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The deployment of novel, innovative, and increasingly miniaturized devices on fauna to

collect data has increased. Yet, every animal-borne technology has its shortcomings,

such as limitations in its precision or accuracy. These shortcomings, here labeled as

“error,” are not yet studied systematically and a framework to identify and classify error

does not exist. Here, we propose a classification scheme to synthesize error across

technologies, discussing basic physical properties used by a technology to collect data,

conversion of raw data into useful variables, and subjectivity in the parameters chosen.

In addition, we outline a four-step framework to quantify error in animal-borne devices: to

know, to identify, to evaluate, and to store. Both the classification scheme and framework

are theoretical in nature. However, since mitigating error is essential to answer many

biological questions, we believe they will be operationalized and facilitate future work to

determine and quantify error in animal-borne technologies (ABT). Moreover, increasing

the transparency of error will ensure the technique used to collect data moderates the

biological questions and conclusions.

Keywords: animal-borne device, bio-logging, calibration, error, observation model

The Necessity of Animal-borne Technologies

Animal-borne technologies (ABT) collect high-resolution datasets to investigate a wide-range of
functional andmechanistic biological questions. From quantifying energy expenditure inmigrating
geese (Branta leucopsis; Butler et al., 1998) to measuring the sociality of wild tool-using crows (Rutz
et al., 2012), ABT are resolving questions at a steadily increasing resolution (c.f. Shillinger et al.,
2012). In addition, ABT enable measurements on difficult to observe fauna, such as examining sea
turtle feeding and breathing at sea (Okuyama et al., 2012), exploring diving behaviour of American
mink (Hays et al., 2007) or observing the conservation and social dynamics of reintroduced wolves
in Yellowstone National Park (Canis lupis; Fritts et al., 1997). Furthermore, ABT have mapped
the spatial associations and exchange of tuberculosis between cattle (Bos primigenius) and badgers
(Meles meles), demonstrating the importance of ABT to inform public policy (Böhm et al., 2009).

As quantification progresses in an increasing number of species, and as we collect more complete
and robust data, the cycle of ABT stimulating new biological questions alongside biological
questions driving innovative ABT will increase. Compared to the mid-twentieth century, ABT have
weaved their way into the core of animal behavior, ecology, and conservation (Brown et al., 2013).
We believe this broadening will continue to expand the use of ABT in biological research, leading
to a strong reliance on ABT to resolve prevalent questions. As more studies utilize ABT and a
considerable amount of effort is invested in storing and combining various kinds of data, ensuring
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data collection protocols consider limitations, and take into
account measurement error becomes imperative (c.f. Krause
et al., 2013).

Error in Animal-borne Technologies

Understanding and quantifying error is essential for discovery.
Random, or systematic, error (see Table 1 for definitions)
obscures the relationship between two variables, making it
difficult, or even impossible, to collect sufficient evidence to
reject a null hypothesis. Biases can, when unrecognized, lead to
the acceptance of incorrect hypotheses and/or the identification
of erroneous models. And even when error is recognized and
properly modeled, lack of precision decreases the power of
a study and increases the likelihood of missing a significant
outcome. Thus, identifying sources of error a priori is essential
to maximize the outcome of a study. While some sources of
error have been investigated, such as the environmental effects
on Argos (Patterson et al., 2010) or acoustic tags (Ehrenberg
and Steig, 2002), the impact of the physical size of devices
on Penguins’ swimming performance (e.g., speed recorders on
Spheniscus demersuse byWilson et al., 1986; time-depth recorders
on Eudyptes schlegeli by Hull, 1997), or the variation of GPS
location accuracy and fix rate with vegetation and antenna
position (Jiang et al., 2008), we believe and concur with other
studies (see Frair et al., 2010) that most sources of possible error
have neither been identified nor quantified.

We believe that the lack of error quantification in ABT studies
is due to four factors. First, the study of device error will not
directly lead to finding exciting biological phenomena: in fact,
researching error comes at the cost of “real” discoveries in
terms of time and resources. Moreover, studies at the interface
of technology and biology could not be easily published due
to the dearth of methodological journals. Secondly, progress in

TABLE 1 | Definitions.

Acoustic device: a device commonly used in aquatic environments, working through the transmission of a sound signal that is received subsequently by an array of

hydrophone receivers. The location of the device can be estimated from the relative arrival times to the receivers. The sound signal is unique for each device so that

each device can be uniquely identified.

Encounter mapping devices (EMD): a range of devices, such as GPS, proximity, or acoustic, used to map associations either directly or indirectly between objects.

Random error: unpredictable fluctuations in observations due to the precision limitations of the measurement device, variations in the measurement procedure that is

applied and/or heterogeneous environmental conditions. Random errors are on average zero. The variance of the fluctuations can be estimated but it cannot be

corrected for.

