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Olfaction is fundamental for most animals and critical for different aspects of triatomine

biology, including host-seeking, reproduction, avoidance of predators, and aggregation in

shelters. Ethological and physiological aspects of these olfactory-mediated behaviors are

well-understood, but their molecular bases are still largely unknown. Here we investigated

changes in the molecular mechanisms at the peripheral olfactory level in response to

different physiological and developmental conditions. For this, the antennal expression

levels of the odorant (Orco) and ionotropic (IR8a, IR25a, and IR76b) coreceptor genes

were determined in Rhodnius prolixus by means of quantitative real-time PCR (qRT-

PCR) analysis. Gene expression changes were analyzed to test the effect of feeding

and imaginal molt for both sexes. Moreover, we analyzed whether expression of these

genes changed during the early life of adult bugs. Under these conditions bugs display

distinct behavioral responses to diverse chemical stimuli. A significantly decreased

expression was induced by blood feeding on all coreceptor genes. The expression of

all genes was significantly increased following the imaginal molt. These results show that

olfactory coreceptor genes have their expression altered as a response to physiological

or developmental changes. Our study suggests that olfactory coreceptor genes confer

adaptability to the peripheral olfactory function, probably underlying the known plasticity

of triatomine olfactory-mediated behavior.
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Introduction

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is transmitted to humans
and other mammals by hematophagous insects of the subfamily Triatominae (Reduviidae). This
zoonosis is endemic to 22 countries in Central and South America, where 90–100 million people
live in endemic areas, 8 million people are estimated to be infected, and 12,000–14,000 deaths are
reported annually (Senior, 2007; Coura and Viñas, 2010; Rassi et al., 2010; Schmunis and Yadon,
2010). Rhodnius prolixus Stål, 1859 (Hemiptera: Reduviidae) is the secondmost important vector of
Chagas disease, and the main species transmitting T. cruzi to humans in Colombia and Venezuela
(Fitzpatrick et al., 2008; Guhl et al., 2009; Rassi et al., 2010; Hashimoto and Schofield, 2012). In the
absence of a vaccine and an effective drug treatment, vector control is central to prevent the disease

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org/Ecology_and_Evolution/editorialboard
http://www.frontiersin.org/Ecology_and_Evolution/editorialboard
http://www.frontiersin.org/Ecology_and_Evolution/editorialboard
http://www.frontiersin.org/Ecology_and_Evolution/editorialboard
http://dx.doi.org/10.3389/fevo.2015.00074
http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive
https://creativecommons.org/licenses/by/4.0/
mailto:josmantorres@gmail.com
http://dx.doi.org/10.3389/fevo.2015.00074
http://journal.frontiersin.org/article/10.3389/fevo.2015.00074/abstract
http://loop.frontiersin.org/people/200320/overview
http://loop.frontiersin.org/people/215168/overview
http://loop.frontiersin.org/people/247541/overview
http://loop.frontiersin.org/people/137270/overview
http://loop.frontiersin.org/people/123057/overview


Latorre-Estivalis et al. Kissing-bug peripheral olfactory plasticity

(Rassi et al., 2010). Due to insecticide resistance in triatomine
populations in Bolivia (Lardeux et al., 2010), and parts of
Argentina and Venezuela (Vassena et al., 2000; González Audino
et al., 2004), there is a dire need for the improvement or
development of vector control strategies for sustained control of
Chagas disease.

