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Soail biodiversity is immense, with an estimated 10-100 million organisms belonging
to over 5000 taxa in a handful of soil. In spite of the importance of soil biodiversity
for ecosystem functions and services, information on soil species, from taxonomy
to biogeographical patterns, is incomplete and there is no infrastructure to connect
pre-existing or future data. Here, we propose a global platform to allow for greater access
to soil biodiversity information by linking databases and repositories through a single open
portal. The proposed platform would for the first time, link data on soil organisms from
different global sites and biomes, and will be inclusive of all data types, from molecular
sequences to morphology measurements and other supporting information. Access
to soil biodiversity species records and information will be instrumental to progressing
scientific research and education. Further, as demonstrated by previous biodiversity
synthesis efforts, data availability is key for adapting to, and creating mitigation plans
in response to global changes. With the rapid influx of soil biodiversity data, now is the
time to take the first steps forward in establishing a global soil biodiversity information
platform.

Keywords: soil ecology, belowground biodiversity, biogeography, data synthesis, taxonomy, sequence data,
ecological theory

Introduction

Soils are increasingly recognized as crucial components of ecosystems and biodiversity (Wardle
et al, 2004; Bardgett and Wardle, 2010), and they represent unique compartments of
terrestrial ecosystems by comprising components of the atmosphere, biosphere, hydrosphere, and
lithosphere. Soil biodiversity supports many terrestrial ecosystem functions (Wall et al., 2012) and
delivers important ecosystem services such as food and fiber production, carbon sequestration, and
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degradation of pollutants (Wardle, 2002; Wall et al., 2010).
However, the data and information regarding diversity that lives
in soil remains insufficiently cataloged and coordinated, and this
limits our ability to fully assess the key role soil biodiversity
plays in supporting terrestrial systems and ecosystem services.
In contrast to soil systems, greater effort has been put toward
cataloging global diversity in marine and other terrestrial systems
(Appeltans et al.,, 2012; Jetz et al., 2012; Canhos et al., 2014;
Hudson et al, 2014) and into making these data free and
open access (Guralnick et al., 2007; Wieczorek et al, 2012).
Global efforts to synthesize biodiversity data have proven highly
successful in the transfer of information, have improved our
understanding of species ecology and distribution patterns, and
allows for better monitoring and response plans to global change
effects (Hampton et al., 2013; Dirzo et al, 2014). Given that
we are facing unprecedented environmental alterations through
climate change, land use change, soil erosion, invasive species,
desertification, and pollution, a better understanding of the
global distribution and drivers of soil biodiversity is urgently
needed to forecast functional changes of terrestrial ecosystems
and to develop appropriate management practices. Therefore,
here we review the rationale behind and the benefits of bringing
together soil biodiversity data and information through a single
global data platform.

Although it is known that soils are extraordinarily diverse,
the scale of soil biodiversity is not yet fully understood
(Wall et al, 2010). Global patterns of soil biodiversity are
at most weakly documented (Decaéns, 2010; Tedersoo et al.,
2014), and the locations of many soil biodiversity hotspots
have not been identified. Part and parcel to the plethora
of hyperdiverse taxonomic groups, global patterns of soil
biodiversity are thought to differ significantly from what is
reported aboveground (Maraun et al., 2007; Decaéns, 2010;
Tedersoo et al., 2012; Ramirez et al., 2014). For example, soil
microorganisms do not respond to large-scale environmental
gradients in the same way as metazoans and belowground
biodiversity hotspots do not necessarily mirror aboveground
biodiversity patterns (Fierer and Jackson, 2006; Wu et al., 2011)
Further, many species residing in soil remain taxonomically,
phylogenetically, and functionally undescribed. This is most
notable for microorganisms (McDonald et al., 2012) but it is also
true for soil fauna (Behan-Pelletier, 1999; Rougerie et al., 2009;
Bik et al.,, 2012). Therefore, categorizing species into discrete
taxonomic units represents a challenge for soil biodiversity
documentation where many of the species’ characteristics and
phylogenies are not yet available (Bardgett and van der Putten,
2014).