Systematic error: systematic deviations of the observation from the quantity that is meant to be observed due to the functioning of the measurement device, the

measurement procedure that is applied and/or the environmental conditions. Systematic error can, when understood, be corrected for by, e.g., a calibration equation.

Accelerometer: a device that measures the acceleration experienced by a test mass at rest in a reference frame in a single or multiple dimensions. Multi-axis

acceleration is able to detect magnitude and direction of the acceleration as a vector quantity and can be used to sense orientation. An accelerometer measures

change in its own motion (locomotion) instead of the location within the environment (as done by devices based on remote sensing).

Global Positioning System (GPS): a satellite navigation system developed and managed by the United States military, consisting of 24 satellites above the earth and

transmitting ultra-very high frequency radio signals to receivers. The receivers compute longitude, latitude, and velocity by calculating the difference in the time signals

that are received from at least four different satellites.

Radio frequency identification (RFID) system: an automatic identification and data capture system comprised of one or more readers and one or more

transponders (tags) in which data transfer is achieved by means of suitably modulated inductive or radiating electromagnetic carriers. An RFID reader transmits an

encoded radio signal to interrogate the tag. The RFID tag receives the message and then responds with its identification and other information.

Proximity sensor: an electronic device that detects and signals the presence of a selected object. When used in association with a radio frequency identification

system the sensor is set up to detect the presence of a tagged or transponder carrying object when it enters the vicinity of the reader/interrogator so that the reader

can then be activated to effect a read.

observation frequency and accuracy of ABT are so big relative to
conventional methodologies (e.g., observations with binoculars)
that device error is not the primary concern. Rather, sample
size, automated processing, and correct analytical techniques for
ecological interpretation were given a higher priority. Thirdly,
computing power and statistical methods have only become
available in the last decade. Finally, a framework to explore and
quantify possible errors in ABT has been lacking.

While we believe that the first two causes for the limited
attention are disappearing as new interdisciplinary and
methodological journals have been founded (e.g., Journal of the
Royal Society Interface or Methods in Ecology and Evolution), a
general framework to discuss and analyze error is still lacking,
though some previous studies focus specifically on error within
a single device, such as GPS (Frair et al., 2010) or accelerometers
(Shamoun-Baranes et al., 2012).

A New Framework for Error

Prima facie, each technology has a unique set of pathways by
which error is introduced; we believe that these errors can be
categorized by the processes that introduce the variation. We
propose that there are three fundamental concepts that, when
used to classify error, enable a comprehensive evaluation of
error, regardless of technology: (1) the basic physical properties
underlying data collection; (2) the conversion of raw data
into useful variables; and (3) the subjectivity in the selected
settings. We believe the use of this classification system will
facilitate future work to recognize additional sources of error and,
subsequently, to propose statistical methods to mitigate and/or
quantify error. Here, we outline and discuss this classification
scheme; we do not attempt to review the literature exhaustively,
as we discuss numerous technologies to demonstrate the breadth
of technologies that would benefit from this categorization.
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Basic Physical Properties Underlying Data
Collection
All ABT utilize physical properties to function: encounter
mapping devices, RFID tags, and GPS devices all transmit and/or
receive data through radio waves (varying from low to ultra-high
frequencies), geo-locators detect fluctuations in light intensity,
and accelerometers record changes in capacitance (see Table 1).
While each technology measures a unique property or transmits
data through a unique method, each physical property has
generalizable characteristics, uncertainty in their measurement,
and identifiable limitations.

For example, encounter mapping devices use radio waves to
transmit unique animal IDs between tags (see Rutz et al., 2012).
As radio waves spread in an environment, the energy contained
within the radio wave decreases at a certain rate, and extrinsic
factors, such as height above ground or the composition of the
habitat, can alter this rate. Thus, a calibration to determine the
rate at which radio waves degrade due to the behavior of the
animal is essential.

Similarly, GPS devices transmit and receive ultra-high
frequency radio wave signals from satellites. If any medium,
like a vegetation canopy, is obstructing the travel path of the
radio wave toward he sensor, it results in a lower fix rate and
lower number satellites that can be detected—hence a lower
location accuracy. Therefor also GPS devices require a calibration
(as done in Jiang et al., 2008 and Williams et al., 2012; see
Frair et al., 2010 for a more complete overview) to know the
difference in performance under different types of vegetation so
that, e.g., seemingly different intensities in habitat utilization by
an organism can be interpreted correctly.

Radio waves degrade at a specified rate (different rates for
different frequency of radio waves), and certain extrinsic factors
can distort the signal, such as trees, the placement of the tag
on the animal, and the ground (Rutz et al., 2015). Studies have
quantified the degradation and variation of the signal due to
external factors on signal strength and/or reliability. Devices
utilizing radio waves, such as proximity devices, have significant
variation in signal strength, suggesting that using these devices to
differentiate distances may be problematic (Rutz et al., 2015).

