE 4 | Factor loadings for each of the peaks in the 4 leading PCs

(factor loadings of >0.25 are highlighted in bold), and diagnostic power

(compounds with DP values greater than the mean across all compounds

are highlighted in bold).

Peak # PC1 PC2 PC3 PC4 DP DP

species sex

1 −0.279 0.260 0.760 0.199 1.99 2.40

2 0.416 −0.777 0.364 0.014 2.30 2.15

3 0.776 0.058 0.407 −0.257 1.95 1.27

4 0.115 0.678 0.665 −0.114 2.03 1.81

5 0.259 0.567 0.653 −0.074 1.93 1.80

6 0.621 0.328 0.457 −0.157 1.98 1.68

7 0.345 −0.374 0.447 0.243 2.35 1.78

8 0.817 −0.343 0.079 −0.209 2.24 2.39

9 0.819 −0.407 0.049 −0.137 2.18 2.61

10 0.541 0.557 0.513 −0.156 1.54 1.97

11 0.889 −0.162 0.273 −0.209 2.23 1.69

12 0.145 −0.409 0.693 0.253 1.37 2.16

13 0.849 0.119 0.360 −0.139 1.81 2.21

14 0.914 −0.083 0.010 −0.236 2.88 2.06

15 0.893 −0.299 −0.077 −0.226 1.79 1.80

16 0.817 −0.471 −0.133 −0.089 1.78 1.93

17 0.838 −0.287 −0.267 −0.233 1.89 2.08

18 0.837 −0.147 −0.269 −0.190 2.28 1.79

19 0.778 0.467 0.128 −0.196 2.52 2.20

20 0.233 0.794 0.499 −0.092 3.28 2.60

21 0.267 0.824 0.466 −0.001 2.66 2.14

22 0.316 0.794 0.447 −0.087 2.24 2.38

23 −0.037 −0.778 0.538 0.193 1.64 2.52

24 0.787 0.506 −0.032 0.115 1.80 1.82

25 0.868 −0.254 −0.295 0.031 1.91 1.64

26 0.905 −0.156 −0.285 0.000 3.25 1.56

27 0.840 0.223 −0.065 0.075 1.44 2.01

28 0.906 0.148 −0.217 0.029 1.55 2.34

29 0.894 0.155 −0.255 0.111 1.70 2.23

30 0.887 0.097 −0.249 0.129 3.08 1.80

31 0.859 −0.074 −0.414 0.182 1.68 1.91

32 0.797 −0.265 −0.435 0.105 2.08 1.99

33 0.823 −0.171 −0.392 0.152 2.26 1.64

34 0.131 −0.767 0.502 0.184 2.51 1.73

35 0.539 0.731 0.059 0.344 2.82 1.94

36 0.550 0.731 0.022 0.332 2.93 2.21

37 0.477 0.706 0.062 0.394 2.39 2.33

38 0.672 0.280 −0.303 0.497 1.89 2.48

39 0.658 −0.275 −0.473 0.401 2.22 2.47

40 0.227 −0.513 0.743 0.157 2.05 1.77

41 0.086 −0.426 0.775 0.248 2.50 1.97

42 0.094 −0.489 0.729 0.200 2.19 2.06

43 0.562 −0.391 0.569 −0.120 2.84 2.23

44 0.402 −0.696 0.503 0.024 1.73 2.39

Mean 2.17 2.04

SD 0.48 0.31

Hydrocarbons are ordered by increasing chain length.

TABLE 5 | Species and sex differences in CHC expression, shown as

output from the multivariate ANOVA, as well as the univariate contribution

of each principal component.