The olfactory system plays an essential role in several aspects
of the biology of triatomines, such as shelter location (Lorenzo
and Lazzari, 1996), food search (Núñez, 1982; Barrozo and
Lazzari, 2004a,b), reproduction (Pontes et al., 2008; Vitta et al.,
2009; Zacharias et al., 2010; Pontes and Lorenzo, 2012), and
avoidance of predators (Ward, 1981; Manrique et al., 2006). In
addition, R. prolixus locate hosts mainly through olfactory cues;
hence their sense of smell directly regulates disease transmission
(Guerenstein and Lazzari, 2009). An increased understanding of
the olfactory system is therefore crucial for sustainable control
of this disease vector. In other insects, considerable progress
has been made in the understanding of the molecular basis of
olfaction, which has fostered the development of novel olfactory-
based strategies against agricultural pests and disease vectors
(Kain et al., 2013; Tauxe et al., 2013). Two molecular components
have been shown to be central for the detection of odorant
stimuli in insects: the odorant receptors (ORs) (Clyne et al., 1999;
Vosshall et al., 2000) and the ionotropic receptors (IRs) (Benton
et al., 2009). Genes encoding for these proteins are expressed
in olfactory sensory neurons (OSNs), primarily on the insect
antennae (Carey and Carlson, 2011). ORs and IRs function as
heteromeric odor-gated ion channels composed of one, or in the
case of IRs up to five, variable subunits and one, or in the case
of IRs up to three, obligate coreceptors: Orco (Vosshall et al.,
2000; Larsson et al., 2004; Vosshall and Hansson, 2011), and
IR8a, IR25a and IR76b, respectively (Benton et al., 2009; Abuin
et al., 2011). These coreceptor proteins are also required for the
trafficking of the heteromeric OR and IR complexes to the cilia of
the OSNs (Larsson et al., 2004; Benton et al., 2006; Abuin et al.,
2011).

Changes in the behavioral responsiveness to host signals and
reproductive mates have been reported for bugs of this subfamily
and correlated with the ingestion of a blood meal and adult
maturation (Bodin et al., 2009b; Vitta and Lorenzo, 2009). Similar
changes in vector behavior have been found to be correlated
with alterations in gene expression in mosquitoes (Rinker et al.,
2013; Omondi et al., 2015a). Regulation of gene transcription
tentatively underlies the observed functional changes of the
peripheral (Jang, 1995; Siju et al., 2010; Saveer et al., 2012;
Omondi et al., 2015a) and central olfactory systems (Anton
et al., 2007; Barrozo et al., 2011). The main objective of this
report was to analyze ontogenetic and blood-meal induced
changes in the transcript levels of OR and IR coreceptor genes
in both sexes of R. prolixus. Based on behavioral observations
we hypothesize that coreceptor gene expression is decreased
in recently fed bugs. Moreover, we hypothesize that imaginal
molting induces an increase in gene expression.We observed that
RproOrco, RproIR8a, RproIR25a, and RproIR76b transcript levels
are altered, in ways correlated with the significantly decreased
behavioral responsiveness known for fed insects, as well as the
acquisition of sexual signal detection capabilities in adults.

Materials and Methods

Insects
Experimental insects were obtained from the R. prolixus colony
held at the Centro de Pesquisas René Rachou (CPqRR), which
was established more than 20 years ago from a batch of
domiciliary insects captured during field work in Honduras
(donated by Dr. Carlos Ponce, Ministerio de Salud Pública,
Honduras). Through the years, this colony has been kept as
large as possible (ca. 20,000 insects) in order to preserve as
much diversity as possible. Experimental insects were reared
under controlled conditions at 26 ± 1◦C, 65 ± 10% relative
humidity, and at a 12 h:12 h light/dark cycle provided by artificial
lights (4 fluorescent lamps, cold white light, 6400 K, 40 W). All
experiments were performed with 5th instar larvae or adults, and
all tests were developed separately for female and male insects.
For experiments with immature insects, a group of 4th instar
larvae of similar age was sorted and fed ad libitum with citrated
rabbit blood (2.5% buffered sodium citrate, provided by Centro
de Criação de Animais de Laboratório-CECAL, FIOCRUZ),
using an artificial membrane feeder. After molting to the 5th

instar, half of these insects were kept unfed, while the remaining
bugs were offered blood ad libitum at day 16 after ecdysis. To
obtain adult bugs for the remaining experiments, 5th instar larvae
of similar age were sorted by sex and offered an ad libitum blood
meal to induce their imaginal molt. As in the case of larvae,
the feeding procedure was performed 16 days after the ecdysis
of adult bugs. Transcript abundances for RproOrco and each IR
coreceptor genes were analyzed separately for male and female
bugs as follows: (i) unfed 21 day-old 5thinstar larvae; (ii) blood
fed 21 day-old 5th instar larvae; (iii) unfed 1 day-old adult bugs;
(iv) unfed 21 day-old adult bugs; and (v) blood fed 21 day-old
adult bugs. All bug antennae were dissected between 10 am and
4 pm, and in the case of fed insects, antennae were cut 5 days
after the ingestion of the blood meal. Each of the 5 treatments
was replicated 6 times using pools of 60 antennae (i.e., 30 bugs)
per sample.

