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The honeybee waggle dance communication system is an intriguing example of abstract

animal communication and has been investigated thoroughly throughout the last seven

decades. Typically, observables such as waggle durations or body angles are extracted

manually either directly from the observation hive or from video recordings to quantify

properties of the dance and related behaviors. In recent years, biology has profited from

automation, improving measurement precision, removing human bias, and accelerating

data collection. We have developed technologies to track all individuals of a honeybee

colony and to detect and decode communication dances automatically. In strong

contrast to conventional approaches that focus on a small subset of the hive life, whether

this regards time, space, or animal identity, our more inclusive system will help the

understanding of the dance comprehensively in its spatial, temporal, and social context.

In this contribution, we present full specifications of the recording setup and the software

for automatic recognition of individually tagged bees and the decoding of dances. We

discuss potential research directions that may benefit from the proposed automation.

Lastly, to exemplify the power of the methodology, we show experimental data and

respective analyses from a continuous, experimental recording of 9 weeks duration.

Keywords: waggle dance, honeybee, animal behavior, animal tracking, computer vision

Introduction

A honeybee colony is a striking example of a complex, dynamical system (Seeley, 1995; Bonabeau
et al., 1997). It is capable of adapting to a variety of conditions in an ever-changing environment.
Intriguingly, the colony’s behavior is the product of myriads of interactions of many thousand
individuals, who each measure, evaluate and act on mostly local cues. Besides the mechanisms
that regulate individual behavior, the flow (and hence processing) of information in the network of
individuals is a crucial factor for the emergence of unanimous colony behavior (Hölldobler and
Wilson, 2009). The most prominent example of honeybee social interaction, the waggle dance,
has been investigated intensely throughout the last seven decades (Von Frisch, 1965; Seeley, 1995;
Grüter and Farina, 2009), still leaving some important questions unanswered.

Foragers or swarm scouts, who have found a profitable resource or new nest site return to
the hive and perform symbolic body movements on the comb surface or directly on the swarm.
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Intriguingly, properties of the dance correlate with properties of
the resource in the field. It was Karl von Frisch who postulated
that bees showing high interest in the dance can decode the
information content and exhibit a high probability of finding
the advertised site (Von Frisch, 1965; Seeley, 1995; Riley et al.,
2005). The waggle dance consists of two portions, a waggle run
in which the dancer shakes her body laterally while moving
forward on the comb surface; and a return run in which
the dancer circles back to initiate a new waggle run from
her previous approximate starting location (Von Frisch, 1965;
Landgraf et al., 2011). Return runs are alternatingly performed
clockwise and counterclockwise, consecutive waggle runs exhibit
an angular difference inversely proportional to the target distance
(Von Frisch, 1965; Weidenmüller and Seeley, 1999; Tanner and
Visscher, 2010; Landgraf et al., 2011). Distance from the hive to
the food or nest site is encoded in the duration of the dancer’s
waggle oscillation; direction from the hive to the resource is
encoded in the body angle in the waggle phase relative to the
vertical (Von Frisch, 1965). The quality of the resource is reflected
in the absolute number of waggle run repetitions and inversely
proportional to the return run duration: profitable resources
are advertised with longer dancer exhibiting a higher waggle
production rate (Seeley et al., 2000). Interested bees (dance
followers) track the movements, decode relevant information
and search for the resource in the field (Seeley, 1995; Biesmeijer
and Seeley, 2005; Riley et al., 2005; Menzel et al., 2011; Al
Toufailia et al., 2013a). Successful finders may themselves return
to the hive and dance, resulting in a cascade of recruitment. The
positive feedback nature of the waggle dance can be regulated by
a negative feedback mechanism, the stop signal. Foragers, nest
scouts or follower bees knock their head against the dancer’s
body in conjunction with a short burst of thorax vibrations.
Waggle dancers are more likely to stop dancing after receiving
the stop signal, as has been observed in the context of swarming
(Seeley et al., 2012) and foraging (Nieh, 1993, 2010; Kirchner,
1994; Pastor and Seeley, 2005). The waggle dance/stop signal
system therefore is a wonderful example of how multi-individual
interactions, such as between dancers and dance followers, may
result in a collective behavior, such as the adaptive, colony-level
exploitation of dynamic resource availability (Seeley et al., 1991;
Seeley, 2010).

However, even this well-investigated communication system
offers ample room for further research. If, for example, two
individuals meet as dancer and follower, it is still unknown
which factors determine this event. How does one bee become
a dance follower? Surely, some general requirements, like the
respective motivational state, must be met for the follower. But
that specific animal might not follow other dances prior to the
focal one. Does random dance-attending (Bozic and Valentincic,
1991) increase her likelihood to follow any dance? Or can we
identify preferences for certain dance locations on the comb,
dance properties or even dancer identities? How do dancer
and follower find each other? Do dancers seek followers, or
vice versa? Does the follower’s history of in-hive interactions
determine future decisions to follow specific dances, and if so,
how far back in time can specific experiences influence this
decision?

In decades since the waggle dance was first discovered (Von
Frisch, 1965), most analysis on the waggle dance has moved from
a real-time collection of dance data (Visscher, 1982; Waddington
et al., 1994; Steffan-Dewenter and Kuhn, 2003) to one that occurs
after the fact from video, using a manual (e.g., Beekman and
Ratnieks, 2000), semi-automatic (e.g., De Marco et al., 2008) or
automatic technique (e.g., Landgraf et al., 2011) for the extraction
of focal properties. This allows the analysis of many individuals
simultaneously by replaying the video as often as necessary and
improves the spatial and temporal data resolution. However, like
most video analysis, it is limited by either technical parameters
(disk space, temporal, and spatial recording resolution) or
available personnel for analyzing the video to extract the data:
oftentimes the analysis takes a multiple of the video’s real-time
duration.