Test statistic, df P

Multivariate Species F(1, 162) = 0.76223 <0.001***

Sex F(1, 162) = 0.73358 <0.001***

Species:Sex interaction F(1, 162) = 0.34721 <0.001***

PC1 Species F(1, 162) = 91.031 <0.001***

Sex F(1, 162) = 23.534 <0.001***

Species:Sex interaction F(1, 162) = 4.259 0.041*

PC2 Species F(1, 162) = 147.444 <0.001***

Sex F(1, 162) = 304.904 <0.001***

Species:Sex interaction F(1, 162) = 35.756 <0.001***

PC3 Species F(1,162)= 9.3603 0.003**

Sex F(1, 162) = 21.9195 <0.001***

Species:Sex interaction F(1, 162) = 0.0450 0.832

PC4 Species F(1, 162) = 31.6329 <0.001***

Sex F(1, 162) = 0.1993 0.656

Species:Sex interaction F(1, 162) = 29.2876 <0.001***

Asterisks denote levels of significance.

assays and tactile reflex tests, that immersion of cricket
antennae in zinc sulfate solution eliminates responsiveness
of chemosensory hairs, without affecting tactile reflex of the
antennae.Whereas the chemosensory sensilla have pores through
which the zinc sulfate can reach neurons, the sensilla of
mechanoreceptors are poreless, and are therefore unaffected. To
ensure that both groups included a similar range of aggressive
behavior, we matched individuals according to the number
of flares performed during their pre-treatment trial with the
heterospecific male, and divided these pairs across the groups.
Females were anesthetized using CO2 gas to prevent them from
moving during antennal immersion. They were held upside down
in a plastic tube and suspended so that their antennae were
immersed in the solution, but it did not touch their head or
body. The antennae of the females in the chemical ablation group
were immersed in 0.4 mol/l of zinc sulfate (ZnSO·7H2O, Sigma
Aldrich) dissolved in 0.3% Triton-X (Sigma Aldrich). Triton-X
reduces surface tension, allowing penetration though the fine
hairs that cover the antennae. The antennae of females in the
control group were immersed in 0.3% Triton-X (Balakrishnan
and Pollack, 1997; Ryan and Sakaluk, 2009). Antennae were
soaked for 10min, after which they were washed clean with water.

Finally, a post-treatment aggression trial was carried out using
a heterospecific male so that we could measure the change
in female response toward heterospecific males, and how this
change differed between treatment groups. Where possible, the
heterospecific male used in the post-treatment trial was the same
as for the pre-treatment trial. Some males were paired with more
than one female. The post-treatment trial was not carried out
until the day following antennal treatment to allow the female
to recover.
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A total of 44 G. campestris females were used in trials. Any
female that did not behave aggressively toward the male during
her pre-treatment trial was removed from the dataset. One of the
females was extremely aggressive, and her trials were terminated
early to prevent the male from being killed. Data for this female
were also removed, leaving data for 27 females in the dataset.
These 27 females were exposed to 24 G. bimaculatus males
(3 males used more than once), and 20 G. campestris males
(4 males used more than once). 3 of the females were not
exposed to a conspecific male in the pre-treatment trials, due to
availability of crickets (results do not change if these females are
omitted).

Behavioral data were analyzed in R. We firstly made a
comparison of females’ pre-treatment responses to conspecific
and heterospecific males using Wilcoxon signed-rank tests. We
then used paired t-tests to analyze a female’s change in aggression
(pre-treatment score compared to post-treatment score) for each
of the treatment groups. This analysis was firstly conducted
using mandible flares as the measure of aggression, and then
repeated with seconds spent performing aggressive behavior as
the measure.

Results

CHC Profiling
The PCA across all individuals returned 4 PCs, with eigenvectors
that cumulatively explained 87.2% of the variance (Table 3)
(for PCAs split by species and by sex, see the Supplementary
Material). The majority of factor loadings in PC1 were of a
magnitude that is likely to be biologically important (Tabachnick
and Fidell, 1989) and positively loaded (35 positive, 1 negative),
suggesting that overall investment in CHCs may contribute
to much of the variation in expression among the species
and sexes. There were biologically important factor loadings
spread over PC2 and PC3, with no clear pattern in positive
or negative loadings, suggesting that investment in particular
combinations of CHCs is more important than total investment
(Table 4). Overall, there was a significant interaction between
species and sex in the expression of CHCs [MANOVA: Approx
F(1, 8) = 0.347, P =<0.001, Figure 1]. The difference
between the species was driven by all 4 PCs. The difference
between the sexes was only driven by PCs 1, 2, and 3
(Table 5). Based on values of diagnostic power, we found a
subset (48%) of the CHCs to be >2.17 times more variable
between species (mean DP for species) than within species.
Many of these compounds with high DP were dimethyl
alkanes or n-alkanes. Another subset of CHCs was found to
be >2.04 (mean DP for sex) more variable between sexes
than within sexes, most of which were monoenes, n-alkanes
or methyl alkanes, but no dienes. These are most likely to be
used in recognition of species differences, or sex differences,
respectively. Of the CHCs likely to play a role in either
species or sex recognition, 29.5% were found to occur in
both subsets, and may therefore be generally important in
communicating chemosensory information about individuals.
These were predominantly n-alkanes.