Reference Genes and R. prolixus OR and IR
Coreceptors
A set of candidate reference genes (Table 1) was selected
because they were all previously used for qPCR normalization
in triatomines (Majerowicz et al., 2011; Paim et al., 2012)
and other insect species (Scharlaken et al., 2008; Lord
et al., 2010; Ling and Salvaterra, 2011; Ponton et al., 2011).
Table 2 lists all reference factors calculated as the geometric
means of the most stable combinations of these genes
(Omondi et al., 2015b), used to evaluate changes in gene
expression in the antennae of R. prolixus. The sequences of
reference and target genes (RproOrco, RproIR8a, RproIR25a,
and RproIR76b) were identified in the R. prolixus genome
(available on www.vectorbase.org/organisms/rhodnius-prolixus)
using a local tBLASTn algorithm (Altschul et al., 1997).
Orthologous sequences were obtained from the Swiss Institute
of Bioinformatics (Table S1 in Supplementary Material).
Primers were designed using Primer3 4.0.0 (http://primer3.ut.
ee/) (Rozen and Skaletsky, 2000) and compatibilities tested
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TABLE 1 | Reference and target genes, biological function, primer sequences, amplicon and intron lengths, squared correlation coefficient, and qRT-PCR

efficiency.

Gene Biological function Primer sequence (5′ to 3′) Amplicon

length (bp)

Intron length

(bp)

R2 E (%)

REFERENCE GENES

Act Cytoskeletal protein For—TGTCTCCCACACTGTACCCATCTA/

Rev—TCGGTAAGATCACGACCAGCCAA

87 338 0.992 88.2%

eIF-1a Protein biosynthesis For—TTGGAGGCCATGTGCTTTGAT/

Rev—AGGTTTCTTGCTTCATCTGGAGT

94 183 0.999 91.3%

GAPDH Glycolytic protein For—GACTGGCATGGCATTCAGAGTT/

Rev—CCCCATTAAAGTCCGATGACACC

182 1130 0.992 102.5%

GST Metabolism For—TACCCATCATTTGGCGTGGACA/

Rev—CAAACCCAATTGCCTCAGCGAT

177 Intron—Exon

junction

0.987 103.2%

G6PDH Metabolism For—AGCCTGGAGAAGCGGTTTACGTTA/

Rev—GTGAGCCACAGAATACGTCGAGT

162 923 0.998 96.5%

SDH Metabolism For—TTGCCGGAGTAGATGTTACCAG/

Rev—CAGCTGCATAAAGTCCTTCCAC

147 1592 0.999 104.8%

Sp Metabolism For—AGGGACCATCTTTGACTGCTCTTC/

Rev—GAATCACCCTGGCAAGCATCTTTT

157 Intron—Exon

junction

0.996 98.8%

Tub Structural subunit of microtubules For—TGTGCCCAAGGATGTGAACG/

Rev—CACAGTGGGTGGTTGGTAGTTGAT

118 202 0.991 110.9%

TARGET GENES

RproOrco Odorant receptor coreceptor For—GATCTGCACTGTTGCTGCAC/

Rev—CCATGGATGCAGAACACAAA

157 Intron—Exon

junction

0.996 102.6%

RproIR8a Ionotropic receptor coreceptor For—TGCAGTCCAACAAGGTAGTCAC/

Rev—GCGTAATGCCTTCATCTTCGTCA

155 295 0.991 115.2%

RproIR25a Ionotropic receptor coreceptor For—AAGATGTGGCAGGCAATGAAGG/

Rev—CTGTTGCATCACCAAGGAAAGC

118 732 0.994 104.6%

RproIR76b Ionotropic receptor coreceptor For—GCGTTTGCGTACCAAATGGACA/

Rev—GCGTCCGGTAGATCCAAAGTGATT

113 1055 0.974 84.1%

R2, squared correlation coefficient (calculated from the regression line of the standard curve); E, RT- qRT-PCR efficiency (calculated by the standard method).