The dancer and the message she is communicating has been
thoroughly investigated (Von Frisch, 1965; Seeley, 1995, 2010).
However, the dance is not self-contained. It is likely embedded
in a network of, potentially still unknown, interactions. Previous
experience plays an important role in attracting a follower to
certain dances (Grüter et al., 2008; Grüter and Ratnieks, 2011;
Al Toufailia et al., 2013b) or, after following the dance, in her
propensity to attempt finding the location of the advertised site.
This experience might include in-hive interactions as well. Since
these memories can build up over many days, we need to observe
the individuals over a broad timespan of up to a few weeks.
Rather than starting the recording when a waggle dance occurs,
we need to track any given follower back in time. Optimally, we
would like to record her entire life.

However, this is only possible with appropriate automation
for a hierarchy of tasks such as image acquisition and storage,
animal identification and tracking, and the recognition of focal
behaviors. Overall, this constitutes a considerable technical
challenge. Especially the automatic recognition of interaction
types seems infeasible, since some behaviors involve subtle
body movements, which are hard to detect for machine vision
systems. However, some interaction types, such as the waggle
dance, the dance-following behavior and the exchange of
food exhibit properties that seem sufficiently discriminable so
that their characteristics can be formulated in a respective
detection algorithm. Such automation would provide datasets of
unprecedented magnitude in the duration of data collection, the
number of traced individuals, and the bandwidth of detectable
behaviors. This would allow for profound and comprehensive
analyses of the interplay of individual and colony behavior.

Computer programs are increasingly used to help annotating
or measuring parameters of animal behavior in video data
(Noldus et al., 2001; Pérez-Escudero et al., 2014). A few
automatic procedures have been proposed to track unmarked
bees (Landgraf and Rojas, 2007; Kimura et al., 2011, 2014),
but none are applicable for long-term tracking because of the
high degree of ambiguity in the appearance of unmarked bees,
frequent occlusions and the property of foragers to leave the
hive. To our knowledge, tracking and identification software
for uniquely marked bees has not been proposed yet. Only one
marker-based system was developed in Lausanne (Mersch et al.,
2013) for the use with a few hundred ants which were kept
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in an open arena. The ID tags used in these experiments were
rectangular and planar. It is unknown whether this system can be
used with bees. In the liveliness of a hive, tags supposedly have to
tightly adapt to the round thorax to ensure their sustained hold
over weeks.

The automatic detection of honeybee dances has been
proposed earlier (Kimura et al., 2011). However, the analysis is
reportedly 360 times slower than real-time and cannot reveal the
identity of the dancer. To our knowledge, no system is available
for the continuous long-term tracking of uniquely identifiable
bees and the automatic recognition of the waggle dance, the
dance-following behavior and trophallaxis.

In this contribution, we propose such a system, in the
following called the BeesBook system. It comprises the automatic
recording and storage of high-resolution images, an on-line
waggle dance detection software, computer vision software for
recognizing and identifying uniquely marked bees and post-
processing software for various tasks such as the recognition
of follower bees and trophallaxis. The system is conceived as a
budget-priced framework for the incremental development of
software and hardware components. This way, the BeesBook
system can be used to detect other focal behaviors in
dance-unrelated research. The paper is organized in two
parts: A thorough technical description of the system and
the experimental validation, including the quantification of
performance measures for the system’s components. We will
conclude with a discussion of the system’s current and future
capabilities, and provide examples of further applications in and
beyond the waggle dance communication.

Beesbook: Tracking All Bees in the Hive

Hive and Recording Setup
A modified one-frame honeybee observation hive with a custom
glass replacement mechanism is used. Bees frequently smear
small portions of honey, wax, and propolis on the glass, which
impairs the image quality. The custom hive allows replacing
the glass once it is necessary without having to open it. The
hive stands in an aluminum scaffold that holds infrared LED
cluster lamps and six cameras in total (shown in Figure 1).

FIGURE 1 | (A) Experimental setup: (I) observation hive, (II) infra-red lamps, (III)

right side of observation cage, (IV) left side of observation cage, (V) right side

camera array. (B) Detailed view of a camera array: (VI) high resolution cameras,

(VII) PS3Eye webcam.

The entire skeleton is enveloped with IR reflector foil that has
small embossments for light dispersion. The foil reflects 80% of
infrared light and helps creating a homogeneous ambient lighting
which reduces reflections on the glass pane or the tags.

Individual Block-code Tags (“Circulatrix”)
To optimally exploit the space on a bee’s thorax and to create
a smooth surface that endures heavy duty activities, we have
designed a circular, curved tag (Figure 2). The tag adapts to the
thorax and displays a ring divided in 12 segments, each of which
holds one bit of information. The center of the tag is divided
into two semicircular segments, which are used to determine
the tag’s orientation and to align the decoder properly. A fully
functioning, queen-right observation hive can be populated by
approximately 2000 worker bees. Twelve bits of information are
sufficient to encode the identity of a maximum of 4096 animals.
In case fewer animals are used, a coding scheme that allows for
error detection or correction can be employed. If for example
a single bit is spare, it could be used as a parity bit. If three
or more bits are spare, Huffman coding (Huffman, 1952) can
be employed. The tags are printed on backlit polyester film
by a commercial print shop and manually punched out. This
procedure bends the tags for optimal fit to the bees’ thorax.

Bee Marking Procedure
Bees are marked prior to the start of the video recording with
the help of coworkers over a period of several hours. We
use two hives: one standard observation hive containing the
unmarked colony and one modified observation hive to which
the individuals are transferred once they have been marked. We
extract approximately 50 bees from the original hive at a time
into a tubular container with a vacuum cleaner and distribute
single bees to marking personnel. First, hair is removed from
the thorax, then shellac is dispersed onto it, and finally the tag
is attached with the white semi-circle rotated toward the anterior.
Tagged bees are then put in a small container. Once all bees of that
batch have been tagged, the bees are poured to the hive entrance
hole (which now connects to the new hive). This procedure is
repeated with all remaining, untagged bees from the original hive.
The queen is handled differently. After tagging, she is introduced
to the hive through a separate entrance. The tags have been
tested previously. Almost all bees survive the tagging procedure
and behave normally with the tags. Only a small fraction (<7%)
of the tags wears off before the animals reach their natural life
expectancy (6–7 weeks). By the time of writing this article, after
more than 8 months, the queen’s tag was still properly attached.