FIGURE 1 | First and second principal components from statistical

analysis of cuticular hydrocarbon profiles. G. campestris males shown in

white, G. bimaculatus males shown in light gray, G. campestris females shown

in dark gray G. bimaculatus females shown in black.

Behavioral Assays
G. campestris females behaved far more aggressively toward
heterospecific than conspecific males, with mandible flares rarely
being directed toward conspecific males [V(24) = 300, P < 0.001,
Figure 2]. Females with chemically ablated antennae reduced the
number of times they flared their mandibles at heterospecific
males [t(15) = 2.42, P = 0.028] whereas control females
did not [t(10) = 0.39, P = 0.71, Figure 3]. When aggression
was measured as the number of seconds spent performing
aggressive behavior, females were not found to reduce their
level of aggression in either of the treatment groups [chemically
ablated: t(15) = 2.02, P = 0.061, control: t(10) = 0.23, P = 0.83].

Discussion

We show that there are significant species differences in CHC
expression for both sexes, and that species identity could be
determined on the basis of an individual’s CHC profile. We
confirm that female G. campestris behave more aggressively
toward heterospecific than conspecific males, and that females
incapable of receiving chemosensory information via their
antennae reduce aggressive behavior toward heterospecificmales.

Since these species tend to be found in different habitats, it
is possible that initial divergence in CHC expression was due to
adaptation to the environment. This may have been a relatively
fast process, for example, divergence in CHCs among Laupala
populations is rapid, with cryptic species on different islands
having different profiles (Mullen et al., 2007). We found that a
large proportion of the CHCs produced by these crickets have
the potential to be used for species discrimination, and many
of these were identified as dimethyl alkanes and long-chain
hydrocarbons. These heavier, less volatile compounds may be
important in desiccation resistance, and so it is plausible that
initial divergence could have been driven through adaptation
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FIGURE 2 | Female aggression toward heterospecific and conspecific

males, prior to chemical treatment of their antennae. G. bimaculatus

males are heterospecific, G. campestris males are conspecific. Aggression

was measured as the number of times that a female flared her mandibles at a

male during a 5min trial. Boxes show the upper and lower quartiles, and

central lines show medians. Whiskers show maximum and minimum values,

excluding outliers. Dots show outliers.

FIGURE 3 | The change in aggression after female antennae were

treated with a control or chemically ablated. Change in aggression is

presented as the change in counts of mandible flares performed by the G.

campestris females at G. bimaculatus males between a pre-treatment and

post-treatment trial. Data are presented as means ± standard errors.

to the different temperatures and humidities that these species
experience. As well as divergence through natural selection,
sexual selection may have driven divergence in CHC expression
between the species. We predicted that males, as the less choosy
sex, might be subject to sexual selection and have greater
differences in CHC expression than females (Chenoweth and
Blows, 2005; Rundle et al., 2005). Indeed, we found a large
proportion of CHCs likely be important is sex recognition. Many
of these were identified as monoenes and n-alkanes, and were
found spread across the CHC profile. Despite showing weak (or

no) discrimination between long-range calling songs (Veen et al.,
2013), G. campestris females almost never accept heterospecific
mating opportunities (Cousin, 1933; von Hörmann-Heck, 1957;
Veen et al., 2011, 2013). This suggests that short range cues
are important to females in assessing potential mates, exerting
selection on males to strengthen these cues.