TABLE 2 | Reference factors selected for each condition.

Condition Normalizing factor Normalizing factor

for female antennae for male antennae

The effect of imaginal molt GST-Tub SDH-GAPDH

The effect of blood ingestion GST-Tub SDH-GAPDH

The effect of adult maturation GADPH-SDH All genes

with Oligoanalyser (Integrated DNA Technologies, Inc. IA,
USA) softwares. The melting temperature was set at 60◦C. The
specificity for each primer was tested in silico using BLASTn
(Altschul et al., 1990) in the R. prolixus genome database.

RNA Extraction and cDNA Synthesis
Total RNA was extracted from pools of 60 antennae with 500µL
of TRIzol R© Reagent (Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s instructions. Then, extracted
RNA was resuspended in 30µL of DEPC-treated water (Life
Technologies), and its concentration was determined using a
Qubit R© 2.0 Fluorometer (Life Technologies). RNA integrity
was analyzed by visualizing bands on agarose electrophoresis
gels. Extraction of RNA was followed by a treatment using
RQ1 RNase-Free DNase (Promega, Fitchburg, WI, USA). All
treated RNA (11µL per sample) was immediately used to

synthesize cDNA using SuperScript III Reverse Transcriptase
(Life Technologies) and a 1:1 mix of Random Hexamer and
10µMOligo(dT)20 primers in a final volume of 20µL.

Quantitative Real-time PCR
For quantitative real time PCR (qPCR) analysis, 10µL of SYBR
Green PCR Master Mix R© (Life Technologies) were used in
the reaction mixture that also contained 0.8µL of a 10µM
primer solution and 1µL of cDNA sample diluted two-fold in
a final volume of 20µL. The reactions were conducted using an
ABIPRISM 7500 Sequence Detection System (Life Technologies)
under the following conditions: one 10min cycle at 95◦C,
followed by 40 cycles of 15 s at 95◦C, 20 s at 60◦C, and 30 s at
72◦C. Following the amplification step, a melting curve analysis
and an agarose gel electrophoresis were performed to confirm
the specificity of the reaction. In all qPCR experiments, no-
template controls (NTC) were included in triplicate for each
primer set to verify the absence of exogenous DNA. For each
experimental condition, six biological replicates were made,
with three technical replicates performed for each of them.
The PCR efficiencies (E) and repeatability (R2) for each primer
were determined using the slope of a linear regression model
(Pfaffl, 2001). Information about primers, PCR amplicons and
calibration curves is presented in Table 1. Besides, the output of
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melt curve analysis for all primers is displayed in Figure S1 of
Supplementary Material.

RT-PCR and Sequencing
Pure cDNA was used as a template for PCR reactions of the
reference and target gene amplicons which were performed for
35 cycles (94◦C for 30 s, 60◦C for 30 s, and 72◦C for 30 s) with
2µL of cDNA, 2.2µL of a 1mM dNTP solution, 1.2µL of a
10µM primer solution and 1 U of Taq polymerase (Promega) in
a final volume of 20µL. The size of the resulting PCR products
was visualized by means of electrophoresis in agarose gels. These
PCR products were purified using the Wizard Genomic DNA
Purification Kit (Promega). The sequencing reactions for the
purified products were performed with both primers using an
ABI Prism BigDye V 3.1 Terminator Cycle Sequencing kit and
an ABI 3730 DNA sequencing system (Life Technologies). The
consensus sequences were obtained using the Staden Package
2.0 (Staden et al., 2000) and verified by comparing with the R.
prolixus genomic database, using the basic local alignment search
tool (BLASTn).