Cameras and Camera Modifications
Four high-resolution cameras (PointGrey Flea3) are employed
to observe the surface of the comb, two per side. They feature
a 1/2.5′′ CMOS color sensor with a resolution of 12 megapixels
(4000 × 3000 pixels) and are connected to the central recording
computer via USB3. We use inexpensive 12mm lenses (RICOH
FL-CC1214A-2M). Two additional cameras (PS3Eye webcams)
are connected to a second personal computer. Each of these
cameras observes the full comb side at 320 × 240 pixels
resolution. The PS3Eye cameras are low cost (10 $) and deliver
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FIGURE 2 | (A) The circular matrix design exhibits 15 regions used to represent a unique binary code (cells 0–11), to encode the tag’s orientation (cells 12 and 13) and

produce a clear contrast with the bee thorax (ring 14). (B) Tagged bees inside the hive.

uncompressed images at 120 fps using a modified third party
driver (“CL Eye”). Both camera types are shipped with an infrared
block filter glass. We replaced the one of the Flea3 with a cold
light mirror with the same refraction index (bk Interferenzoptik
bk-HT-45-B). This modification renders the Flea3 an inexpensive
alternative to similar IR-sensitive cameras. To optimize the
performance of the PS3Eye, not only the IR block filter was
removed, but also the original lens was replaced with an 8mm
IR corrected Megapixel lens (Lensagon BM8018), in order to fit
the new lens to the camera a customized 3D printed lens mount
was produced.

Software
The implemented functionalities of the BeesBook system are
divided into three software suites that reflect the experimental
chronology: (I) data acquisition with online dance detection, (II)
offline image processing on a supercomputer, and (III) data post
processing.

Data Acquisition and Data Hierarchy

One personal computer (PC1) is used for image acquisition
and transfer. Another computer (PC2) is running the online
dance detection algorithm. The acquisition computer queries
3.5 frames per second from each high-res camera and stores
each image using JPEG compression (95% quality). A second
program on PC1 bundles images to packages of 512 MB size
(256 images per archive) and transfers them to the Zuse Institute
Berlin (ZIB), where the HLRN (North German Supercomputing
Alliance) provides sufficient storage space. A subset of the data,
currently 6 stripes of 10min duration (distributed over the day),
is stored on a local storage device (QNAP NAS). PC2 analyzes
the images of the PS3Eye webcams in real-time and stores frame
coordinates and 20 × 20 pixel image regions for each detected
waggle run. These data are mirrored onto the NAS completely.
The detection method is described in Section Automatic Waggle
Dance Detection and Decoding. Possible errors of any of the
above programs are exported to a log file and signaled to the
administrator via email. In case a program crashes or freezes
(which renders them unable to report errors themselves), so-
called watchdog programs are used for the automatic recognition
of critical events and the termination of unresponsive processes.
These events are rare but might lead to substantial data loss.

We organize all data in a hierarchy of data levels. The raw
image recordings represent the lowest, most fundamental level.
The computer vision software searches and decodes circulatrix
tags in these image recordings (see Section Image Analysis)
and creates the next level of data, the bee detections. This
data, in turn, serves as input for the tracking software that
identifies corresponding detections in time (see Section Tracking
and Temporal ID Filter). The trajectory level is then analyzed
primarily by behavior recognition algorithms which create the
upmost data level representing the focal behaviors. Except the
raw image level, all other data levels are efficiently organized in
a spatial database (see Section Database Design).

Image Analysis

We have developed computer vision algorithms to locate and
to decode the circulatrix tags in high-res images. The image
processing software, from here on called “pipeline,” is organized
in five layers, each of which processes the results of the previous
one.

(1) Preprocessor: The first layer processes the original camera
frame. Throughout the experiment, lighting conditions
were optimized. To normalize the brightness in the darker
recordings shot in the beginning of the experiment,
histogram equalization is applied. Some areas on the comb
exhibit empty cells whose sharp edges would impair the
performance of later stages. We have designed a spatial
frequency filter to attenuate comb cell edges. Full honey cells
are very bright in the image and also lead to false positives in
the next stage. A special image heuristic recognizes patches
of honey cells which are then ignored downstream.

(2) Tag localization: This layer detects image regions that
contain strong edges and therefore likely exhibit circulatrix
tags. Those are identified by detecting a multitude of strong
edges in close proximity. This definition applies to other
objects in the image as well but reduces the amount of pixels
that enter downstream stages drastically. Initially, the first
derivative of the image is computed using a Sobel filter. The
result is binarized (only pixels on strong edges are retained),
eroded and dilated (Serra, 1986) to remove noise and to
join adjacent patches. Large binary patches are reported as
regions of interest to the next layer.
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(3) Ellipse fitting: This layer detects elliptic contours in the
regions of interest. We use a probabilistic Hough transform
(Xie and Ji, 2002) to find likely ellipse configurations defined
by a high amount of edge pixels agreeing with an ellipse
equation for a range of plausible parameter values (we
exclude heavily rotated tags since those are likely to be
decoded incorrectly).

(4) Grid fitting: For each ellipse that has been detected, this layer
fits a three-dimensional model (“Grid”) of the circulatrix tag
to the underlying image. When rotated in space, the contour
of the circular tag becomes an ellipse in the camera image.
There are two possible 3D rotations of a circular contour that
project to a given ellipse in the image. We identify the two
sets of rotation parameters from the ellipse parameters and
apply a gradient ascent from the two starting configurations.
The quality of the fit is expressed by a scoring function that
evaluates a) the homogeneity of the pixel brightness in each
cell (Fisher, 1936) and b) thematch of the outer Grid contour
to the image edges. The three best Grid configurations are
reported to the decoder layer.