Although we have identified species differences in CHC
expression, we are unable to rule out the possibility that
it is compounds other than CHCs that drive the bias in
aggressive behavior toward heterospecifics. Future studies could
establish this link more conclusively by demonstrating that the
extracts taken from the crickets do in fact elicit the aggressive
behavior. The chemical identity of males could be manipulated
by washing away their CHCs and/or substituting CHCs from
other individuals (for example, Tregenza and Wedell, 1997;
Simmons et al., 2003; Nagamoto et al., 2005). Furthermore,
extracts could be fractionated to isolate the CHC from other
cuticular compounds, followed by demonstrations that it is this
fraction eliciting aggression (Liang and Silverman, 2000; Akino
et al., 2004).

There is uncertainty as to whether the reduction in aggression
was due to an impaired ability to assess male species, or whether
the loss of chemosensory information as a whole led females to
become indifferent to any cricket. If the latter then we might
expect chemically ablated females to respond indifferently to
conspecific males, as well as reducing aggression to heterospecific
males. Although not explicitly studied, we observed some of these
females mating with conspecific males after the trials, indicating
that they were not indifferent to them. Ryan and Sakaluk (2009)
found that chemically ablated female G. sigillatus took longer
to respond to courting males, but would still mount them. This
indicates that while there is a suppression of response to males,
they are not indifferent to them. This supports the notion that the
reduced aggression observed in our study is not due to females
being entirely indifferent toward the males. Rather, the reduced
aggression is likely due to chemically ablated females no longer
sensing the species identity of the males.

The discrepancy in the results obtained from the twomeasures
of aggression is intriguing. While counts of mandible flares
revealed a significant difference between the treated and control
groups, this difference was only a trend when measured as
time spent performing aggressive behaviors. The discrepancy is
likely due to the inaccuracy of the latter measurement. A cricket
performs each behavior for only a short time, making the capture
of this information difficult, introducing measurement error. In
future studies this inaccuracy could be overcome bymaking video
recordings of behavioral trials. Additionally, the interpretation of
the behaviors was not always clear. Though we had a pre-defined
list of behaviors categorized as aggressive, there is variation in
how each of these behaviors is performed, and there may be cases
of non-aggressive behavior being considered as aggressive and
vice versa. Of all the behaviors categorized as aggressive, mandible
flaring was the least ambiguous. There are no similar behaviors
with which to confuse flaring, and, as far as we are aware, flares
are not used in other behavioral contexts.

Although chemical ablation of antennae reduced the
aggression of G. campestris females toward heterospecific males,
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aggression was not eliminated and females did not begin to
accept courtship attempts from heterospecific males. This
suggests that either our method of chemical ablation was only
moderately successful, or that additional cues are informing
species recognition. Zinc sulfate is known to be effective in the
chemical ablation of antennae, disabling the electrophysiological
response of the chemosensory sensilla that are found along
the length of antennae (Balakrishnan and Pollack, 1997). It is
possible that some of the chemosensory sensilla closest to the
cricket’s head, which we avoided immersing in the solution,
remained active. Also, there are other areas of the body such as
the palps that carry chemosensory sensilla (Klein, 1981), andmay
therefore detect CHCs. These might be particularly important
for the detection of volatile airborne compounds, cues that can
be passed between individuals without physical contact. Females
are likely using additional cues to assess the males, which may
explain why aggression was not entirely eliminated. While we
disabled chemoreception of their antennae, mechanoreceptors
were unaffected by the zinc sulfate. Females could therefore
still detect any tactile differences between the males, such as
differences in morphology, or in movements made by the
antennae or body. Though the males were silenced to prevent
females from using auditory cues, there may be characteristic
movements of the wings made by singing males that could be
used to differentiate between species, or other visual cues.

The change in behavior attributed to loss of chemoreception
suggests that chemical cues are involved in species recognition
between G. campestris and G. bimaculatus. While females of
many species use characteristics of male advertisement calls to
distinguish between conspecifics and heterospecifics, in these
crickets calling song represents a relatively weak barrier to
hybridization. Cues provided through other sensory modalities
received at short range, such as chemoreception, may therefore

be important in the maintenance of species boundaries. The
use of chemical cues for species recognition may well be
important between other species of interbreeding crickets, and
we encourage studies explicitly investigating this.
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