Gene Expression and Statistical Analysis
Data treatment for quantification cycle (Cq) values obtained
from technical replicates followed standard procedures for qPCR
(Livak and Schmittgen, 2001; Sengul and Tu, 2008). Briefly,
readings from each set of technical replicates were checked
for consistency using GenEx software (MultiD Analyses AB,
Sweden) and then used to calculate mean Cq-values for each
biological replicate. To determine the gene expression measures,
the Cq-values were normalized to those of reference genes,
and then to mean Cq-values obtained with a control treatment
(Livak and Schmittgen, 2001; Sengul and Tu, 2008). By using
such procedures, we have prioritized a data processing method
that allows comparison to most qPCR analyses available in
the literature. All raw Cq-values are presented in Table S2 of
Supplementary Material.

The relative expression of RproOrco, RproIR8a, RproIR25a,
and RproIR76b in female and male antennae was calculated
in GenEx software (MultiD Analyses AB, Sweden) using the
2 –11Ct method (Livak and Schmittgen, 2001). First, the
expression levels of the four genes were normalized to the
reference factors selected for each sex. Then, expression levels
of each gene were normalized to the expression levels of unfed
female and male larvae, respectively.

Fold-change values were subjected to statistical analysis to
determine the effect of treatment on transcript abundance. All
tests were performed separately for data obtained from female
andmale antennae and no comparisons were performed between
sexes due to our experimental design. In order to inspect
whether gene expression (y-var) was affected by developmental
instar (larvae × adult) or feeding status (unfed × fed) (x-vars),
data were subjected to Generalized Linear Modeling (GLM)
under normal errors. Posterior residual analyses confirmed the
choice of the error distribution and the suitability of the model.
Modeling proceeded by building a full model, including all
of the above parameters and their first order interactions and
comparing this with a null model built without any of the above

factors. In finding significant differences between null and full
models, model simplification was performed on the latter by
backward term extraction, removing one term at a time. Terms
returned to the model if their removal provoked a change of
deviance with P < 0.05. The minimum adequate model was
defined as the one holding only significant terms. The procedure
above was applied independently for male and female bugs for
each of the genes under study (RproOrco, RproIR8a, RproIR25a,
and RproIR76b), each new test using a distinct subset of data. All
tests were performed using R version 3.2.0 (R Core Team, 2015).

Results

Results from statistical analyses are summarized in Table 3 and
Figure 1. Regardless of gender, the expression of all studied genes
was enhanced in adults compared to larvae. Similarly, feeding
depressed the expression of all coreceptor genes in larvae and
adults, irrespective of their gender.

In males, developmental stage (i.e., larvae × adults) and
feeding status (i.e., unfed × fed) acted independently from each
other on the expression of all genes, except for RproOrco. This
could be confirmed by looking at the non-significant interaction
terms (stage:feeding) for the three ionotropic coreceptors
(RproIR8a, RproIR76b, and RproIR25a), and the significant
interaction term for RproOrco (Table 3). That is, unfed larvae
differed from fed larvae in the same proportion as unfed adults
differed from fed adults for the three ionotropic coreceptors
(Table 3). For RproOrco expression, however, the effect of feeding
was different from larvae and adults, as revealed by the significant
interaction term for this specific case (Table 3).

As for females, there was a distinct pattern: an
interdependence of developmental stage and feeding status
affected the expression of all genes except for RproIR76b, as
revealed by the interaction terms (stage:feeding) in Table 3. That
is, the proportion by which unfed larvae differed from fed larvae
was distinct from the proportion by which unfed adults differed
from fed ones for RproOrco, RproIR8a, and RproIR25a (Table 3).
Conversely, such proportions did not differ for RproIR76b
(Table 3). In summary, the effects of developmental stage and
feeding status tended to affect gene expression independently in
males, the opposite occurring in females.

The results obtained with unfed 1-day-old adults are
presented in Figure S2 in order to allow their comparison to those
of unfed 21-day-old larvae and unfed 21-day-old adults.