(5) Decoding: Each ring segment of the grid represents either a
“0” (black) or a “1” (white). The sequence of zeros and ones
constitutes the unique identifier of the bee. Local contrast
enhancement is applied to account for light intensity
gradients on the circulatrix tag. The decoder computes a
statistic of the brightness of all underlying pixels for each ring
segment to classify the cells to either of the two classes and
reports the number as the final result.

Each layer of the image processing pipeline extracts more
information from an initial detection (see Figure 3). For every
pipeline layer a confidence value is calculated. Only if the
confidence value of the current layer exceeds a certain reliability
threshold, its result is reported to the following stage. In layer
3, for example, this confidence value correspond to the number
of edge pixels that accord with an ellipse equation. The ellipses
detected in layer 3 are assumed to identify a tag and are therefore
reported as the most basic part of any detection. In layer 4,
if more than one grid can be matched to the image with a
sufficient confidence value, the respective grid configuration

(center coordinate, scale and three rotation angles) is added to
a list and the best three configurations are reported to the next
layer. Similarly, the last layer reports up to three IDs for every grid
configuration, yielding up to 9 different output configurations.

The pipeline has various parameters such as thresholds for the
edge detection or the number of iterations of the morphological
operations (48 parameters in total). Manually determining the
optimal combination of parameters can be very time consuming
and might result in a suboptimal performance. We use a global
optimization library (Martinez-Cantin, 2014) to automatically
select the best set of parameters.

Highly parallelized image analysis on supercomputer
A prototypical data acquisition over 60 days would produce
a total of four cameras 3.5/s·60 s/min·60min/h·24 h/d·60 d =

72.576.000 images. The image processing on the supercomputer
reduces the raw image data (∼170 Terabytes), corresponding to
the lowest data level, to a few hundred Gigabytes of second-
level data. If the analysis of a single image would take 1 s,
the complete analysis would take almost 3 years. To speed up
this process, we use computing and storage resources granted
by the North German Supercomputing Alliance (HLRN). The
image data are stored on the supercomputer’s file system, which
circumvents additional data transfers. The HLRN houses a Cray
XC30 supercomputer, which features 1872 compute nodes with
24 CPU cores each (this yields a total of 44928 processors).
The system has 117 TiB of RAM and 4.2 Petabyte of hard disk
space, organized as RAID 6. The image analysis is partitioned
into jobs that each run on a single image at a time. The degree
of parallelism can vary from a few hundred to a few thousand
jobs as determined by the Cray’s scheduler (a program that
automatically selects jobs from a list of ready jobs). Some of
the supercomputer’s components are still in development and
might prevent an arbitrary job from finishing its analysis. Since
it is impossible to check manually if 72 million result files have
been written to disk, we have implemented a recovery system
that automatically detects and recovers from failures in the job
submission and execution phase. The results of the decoding
process are stored in a.csv file for each image.

FIGURE 3 | Intermediate processing stages for tag detection and decoding. (A) Histogram equalization and Sobel edge detection. (B) Edge binarization

and morphological operations in the Localizer layer. Only regions of interest (marked with a blue rectangle) are processed in the next layer. (C) Ellipse fit using

probabilistic Hough transform. (D) 3D Grid model and fit to underlying image. (E) Result: The sequence of 0’s and 1’s is determined in the Decoder layer, based

on the fit of the tag model. For a subset of the image data we have created a reference “ground truth” that is used to validate the output of the pipeline.
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Post-processing

The image analysis is a data reduction step which creates the
basic data level for all further analyses. The tracking algorithm
(Section Tracking and Temporal ID Filter) creates the trajectory
data level which links detections over time. Both data levels
are used for detecting focal behaviors (dance, dance-following
and trophallaxis detection, see Section Identification of Dancers,
Followers, and Trophallaxis).

Database design
Due to performance reasons, all post-processing steps are
designed to query data from a specialized database. The detection
datasets produced by the pipeline are uploaded to a PostgreSQL
database which holds all available information as described
in Post-processing. The detections are organized in the form
of a table with each row representing a detection. We have
recorded 65million images, each of them containing up to several
hundreds of tags. Therefore, several billions of detections have
to be stored. We have implemented interface functions into the
database to accelerate interaction with the data. If, for example,
we would like to know all neighboring bees of a focal bee, this
query is optimized on the database level. The data has to be
processed before uploaded to the database. To this time, the
data processing and upload process takes approximately 90%
of the recording period’s duration but runs in parallel to the
image processing. The analyses described in the following query
data from the database, process it on local PCs and enrich
particular entries in the database with additional information,
such as corrected IDs, associations to trajectories or behavior
labels.

Tracking and temporal ID filter
Keeping track of individuals through consecutive frames is a
crucial procedure because it creates motion paths that may be
required for behavior analyses. Under optimal circumstances,
tracking an individual and generating its path is as simple as
connecting consecutive detections of the same ID. However, the
decoder layer might extract erroneous IDs for a variety of reasons
(see discussion). In this case, merely connecting successive
appearances of the same ID would yield erroneous tracks. To
address this problem we have developed tracking software which
links consecutive detections through time by selecting the best
match among a number of candidate detections. The tracking
process pursues two goals: the generation of reliable motion paths
of single individuals and the correction of misread IDs.