Conversion of Raw Data into Useful Variables
When using ABT, the biological outcome is only as good as the
conversion of raw data into useful variables. Three steps are
generally taken during this conversion: (1) understanding the
structure of the collected data, (2) determining the relationship
between the raw data and the variable of interest, and (3)
quantifying the error associated with the conversion.While many
studies undertake steps 1 and 2, few studies have concentrated on
quantifying error due to the conversion of raw data into useful
variables.

Light based geo-location sensors, “geolocators”, combine a
photoreceptor that converts incoming light levels into electrical
energy with reference to an internal clock/calendar. To convert
the light level and date-time information, use is made from
a deterministic model (relating the time of local noon and
midnight to the latitude, and day length to longitude). Usually
the incoming light is limited to the 450 ±50 nm wavelength

(a light-blue filter), because blue light predominates at the sun
angles most appropriate for geo-location, just before sunrise and
just after sunset (e.g., Lisovski et al., 2012).

On top of this well understood deterministic part of light
based geo-location, there are large uncertainties involved due
to factors like clouds, atmospheric refraction, atmospheric dust
loading; foliage and feathers for terrestrial animals; depth and
temperature effects for aquatic animals. Some of these factors
can be corrected by measuring additional variables (such as
pressure and temperature for aquatic; or cloudiness as observed
at weather stations), whereas others have to be factored in as
sources of noise. Several studies have been conducted to establish
the uncertainty due to these factors, and also to provide a good
protocol to calibrate sensors prior to deployment (Ekstrom, 2004;
Fudickar et al., 2012; Bridge et al., 2013).

Subjectivity in the Settings Chosen
Nearly all ABT necessitate a priori selection of certain
parameters. Generally, selecting parameters involves balancing
the trade-offs between the highest resolution possible and the
technological limits of the ABT, such as in the accessible memory
and/or the capacity of the battery. Throughout the last decade, we
have seen steady improvements in on-board memory and battery
lifespans (Rutz and Hays, 2009), and may eventually see these
limitations become non-existent.

One key parameter chosen is the frequency at which data
is recorded. The rate of data collection determines the level
of analysis data can be quantified, with higher rates of data
collection allowing more a posteriori grouping of data for
analysis, an indispensable step (at least for now) to examine data
statistically. It is important to note, that we should maximize as
much as possible the rate at which we collect data, as analytical
methods allow for the comparison of higher-resolution data with
older, less resolved data.

Another parameter commonly chosen is the power at which
devices operate. In systems with passive RFID tags, for instance,
the power of the receiver determines the distance (and rate) at
which tags are being recognized. Since the detection range can, as
a function of power, vary over an order of magnitude, it is crucial
to know the exact power setting and its impact on this range
in order to interpret the detection data (Nikitin and Rao, 2006;
Finkenzeller, 2010). Hence the standardization of procedures in
this context, or the availability of general calibration curves are
required to compare results from different studies or interpret
the results from a focal study at all (e.g., Pinter-Wollman et al.,
2013).

A Four Step Workflow to Implement the
Framework

The procedure we envision to implement the framework we
outline in the previous section is based on 4 steps, which we
labeled “Know”, “Identify”, “Evaluate”, and “Store”. Knowing
consists of: (1) the physical principles of the technology, (2)
the limitations of the technology, (3) the specific device and
the context (i.e., the environment in which the device will be
applied), and (4) experiences from others using the same device
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under comparable conditions. Knowing about the physics, sensor
specification and context will enable a researcher to assess the
likely influences in the specific location(s) the technology will be
used, which is a required input to the next step: identify.

To “identify”, a model is constructed that describes
the relationship between the variable of interest, relevant
environmental factor(s), and the variable that is actually
recorded and stored by the device. We call this model the
observation model, since it is not a model for the biological
system that we are studying, but only a way to translate the signal
from the technology into the real-world variable that we are
interested. Regardless, whether or not we have or need to build an
existing observation model: experimental data or observational
data with sufficient variability and data redundancy is required
to evaluate model performance. In the ideal case, an appropriate
observation model is already available and only needs to be
evaluated (or calibrated and subsequently evaluated), and then
the model can be used. If an observation model is not readily
available, modeling from first principles (physical laws) or
experimentation are the two remaining options. First, where
possible, as much of the observation model should be defined on

the basis of first principles (e.g., the effect temperature has on
the functioning of a certain circuit, or the attenuation of a wave
through a homogeneous medium at a given temperature). If the
resulting model performs adequately, this could already form an
endpoint. Otherwise, in addition, further parameterization with
empirical relations may be required. For this task, experiments
are required. In any case, an identified and calibrated observation
model would need to be evaluated on a data set to which it was
not calibrated.