Discussion

The abundance of antennal transcripts of the olfactory coreceptor
genes of R. prolixus changes in response to development
and blood feeding, and can also be affected by interactions
between these factors. The results of this study reveal that the
expression of olfactory coreceptor genes is a plastic process,
closely linked to the observed changes in olfactory-mediated
behaviors in these insects. Proper olfactory function requires
the obligatory presence of coreceptors in a hypothetical fixed
stoichiometry together with olfactory receptors (Vosshall et al.,
2000; Benton et al., 2009; Abuin et al., 2011). This would
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FIGURE 1 | The effect of imaginal molt and nutrition on male and

female olfactory coreceptor gene expression levels, as seen in the

antennae of 5th instar larvae and adults. Both 5th instar larvae and adults

included in this figure were 21 day-old. Error bars represent the standard

deviation generated from 6 replicates per condition. All statistical

comparisons, i.e., the effect of the imaginal molt and the effect of feeding,

were significantly different (more details about these comparisons can be

observed in Table 3).

mean that alterations in coreceptor expression levels may reflect
changes in the sensitivity of the olfactory system. Nonetheless,
variations in coreceptor abundance may not reflect specific states
of particular ORs or IRs. In fact, the changes in coreceptor
expression reported here may have been the overall outcome
of up or down regulation, or even absence of alteration, in
specific receptors co-expressed with them. The expression of
some olfactory receptors might be expected to remain unchanged
in triatomines, e.g., those responsible for alarm or aggregation
pheromone detection, as bugs are responsive to these stimuli
irrespective of their nutritional or developmental state (Figueiras
and Lazzari, 2000). Alternatively, other receptors related to
functions that are dependent on good nutritional status may be

anticipated to show an increase in expression, e.g., those that
detect sexual pheromones (Vitta and Lorenzo, 2009).

The antennae of triatomines show a three-to-five-fold
increase in the number of olfactory sensilla after their imaginal
molt (Catalá, 1997; Gracco and Catalá, 2000; Akent’eva,
2008). Information about the ultrastructure of triatomines
chemosensory sensilla is scarce, but available data suggest that
triatomine trichoid sensilla may house up to 15 sensory neurons
(Wigglesworth and Gillett, 1934). Rough estimates suggest that
adult R. prolixus have approximately 1700 olfactory sensilla
(Gracco and Catalá, 2000). Therefore, a concomitant increase
in olfactory receptor expression would be expected when adult
bug antennae are compared to those of fifth instar larvae.
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TABLE 3 | Generalized Linear Modeling for olfactory coreceptor gene

expression in male and female antennae of Rhodnius prolixus.