Our solution to this problem is a probabilistic approach. For
an arbitrary track T, containing consecutive detections up to time
t, we maintain a probability distribution Pt reflecting all previous
ID measurements. All detections in frame t + 1 within a certain
range are evaluated following a criterion that comprises:

• the Euclidian distance of the track’s last detection to a
candidate detection

• a distance measure of Pt and the putative next detection’s ID
• a convergence criterion for Pt
• an image processing error estimate representing the likelihood

of misread bits in the ID

The information contained in the new candidate detection is
integrated into the probability distribution Pt via a Markov
process: Pt+1 = Pt ∗ p, where p is a probability distribution
estimated from the detection at time t + 1. The probability of
misreading a bit is influenced by neighboring bits. For example,
due to image blur, it might be more likely to read a single
white bit as a black one when it is enclosed by two black bits.
We have estimated the probability of all possible errors for all
combinations of three consecutive bits (using manually tracked
ground truth). After integrating the a-priori information p, Pt
represents the current likelihood for each bit to have a certain
value. A convergence value can be computed over Pt to express
our confidence in the current ID estimate. In timestep t + 1, we
assign each detection to the most likely path Tj using a greedy
selection scheme (the decision to assign a detection to a path
is immutable even if future information renders it suboptimal).
If no match for a single detection can be found with sufficient
confidence, a new path with a new probability distribution is
initialized.

The tracking must handle two problematic scenarios. (1)
Newly appearing detections and (2) detections that disappear.

In the former case, no history of detections can be used to
determine the most probable ID. The probability distribution
has not yet converged (see Figure 4 Top). If a track cannot be
elongated enough, it stays anonymous.

The greedy assignment of all detections to a path can only
be guaranteed to be correct when no detections are missing. In
this case the tracker might erroneously assign a detection in the
vicinity of the actual tag. This is problematic for quickly moving
bees since the motion blur increases the likelihood of a missing
detection (see discussion). If we were not able to find a likely
match, we add placeholder detections to the path. After exceeding
the certain number of consecutive placeholder detections the
path sequence is finalized (no further detections can be added).

Identification of dancers, followers, and trophallaxis
Due to motion blur and the low sampling frequency, the
IDs of waggle dancing bees are hard to determine from the
high-res image data. Therefore, we use an automatic waggle
dance detection algorithm that runs in parallel with the image
acquisition, detecting the location of the dancer in real-time
(see Section Automatic Waggle Dance Detection and Decoding
for details). However, due to low sensor resolution, it is not
possible to extract the bee’s ID in those recordings. Another post-
processing step is performed to find the ID of the respective
waggle dancers in the previously described high-resolution
dataset. Apart from waggling, a dancer exhibits other features
that, in combination with the dance detection data, we can use
to identify her with high accuracy. First, dancers alternatingly
perform waggle and return runs. Only the former is likely to
be missing in the dataset. This “on-off” pattern is reflected in
the trajectories. We look for those patterns and quantify their
periodicity and regularity (all return and waggle runs should
have similar length, respectively). Second, the start and end
positions of the waggle run often exhibit readable tags. The dance
detection results in a location on the comb, the dance angle and
a duration which - together with an average forward motion
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FIGURE 4 | The distribution Pt represents the likelihood for each individual bit to be of value “1.” Top: A single observation yields a distribution with

significant uncertainty (see text for details). The correct ID for the underlying image is (000000000101). However, the most likely ID according to the initial distribution is

(000101000100), i.e., the first observation exhibits three wrong bits. Bottom: After five observations the distribution has mostly converged and the true ID can be

extracted with high confidence.

in the waggle phase - define an axis that dancers align to. If
detections close to start and end point of a waggle run agree
in orientation and ID they are collected to the candidate set. A
third feature we test for is the turn of the animal of almost 360◦

in the return runs. For a single waggle run, there might be a
few detections that exhibit those features sufficiently. Over many
waggle runs the ID of the dancer can be determined with high
accuracy. Followers are easier to find. The criterion animals have
to satisfy is (1) proximity to the dancer and (2) the body oriented
toward the dance position. Animals that engage in trophallaxis
can be recognized as well. Therefore, four consecutive, non-
moving detections in head-to-head configuration are sought and
reported.

Automatic Waggle Dance Detection and
Decoding
The waggle motion creates motion blur in the high-resolution
recordings but can be detected in high-speed video. The dancer
swings her body laterally at a frequency of around 13Hz. A
pixel in the image corresponds to a small area on the comb
surface. If this point measurement over time intersects with a
waggle dancing bee we obtain samples that reflect her surface
texture andmotion dynamics combined. Since bees contrast with
the background, we observe brightness changes with spectral
components of either the waggle frequency or harmonics. At

the core, our automatic waggle dance detector evaluates how
well, for a given pixel coordinate, the temporal variation of its
brightness matches this “waggle frequency.” The camera observes
the full comb with an image resolution of 320 × 240 pixels. This
corresponds to a resolution of∼1mm/pixel, or approximately 60
pixels/bee (Figure 5). For each of the 320 × 240 = 76800 pixel
locations the most recent 32 values of their temporal evolution
are stored in a ring buffer. When a new frame arrives, the oldest
pixel value is overwritten. We then calculate a statistical measure
of how well the pixel brightness evolution matches the waggle
frequency by correlating the input signal with a number of cosine
and sine signals with different target frequencies. Neighboring
locations exhibiting that property are then clustered in a second
step. If the detection is sustained over time, the image location
and the respective sub-images (an image sequence of 20 × 20
pixels size) are stored to disk. It is possible to extract waggle
duration and waggle orientation as well. The former is identified
by the duration of consecutive detections; the orientation is
defined by the first principal component (Hotelling, 1933) of the
image locations of all consecutive detections. The software can
be used either in conjunction with the high-resolution tracking
system or as a stand-alone tool to anonymously detect and
decode dances. Image coordinates as reported by the software
can automatically be rectified with the help of a user defined
area whose dimensions are known. We describe the evaluation

Frontiers in Ecology and Evolution | www.frontiersin.org 7 September 2015 | Volume 3 | Article 103

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Wario et al. Honeybee tracking and dance decoding

FIGURE 5 | A screenshot of the waggle detection camera stream.