Next, extra work is required to establish the robustness of
the model in heterogeneous conditions. This is done in step
3, “Evaluate”, through a sensitivity and uncertainty analysis.
For a sensitivity analysis, no real observations are required.
Parameters or inputs are varied to evaluate how sensitive it
is to perturbations. A sensitivity analysis is useful to find
the parameters or inputs for which the observation model is
particularly sensitive; these may subsequently be investigated in
an uncertainty analysis. An uncertainty analysis applies realistic
variability to a model to investigate how uncertainty propagates
in the model and how it affects the results. If the resulting
uncertainty is acceptable, the model is ready for use. In many

FIGURE 1 | Illustration of the proposed framework as well the as

four-step workflow to handle error in ABT. We start by defining a

phenomenon of interest and the part of it that is observable (e.g., not a total

population but only a small sample can be observed; only larger individuals

can be tagged—note that this partial observation may lead to biases). The

observable phenomenon can be measured by a sensor. When doing this, a

number of factors influence the ultimate error of the observation

model—these are contained in the central green box of the figure. The

consequences from physical principles, sensor settings, environmental

variability and animal behavior can often be known on the basis of deduction

or previous studies (hence this part is contained in the purple zone (A), step

1 in the workflow). But when the effect of these factors on a sensor is not

known, these should be part of experiments to identify this error. In addition

to the aforementioned factors, the rate of sampling and actual storage of

these observations as well as the choice of an error metric to quantify the

adequacy of an observation are of great importance to identify, calibrate and

evaluate an observation model (see the right part of the central green box). In

the ideal situation, a “gold standard measurement” is used which is

insensitive to the factors that impact the sensor of interest (as illustrated by

the dashed arrows). By comparing the sensor of interest to a gold standard

the development of an observation model goes through two main cycles:

identification of the model structure and best possible parameter values

(calibration is a final step in this) and evaluation of the derived model on

independent data. Identification and Evaluation are steps two and three in

the 4-step workflow and are highlighted in the blue area (B) of the figure. The

processes of identification, calibration and evaluation typically require several

experiments, hence the dotted arrows link back into the green box. After an

observation model passes the evaluation, it can be applied to predict an

observable phenomenon (with associated uncertainty) on the basis of sensor

data. The final step in the workflow is then to store the result of the

identification and evaluation experiments (C). The fact that this box encloses

all the components of the figure emphasizes that this storage should include

all relevant contextual information, modeling choices, sensor settings (etc.)

along with the observation model, and should also link to application studies

where this particular observation model has been used. The three encircled

numbers in the model-application part at the right highlight the three main

concepts to classify ABT error: (1) the basic physical properties underlying

data collection; (2) the conversion of raw data into useful variables; and (3)

the subjectivity in the selected settings. These concepts can only be

adequately quantified if the entire workflow is rigorously applied.
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situations it may turn out that the model will work within certain
boundaries of input parameters. In these cases it is useful to
specify the conditions in which the observation model performs
or doesn’t performwell. In addition, some questions require error
estimation rather than quantification, requiring the evaluation of
whether the error was estimated robustly.

Finally, we must properly store the observation model. With
a simple parametric model one can store parameters, and
parameter uncertainty. But with non-parametric models one
should store the complete calibration dataset and algorithm;
in that case, model uncertainty would need to be expressed in
terms of predictive uncertainty. For any model, the assumptions
underlying the model and the domain at which it is believed
to be applicable. We strongly believe storing the model with
uncertainty is essential to facilitate more transparency and use of
the significant process just undertaken. Furthermore, the storage
of raw data will aid error calculations in meta-analyses and
facilitate more accurate evaluative criteria for inclusion.

An overview of both the framework and the workflow to
implement is given in Figure 1.

Is There a Universal Protocol to Quantify Error?
No, but there are ways to think about error systematically,
which help greatly to achieve error quantification. We propose a

framework for this purpose. Each technology has its own unique
limitations, necessitating different analytical or methodological
approaches to mitigate error due to technological constraints.
Yet, these confines exist in numerous technologies, and
increasing the transparency through a common scheme will
facilitate more rigorous studies and ensure the technological
limitations refine and restrict the biological outcomes. Even in
circumstances without opportunities to quantify different errors
in ABT, the proper attribution of this error and the notion that
it is irreducible will help to focus further developments (either in
experimental work or development of new technologies).

Overall, organizing the process by which we think and
calculate error is essential to ensure biological results are
meaningful. To know, identify, evaluate and store, while
recognizing the three processes introducing error into our
data collections: physical properties, conversion from raw
data into useful variables, and subjectivity in the settings.
Specifically, recognizing similarities and differences between
these devices will spur further integration of ideas from other
devices to resolve the challenges of new devices, or old
problems within a currently deployed device. Moreover, we
believe the adoption of this scheme will facilitate feedback
to designers, a necessary step to minimize certain types of
error.
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