Regardless of these challenges, soil biodiversity research has
dramatically increased over the last three decades, and the
scope of soil biodiversity data is immense. Soil biodiversity data
types range from classical specimen based collections (Burkhardt
et al, 2014) to molecular and genomics samples (Gilbert
et al,, 2014). In between are a wide spectrum of community-
aggregated data (i.e,, trophic levels to relative abundances)
organism attributes (e.g., abundance, biomass, and traits), and
environmental measurements (e.g., georeference coordinates,
biome type, soil characteristics, and climatic variables). Like other

biodiversity information, soil biodiversity data can be digital
and available online, though much data remains “dark”—not
digitized or not available (Heidorn, 2008). Whether in a national
repository, stored on a personal computer, or found in a museum
drawer, the first step in any data synthesis project is to make
dark data digitally accessible (Box 1) (Hill et al., 2012). Next is
to establish a mechanism to link digitally available data globally
(such as an online portal).

Here we present an independent initiative to assess and
store information on global soil biodiversity; to link species,
environmental, and other data and make data accessible at a
global level. Our goal was to propose a system that could be
linked to other biodiversity and ecosystem relevant databases,
accommodate new and future methods and technologies, be
useful to a wide array of end users (from the public to scientists
to policy makers), and be free and open access.

Applied Advances

It is now commonplace to concurrently survey soil biodiversity
and explore the role these organisms play in ecosystem functions
and global sustainability (Wall et al., 2012; Bardgett and van
der Putten, 2014). However, we still lack baseline values for soil
biodiversity as well as reference values (either abundance ranges
or occurrence) that may prove critical in assessing the current
status of soils and implementing management and policy efforts
to keeping soils and soil biodiversity in a so-called “normal
operating range” (Jackson et al., 2007; Koch et al.,, 2013). This
will be particularly important as we continue to understand the
impact of certain global changes on soil biodiversity and their
interactions within functioning food webs (Blankinship et al.,
2011; Garcia-Palacios et al, 2015). For example, agricultural
intensification reduces the abundance of soil fungi relative to
bacteria, reduces earthworms, mycorrhizal fungi, and increases
the numbers of plant parasitic nematodes (Tsiafouli et al., 2015).
Less is known on effects of incipient changes, or changes that

BOX 1 | Digital soil biodiversity information is currently stored in a wide
array of databases, warehouses, catalogs, and other repositories, and
contains various types of data (see Supplemental Table 1 for a more
extensive list of examples).

e Catalogs: Taxonomy lists with descriptions of the organism. May have
occurrence data and may contain images, videos or other media. (Example:
Encyclopedia of Life)

¢ Data Warehouse: An information system that links taxonomy (morphology
and/or annotated sequences) and ecological information across databases
and individual studies. (Example: Edaphobase)

¢ Public or Private Databases: Species lists for a given study, experiment or
location. May include any number of additional measured parameters such
as soil environment measurements and climate information. (Example: Earth
Microbiome Project)

e Sequence Archives: Nucleotide sequences that provide valuable
information on relevant organisms. These can be useful for determining
phylogenies and functional characteristics of organisms. May follow
standards of Genomic Standards Consortia. [Example: European
Nucleotide Archive (ENA), National Center for Biotechnology Information
(NCBI)]
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encompass temporally complex and indirect feedback effects,
such as consequences of global warming, biological invasions, or
habitat fragmentation (Blankinship et al., 2011; Lindo et al., 2012;
Dickie et al., 2014).

Reference values can be an important tool for determining
the success of ecosystem restoration and comparing data across
time scales (Frouz et al., 2004; Kardol and Wardle, 2010) and for
detecting subtle trends in temporal soil biodiversity assessments
(Bardgett, 2005). Specific indicators that can be accessed from
a global platform, such as disease-suppression (Mendes et al.,
2011) and nutrient retention capacity of soil (De Vries et al.,
2013), can also be used by land managers in order to calibrate
and further improve sustainability of production methods, or
used to develop rapid and economic soil biodiversity assessment
tools for use by policy makers and end users (Wall et al., 2012;
Bone et al.,, 2014). As demonstrated by the Global Biodiversity
Information Facility (GBIF) and other global data synthesis
efforts (Otegui et al., 2013), access and availability of data has
helped to predict the impact of climate change (Warren et al,
2013), monitor invasive species (Gatto et al., 2013) and inform
on issues like human health (Daszak et al., 2013) and food and
farming (Vincent et al,, 2013). Further, the efforts by GBIF
and Map of Life (MOL) support the work of the CBD, IPBES,
GEO-BON, and many others (see GBIF.org). The inclusion
of soil biodiversity data in such global assessments is a highly
important and necessary next step.