(A) The green rectangle demarcates the comb borders. Note the low image

resolution. Waggle dance detections are reported with their image and comb

frame coordinates and a (B) sub-image of 20× 20 pixels size (shown right).

procedure for this system in Section Dataset 2: Dance Detection
and Decoding and report the respective results in Section Dance
Detection and Decoding.

Experimental Validation and Results

Datasets
Two separate honeybee colonies were used to experimentally
validate the function of the described system and system
components. Therefore, two datasets were recorded.

Dataset 1: Tag Detection and Decoding

We have continuously recorded all animals of a small colony
(<2000 marked individuals) from July 24th until September 25th
2014 (63 full days). Most bees were marked 1 day prior to the
start of the recording. During the first week, young bees were
tagged and introduced to the experimental hive on the day they
emerged from a separate, incubated brood comb kept under
standard conditions at 34.5◦C (Crailsheim et al., 2013). High-
resolution images were transferred to the remote storage location.
One of the four cameras failed 1 day prior to the experiments.
Unfortunately, it took the manufacturer 3 weeks to replace the
camera. Thus, one quarter of the comb could not be observed
and around six million images are missing from the expected
number of 72 million. In the beginning of the experiment we
optimized parameters such as illumination, camera position and
camera viewing angles. No data was recorded in the maintenance
periods (∼4 million images). This yielded 65 million recorded
images in total. Approximately 6% of the total data was mirrored
locally. Over the entire period the dance detection software
observed both sides of the comb and saved detections to disk.
These data were mirrored as well. Results of an analysis of
dataset 1 are reported in Section Tag Detection and Decoding.
The validation of this dataset spans different data levels. The
image analysis recognizes and decodes the circulatrix tags and
stores separate detections per timestep. To validate this software
component we manually fitted a three-dimensional model of a
tag in a number of image recordings we randomly picked from
dataset 1. This “ground truth” serves as a reference (for location,
orientation and identity). Each software layer (see Section Image

Analysis) is validated separately by calculating two common
performance measures, recall and precision. Those reflect the
proportion of the reference data that were correctly identified,
and the proportion of the reported detections that are correct,
respectively. The tracking software, i.e., the component that
connects corresponding detections through time, is validated
on a different ground truth reference. Fifty animals were traced
manually with custom software by selecting the correct detection
(as produced by the pipeline) with the mouse pointer. The
validation analysis investigates the correctness of the path and the
ID obtained from consecutive measurements over time.

Dataset 2: Dance Detection and Decoding

A second observation hive (two frames, located at 52.457075,
13.296055) was used to detect and decode dances in an unmarked
colony. The recording period spanned 57 days (July 04th to
September 1st 2014). We employed two cameras to observe the
lower comb from both sides. Bees were trained over 2 days to
a feeder that was moved in an arc around the hive. The feeder
was first moved north (115 m) and then moved east along a
street perpendicular to the initial flight route until a distance
of 180m was reached. The feeder was then moved along a
small road decreasing distance to the hive down to 80m (E-
SE direction). From there the feeder was moved to its final
destination (52.455563, 13.298462) 235 m, 135◦ east from north,
as seen from the hive.

We created a reference dataset to validate the dance detection
and decoding software by randomly selecting waggle detections
from the results set after the recording period. The detections
were visualized in a graphical user interface and a human
observer classified the sequence of images to either correctly
contain a dance or not. By dragging a line over the image the
bee’s orientation was manually approximated. Since we selected
test data post-hoc from the results only waggle detections were
reviewed. Thus, it was not possible to gauge how many dances
were missed (false negative rate) or to manually define the
correct dance duration (the software might have detected the
waggle too late and stored only a fraction of the complete
image sequence). We therefore ran the software on a set of
video recordings containing waggle dances to the same feeder
recorded in 2008. We reduced the image resolution to match the
recording resolution of the PS3Eye. The frame rate was 100Hz
in both sources. Tracking data was available for this dataset
(Landgraf et al., 2011) which was used to measure false negative
rate and to evaluate dance duration and detection position
accuracy.

The automatically extracted dance parameters in the training
period were translated to field locations. To this end, dance
duration and orientation were averaged over consecutive
detections. Thus, the average waggle run was projected
to the field with respect to the azimuth at the time of
the first waggle run. Dances with less than four waggle
detections or waggle durations smaller than 200ms were
discarded (see discussion). The obtained field locations were
mapped using Matlab and cartographical material provided by
OpenStreetMap.
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Results
Tag Detection and Decoding

Runtime and performance
We have invested a significant amount of time in the
optimization of the tag decoding software with respect to the
runtime. Still, on a single processor, the image analysis takes
approximately 500 times longer than real-time (86 years for the
dataset at hand). The image analysis run on the supercomputer
takes only 10% of the original recording time (average numbers
of processors used: 1000).

We have evaluated the results of the tag detection and
decoding software with respect tomanually defined ground truth.
All layers yield high rates in recall (howmuch of the ground truth
could correctly be identified) and precision (how much of the
software output is actually covered by ground truth data).

Recall (%) Precision (%)

Localizer 90.60 84.13

Ellipse fitter 88.03 97.17

Grid fitter 88.03 89.32

Decoder 65.98/94.07

(0/< 3 hamming distance)

Up to 88% of the tags can be recognized. Only 65% of
the detections can be decoded correctly for a given image
recording. However, 94% of the decoded IDs have less than three
misidentified bits. It is important to note that those detections
are still valuable as the true ID can be retrieved via probabilistic
filtering (see Section Tracking and Temporal ID Filter). As an
additional way to measure the decoder’s accuracy, we checked the
number of misread bits on the decoded IDs. This metric known
as Hamming distance (Hamming, 1950) has an average value
of 0.74.

Tracking and dancer identification
Wemanually tracked 50 bees over a time period of 240 frames by
mouse-clicking the detection that corresponds to the focal bee.
The performance of the tracking algorithm was then evaluated
by comparing its output to the ground truth paths.