y-var Model and Term d.f. F P

MALE

RproOrco Full model 3;20 313.721 <0.001

Stage 1;22 842.075 <0.001

Feeding 1;21 67.549 <0.001

Stage:Feeding 1;20 31.538 <0.001

RproIR8a Full model 3;20 21.489 <0.001

Stage 1;22 57.542 <0.001

Feeding 1;21 5.514 <0.029

Stage:Feeding 1;20 1.412 0.249

RproIR25a Full model 3;20 24.408 <0.001

Stage 1;22 51.691 <0.001

Feeding 1;21 21.524 <0.001

Stage:Feeding 1;20 0.01 0.922

RproIR76b Full model 3;20 31.116 <0.001

Stage 1;22 87.972 <0.001

Feeding 1;21 5.079 <0.001

Stage:Feeding 1;20 0.297 0.592

FEMALE

RproOrco Full model 3;20 66.202 <0.001

Stage 1;22 183.831 <0.001

Feeding 1;21 9.325 <0.001

Stage:Feeding 1;20 5.449 0.03

RproIR8a Full model 3;20 23.685 <0.001

Stage 1;22 58.867 <0.001

Feeding 1;21 7.237 0.014

Stage:Feeding 1;20 4.95 0.038

RproIR25a Full model 3;20 36.84 <0.001

Stage 1;22 84.871 <0.001

Feeding 1;21 21.001 <0.001

Stage:Feeding 1;20 4.648 0.043

RproIR76b Full model 3;20 25.096 <0.001

Stage 1;22 66.74 <0.001

Feeding 1;21 5.4 <0.001

Stage:Feeding 1;20 3.148 0.091

Consistently our results showed that the antennal expression
of all coreceptors studied presented a significant increase in
21-day-old adults (Figure 1). This indicates that both the OR
and IR based olfactory subsystems (Silbering et al., 2011)
seem to undergo a significant expansion in the adult phase
of these hemimetabolous insects. Immature triatomines share
several chemosensorymediated behaviors with adult bugs (Ward,
1981; Lorenzo Figueiras et al., 1994; Manrique et al., 2006;
Guerenstein and Lazzari, 2009). These include the orientation
to hosts, alarm and aggregation responses. Nevertheless, adult
triatomines make use of sexual pheromones to find mates
for reproduction (Pontes et al., 2008; Vitta et al., 2009; May-
Concha et al., 2013) and the observed increase in coreceptor
expression in adult antennae seems to support the hypothesis that
a significant expansion is taking place on OR and IR subsystems
to cope with sexual functions. Further experiments need to

be performed to determine whether this proposal is indeed
correct.

The increase in coreceptor expression observed for adults
could be hypothesized to be originated either during the
imaginal molt or at the initial phase of adult life. Newly
molted bugs do not respond to cues associated with their
vertebrate hosts and recently molted adults show a low behavioral
responsiveness toward mates, unlike older ones (Bodin et al.,
2009b; Vitta and Lorenzo, 2009). The latter happens despite the
fact that the antennae of triatomines show an increase in the
number of olfactory sensilla after the imaginal molt (Catalá,
1997; Gracco and Catalá, 2000; Akent’eva, 2008). Combined,
previous behavioral studies and our gene expression analyses
suggest that the peripheral olfactory system of R. prolixus
undergoes a post-eclosion maturation process in adult bugs
(Figure S2 in Supplementary Material). Similar maturation has
been reported in female mosquitoes (Omondi et al., 2015a),
which at early imaginal life do not express proper host-seeking
behavior, have a decreased neural sensitivity to host volatiles
and a lower expression level of olfactory receptor genes (Davis,
1984; Grant and O’Connell, 2007; Bohbot et al., 2013). Since
proper olfactory function requires the obligatory presence of
coreceptors (Vosshall et al., 2000; Benton et al., 2009; Abuin et al.,
2011), alterations in coreceptor expression levels may induce
changes in the sensitivity of the olfactory system of R. prolixus,
ultimately leading to an increased behavioral responsiveness
toward vertebrate host volatiles and pheromones in mature
adults.

Larval R. prolixus display reduced electrophysiological
responses to ammonia after ingesting a blood meal (Reisenman,
2014). Moreover, engorged triatomine larvae are refractory to
host odor stimulation for a prolonged time after feeding (Bodin
et al., 2009a) and remain hidden in shelters for several days
while their molting is completed. A similar refractory period has
been observed in blood fed mosquitoes (Klowden and Lea, 1979;
Takken et al., 2001). In both R. prolixus (our study) and the
mosquito Anopheles gambiae (Rinker et al., 2013), blood feeding
induces a reduction in chemosensory gene transcript production.
Moreover, both A. gambiae and Aedes aegypti mosquitoes have
reduced electrophysiological responses to host odors during the
refractory period post-blood meal (Takken et al., 2001; Siju
et al., 2010). We suggest that coreceptor down-regulation would
represent a way to shut down the system and save energy. It
is interesting to note that the decrease induced by the blood
meal tended to be more significant for adult bug antennae, when
compared to larval expression. This was the case for RproOrco (in
both sexes), RproIr8a and RproIr25a (only for females). Further
experiments would be necessary to clarify the functional bases of
the observed differences.

Our results show that changes in olfactory coreceptor gene
transcripts seem to be linked with the observed plasticity in
behavioral responsiveness of larval and adult R. prolixus to host
volatiles and mates. How these changes are reflected in the
functional characteristics of the peripheral and central olfactory
systems requires further analysis. This report is the first in line
for understanding the molecular basis of neurophysiological
modulation of triatomine olfactory driven behaviors.
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