Theoretical and Research Advances

The prospect of accessing global soil biodiversity information
through a single portal will create novel opportunities to develop,
refine, and test underlying ecological theory. The synthesis
of biodiversity data across larger spatial scales and greater
taxonomic breadth may uncover emergent properties that cannot
currently be foreseen (Brose et al., 2012) and will give better
insight into species’ ecological preferences and geographical
ranges (Brose et al., 2004; Fierer et al., 2013; Tedersoo et al., 2014).
Here we identify five topic areas that, while not exhaustive, will be
enhanced by a global data platform effort:

(1) Macroecology and biogeographical patterns: Characterizing
global patterns is of paramount importance for conservation
of soil biodiversity and global change scenarios on
the functioning of soil systems in a future world. A
comprehensive view of biogeographic patterns will be critical
to reveal important scientific questions, to discover where
and why there are hot spots of biodiversity, to identify
the drivers of belowground diversity, and will ultimately
boost the use of macroecological approaches in soil ecology
research (Fierer et al., 2013; Tedersoo et al., 2014).

(2) Biodiversity maintenance and loss: A synthesis of soil
biodiversity data will help identify drivers and mechanisms
underlying both the maintenance and loss of biodiversity
in soil and dependent terrestrial systems. The support that
belowground diversity gives to aboveground diversity is
drastically underestimated, and by overlaying belowground
and aboveground biodiversity patterns we can better assess

the impact of biodiversity losses. Further, these efforts
may prove especially important in terms of invasion
ecology, identifying which groups are prone to invade (e.g.,
earthworms, Hendrix et al., 2008), and the mechanisms
facilitating invasion (e.g., Dickie et al., 2014) and prevention
efforts.

(3) Ecosystem functions and services: Soil organisms co-
determine a plethora of provisioning and regulating
ecosystem services (Wardle et al., 2004; Lavelle et al., 2006),
but the appreciation of their functional significance remains
deficient due to their cryptic nature and overlapping
functions (Setild et al., 2005). While conventional
anthropogenic land management practices often have
aimed to optimize certain (single) ecosystem functions or
services (Cardinale et al., 2012), soil biodiversity exemplifies
the value of multifunctional ecosystems (Setild et al., 2014;
Wagg et al., 2014). Recent evidence shows that the structure
and composition of the soil community and the presence
of specific functional groups, is key to delivering a range of
ecosystem services, such as N retention and C storage (De
Vries et al., 2013; Lange et al., 2015).

(4) Community ecology: Soil communities are notoriously
complex and conventional community ecological theory
may be challenged by the spatially complex habitat soil
organisms live in (Ettema and Wardle, 2002). Multitrophic
soil biodiversity assessment may help to refine existing
soil food web models (Digel et al., 2014). Further, global-
scale information on the co-occurrence of different taxa in
soil will shed light on the relative significance of trophic
vs. non-trophic interactions in soil, top-down vs. bottom
up forces and their interplays (Moore et al, 2004) and
ecological network perspectives may provide useful tools
to clarify interactions among the different soil functional
groups and to certain ecosystem functions (Barberan et al,,
2011; Morrién and van der Putten, 2013).

(5) Aboveground-belowground interactions: As our knowledge
of belowground communities increases, so too does our
awareness of the important, complex interactions between
soil organisms and aboveground biodiversity (Hooper et al.,
2000). By revealing belowground biodiversity patterns, we
can gain better insight into the linkages between above- and
below-ground systems. Plus, soil biodiversity data will be
made more valuable if it can be clearly linked to with data
pertaining to aboveground communities (such as through
the MOL or GBIF).

A Proposed Framework

Our ability to address a range of applied and theoretical
questions, or to assess biogeographical patterns, is to a large
extent limited by access and integration of the available data.
Currently, there is no single repository or platform that allows
access to soil biodiversity information, across all species, or at
a global scale. Therefore, we propose a framework to initiate
linking different databases and repositories via the internet
(Figure 1). The end platform will be both a database and a free,
open access portal to link various national and local data sources
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FIGURE 1 | Integration and access to soil biodiversity data will be accomplished in three phases: (I) discovery, (ll) standardization, and (Ill) a final user
interface, and the timing of these phases will be directly related to the effort and resources put in to the framework.

around the world. Linking data from existing databases is not
trivial, nor is it a new challenge (Jetz et al., 2012). Previous efforts
such as GBIF and MOL have demonstrated that because there
are no required guidelines or consistency between studies or pre-
established databases, minimum standards, and classifications
must be identified. Soil biodiversity standards must then be
harmonized with the global standards already in place (e.g.,
Yilmaz et al., 2011; Wieczorek et al., 2012). While applying even
simple standards will lead to the omission of some studies and
data, quality of the data will be valued over quantity, ultimately
resulting in a higher quality synthesis.