There are two functionalities of the tracking algorithm
that were validated. The core component of the tracking
is the probabilistic filter we employ to integrate consecutive
measurements to robustly obtain the true ID of the animal
(see Section Tracking and Temporal ID Filter). The filter has
to be robust against two types of errors. First, incorrect ID
decodings coming from the pipeline and second, incorrect
detection assignments in the tracking process. The former error
has been quantified and is used in the filter (see Figure 4). The
latter introduces incorrect positions and IDs to the path. Since
this might not be completely avoidable, this error should not
affect the outcome of the ID filter process. To investigate how
robust our filter algorithm is, we introduced incorrect IDs to
paths of a manually tracked animal. The paths were unfiltered,
i.e., they exhibited IDs that were pairwise similar but not equal
(see Section on decoder accuracy Runtime and Performance).
With 10% incorrect IDs along the path, the algorithm was able to

recover the correct ID after approximately 50 observations. Even
when one third of the IDs are erroneous the correct ID can be
obtained in most cases after approximately 100 observations (see
Figure 6 for details).

To assess the quality of the paths generated by the algorithm
we compared how many detections along the ground truth
path were correctly assigned to the same path. In the tracking
algorithm a minimum value for the similarity of new ID and
time-filtered ID along the current path has to be set. This
threshold might be chosen such that only very similar detections
are added. This would produce piecewise trajectories, each with
high precision. By relaxing the threshold the resulting trajectories
are longer but the probability that incorrect detections have been
added is increased. Using a manually chosen threshold, we found
that most bees (>90%) can be tracked with high precision (>99%
of correctly assigned detections, see Figure 7). Note that results
may vary significantly in quality depending on the activity of the
focal animal (see Discussion).

Dance Detection and Decoding

Detection performance
For validation, 1000 random samples were drawn from 220127
waggle run detections. Seventy-nine percent of the manually
reviewed detections were dances (false positive rate is 21%). The
same software produced significantly better results on high-speed
videos of dances. Almost all dances could be detected (recall
96.4%) with low numbers of false detections (precision: 89.5%).
This difference was likely caused by the inferior optics of the
webcams.

The positional error is in both planar dimensions almost zero
(mean: 0.02mm with std: 1.7mm).

Decoder performance
The proposed method overestimates dance duration by an
average of 98ms (std: 139ms). The angular error of single waggle
run detections is in average 1.7◦ and has a standard deviation
of 22◦. By averaging over a minimum of four waggle runs
the error standard deviation decreases significantly (SD: 12◦).
Note that short dances due to the nature of the method are
reported with higher angular error and influence the overall
error. Discarding short waggle runs (<200ms), the angular
error’s standard deviation is 5◦.

Dance maps
To exemplify the use cases of the waggle dance detection we
have mapped all dances of foragers in a second observation hive.
Figure 8 shows the endpoints of a vector obtained from averaging
the duration and angle of a minimum of four consecutive
waggle runs and projecting them to the field using the sun’s
Azimuth. On the test day, we detected 471 dances with an
average of 6.75 waggle runs per dance. The average dance angle
matches the expected angle derived from the feeder location
almost exactly (134 and 136◦, respectively). Still, dances to
other directions were detected. There is notable spread around
the hive, which in close range is more likely to arise from
incorrect detections, since the method of extracting the dance
angle is error prone in short waggle runs. It is not unlikely,
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FIGURE 6 | The mechanism is highly robust against erroneous assignments. Even when 30% of the assigned detections are originating from different bees, it’s

possible to extract the correct ID with a high probability after a sufficient amount of observations.

however, that bees have foraged not exclusively on the artificial
feeder. The spread around the feeder location is notable and
matches the angular standard deviation of previously reported
dances to the same location (SD: 28◦, see Landgraf et al.,
2011).

Discussion

Wedescribed an automatic observation systemwith its respective
hardware and software components for the automatic detection,
identification and tracking of marked honeybees. The system
can automatically detect and decode honeybee communication
dances and related behaviors such as dance-following and
trophallaxis. The BeesBook system is unique in its spatial and
temporal resolution and its capacity to reflect the complex
interplay of a few thousand individuals within the hive over large
time windows.

We see potential use of our automation in many aspects of
waggle dance research. Basic biological investigations have in
the past been limited in scope because it was impossible to
reliably track enough individual workers for long enough to
create a holistic understanding of worker-worker interactions
or to build up a forager profile. For example, it would be
fascinating to have knowledge of foraging locations that a dancer
previously communicated and to consider this information
if the dancer then becomes a follower. Given that foragers
relate private information (e.g., memory of a resource) to

social information (Grüter et al., 2008, 2013) the BeesBook
system can help to investigate this relationship. Another
useful application of the proposed system would be applied
investigations. A dance indicates a positive assessment and
represents an integrated signal that the forage or nestsite
is valuable (Seeley, 1994, 2010; Seeley and Buhrman, 2001;
Couvillon et al., 2014a). Decoding and plotting many dances
from an area can indicate locations of high or low interest and
may even help land managers evaluate the landscape for bee
sustainability and nature conservation (Couvillon et al., 2014b).
Additionally, because the honey bees are “sampling” from the
environment, their dances could also help with environmental
risk assessment, as the products of the forage could concurrently
be tested for chemicals. Being able to decode large numbers
of dances could help pollination services, as beekeepers would
possess very quickly an idea of when the bees are visiting a
target crop.