Integration and access to soil biodiversity data will be
accomplished in three phases: discovery, standardization, and a
final user interface:

Phase I—“Discover” where soil biodiversity data is housed:
This phase will be two-fold; first to establish a taxonomy
list—a list of organisms living in the soil, and second
to inventory soil biodiversity information. The taxonomy
list will be shared with the GBIF to tag pre-existing soil
related biological observations that can thereon be searched
and queried [much like the Global Mountain Biodiversity
Assessment (GMBA) (gmba.unibas.ch)] and allow for easier
integration of new data. The “taxonomy list” and an inventory
of soil biodiversity information will be made available through
the Global Soil Biodiversity Initiative (GSBI). It is in this stage
that data quality will be also assessed, a complicated issue all

biodiversity data studies must deal with. We propose to follow
guidelines set forth and established by GBIF.

Phase II—Establish a standardization framework by which
to link past, present, and future data: Besides taxonomic
synonyms it also will be necessary to develop and implement
thesauri for the various information fields (i.e., regarding
habitat or climate parameters, methods etc.). Standardized
ontologies are necessary to link between different data sources
and into GBIF (Supplemental Table 1) and other global data
centers (such as MOL, ISRIC, EOL, Genebank, and others).
Furthermore, to allow data comparability from the individual
data sources, standardization of numeric (abundances, pH
values, etc.), and nominal (ie., habitat types, soil types)
data will be crucial. Concurrently, we must also establish
the minimum set of parameters needed, and formalize data
copyright privacy and licensing rules. Together these efforts
will provide the critical foundation and quality criteria on
which to build the platform.

Short read sequence data: In the case of microbial marker
gene sequence data (either 16S, 18S, ITS or similar) it is
difficult to extract taxonomic information for a number
of reasons (otu picking methods, chimeras, read length,
Orgiazzi et al., 2014). Plus due to the enormous amount
of sequence data, reprocessing the full datasets would
not be tractable. Therefore, we propose to link short
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read sequence data by location, rather than by taxon
identification. This is based on the fact that there is
currently no consensus on the correct protocol for handling
these data, and integrating processed sequence data would
introduce substantial methodological artifacts (Caporaso
etal., 2010). Instead, our approach allows convenient access
to these data linked to geography and allows users to
process the data of interest using a consistent protocol
based on individual research questions.

Phase III—Establish a user-friendly interface that allows for
the integration and comparison of soil biodiversity data—here
called “Soil Portal”: The portal will be designed specifically
for manipulation and analyses of the data in order to
address the theoretical questions outlined above and to
provide stakeholders with the type of information needed for
management and policy decisions. It is in this phase that
we would finally be able to combine collection data across
taxonomic groups, spatial scales and research experiments. As
demonstrated previously (Hill et al., 2012), users are reluctant
to use any interface that costs time, therefore, we propose a
platform that would offer researchers a set of tools, rewards
for contributing their data to the community- such as data
analyses tools, DOIs for data publication, and a link to other
initiatives and data portals.

Outlook

In order to progress this project, first, buy-in from the
community of soil biologists is required; our goal is to galvanize
and guide soil ecologists to make their data available. Researchers
can continue to upload data from their home repositories,
data will not have to be uploaded more than once, and there
is no need to support a single, comprehensive database—a
monetarily expensive and time consuming task. The framework
is designed so that participation in the effort to liberate individual
datasets will only require minor changes to how researchers work
(i.e., time for data input and training for students and young
scientists), but has the potential for great individual rewards such
as more publications (e.g., “data papers”), increased exposure
leading to invitations and collaborations, as well as reciprocal
access to a wealth of data from colleagues. Admittedly, in
addition to the technical challenges outlined in the introduction,
the main limiting factor of this proposal will be resources.
Specifically, time and funds must be invested upfront to move
this effort forward in an efficient way.
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