Besides dance communication, the BeesBook system can
facilitate various scientific investigations in wider contexts, such
as network analysis, self-organization and the emergence of
specific colony behavior. Tracking large numbers of individuals
over long periods of time might reveal detailed characteristics
of the network dynamics of disease spread (Naug, 2008) and
collective anti-pathogen defenses (Theis et al., 2015). The
distribution of pesticides in the hive or the effect of various
environmental stress factors on the colony behavior and the
intriguing field of division of labor (Robinson, 1992) could
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FIGURE 7 | Blue: The distance of Pt to the expected ground truth distribution over the number of observations. Red: The confidence value of Pt.

be observed in unprecedented detail. Network studies (Croft
et al., 2008) might be applied to honeybees as well as research
investigating the effect of individual differences (Réale et al.,
2007) on the group behavior.

We believe the BeesBook datasets have great potential to foster
a pervasive understanding of societies in general. We support
interdisciplinary research and plan to grant public access to our
data so that the members of the scientific community can analyze
it in the context of their respective areas of interest.

Automation might enable many high impact applications, but
also entails significant challenges, costs and peculiarities
associated with the acquisition, storage, analysis and
interpretation of “big” data. The efforts described in this
paper comprise the recording and analysis of only one rather
small colony. Althoughmemory and computational costs decline
exponentially and the aforementioned requirements will become
affordable soon, one still might have to carefully balance reasons
for using such a system.

The size of the various datasets, common network bandwidths
and/or relatively low local storage capacities render the manual
review of recordings and tracks a very time consuming task.
Thus, most of the results obtained by either the computer vision
or the post-processing software can only be trusted on the
statistical level, as determined under average conditions.

While it is impractical to grant access to our raw data (due to
data volume), it is muchmore feasible to share the post-processed
data levels. This, however, would require high confidence in the
correctness of the data, since there would be no way of validating

the data without the image recordings. It’s noteworthy that
accurately validating the performance of the individual system
components itself is a significant challenge. As demonstrated,
the performance of the system depends on multiple factors. For
example, there are days a colony may be calm, with only a
small proportion of quickly moving bees. The system would be
able to detect and decode most bees with high accuracy. Under
certain circumstances, however, the same colony can exhibit an
increased activity level with almost all bees moving very fast.
The quality of the decodings will be affected significantly; the
dance detection system might produce more false alarms. Other
factors such as colony size play a role as well (yielding more or
less occlusions). The colony state must therefore be registered
and a mapping to an expected system quality level needs to
be devised in order to be able to interpret and judge the data
correctly.

The data levels generated by the BeesBook system are still
incomplete in the proportion of correctly tracked and identified
bees, but they constitute the most detailed and extensive dataset
available. In order to improve accuracy and reliability, we
currently enhance some of its components.

In the forthcoming season we will sustain the proportion of
marked bees during the whole season by replacing capped brood
combs with empty combs periodically every 3 weeks. The brood
will then be incubated and newly emerging bees will be tagged
and re-introduced to the hive.

The hardware components will be significantly improved. In
the upcoming season we use a bigger room, what makes possible
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FIGURE 8 | Dance detections (waggle duration and direction) were averaged over at least four waggle runs and translated to a field location with

respect to the sun’s Azimuth. A linear mapping was used to convert waggle duration to metric distance Each dot represents a waggle dance with at least four

waggle runs. The hive is depicted with a white triangle. The dashed line represents the average dance direction.

using better optics (lenses with larger focal length and a lower
degree of peripheral blur). We have built a bigger scaffold with
the capacity for more light sources. Hence, we will use lower
exposure durations to minimize motion blur, which was the
prominent cause for missing or erroneous detections.

We have identified two software components whose
improvement will have a positive impact on the overall system
performance. We currently test a replacement for the localizer
layer based on deep convolutional networks (Krizhevsky
et al., 2012) that reduces the number of false positives
significantly. This enables the tracking the create trajectories
with less gaps, which in turn renders the ID filter more
successful.

The tracking software currently uses a greedy selection
scheme. For every timestep detections are added to the path,
irrespective of future information that might render this decision
suboptimal. In the future we plan using a non-greedy selection
scheme: In each time step up to three detections (possible
continuations of the path) will be collected. All three are then
traced in future frames and, in the worst case, they too are
elongated with three potential candidates each (yielding nine
possible tracks). In each time step, a fourth hypothesis will be
incorporated, representing the possibility that the tag could not
be detected. This creates a detection graph that might contain

cycles (a detection in time t has at least two possible paths ending
in the same location at time t+ n, with n> 1). These cyclic graphs
are finally pruned by deleting less probable paths (with regard to
its accumulated Pt). The tracking is computationally expensive.
The more layers in time the graph is allowed to have, the more
numerous the possibilities and the longer the computation but
also the more precise the ID assignment and the tracking will
become.

While the BeesBook components already produce valuable
data, convenience functions to access, integrate, compare and
test the data are still in development. To exemplify the power of
the data integration we have tracked a randomly selected dancer
and have manually combined the available data as depicted in
Figure 9. A video that shows raw image recordings zoomed in on
the focal animal can be found in the Supplementary Information
(Video 1).

In the upcoming months we will finish the image analysis
and complete the data analysis with respect to social structures
in the dance context by the end of the year. In the
summer months we will record a new dataset which will be
analyzed over the winter months. We hope, by that time,
we will be able to grant public access to the most complete
honeybee colony motion and behavior dataset, the virtual
hive.
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FIGURE 9 | Positions of dancer “3007” (red), follower “2641” (green), and food receiver “3464” (blue) over time. Detected behaviors are depicted as colored

lines along the time axis. The dancer was initially detected at the comb periphery, directly moves to her future dance location and engages in trophallaxis, recognizable

by the blue and red parallels around t = 50 s. The food receiver stays in close contact with the dancer only shortly and leaves the dance floor. She finds another food

receiver at t = 150 (again, the straight blue line segment reflects her motionlessness). The bee “2641” meets the dancer around the time of the first trophallaxis and

stays in her vicinity for about a minute until she starts following. The follower leaves the dance comb (a) before the dancer does (b). Afterwards, both bees were not

detected in the hive for more than 5min. Therefore, we assume both bees left the hive.
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