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Evolution and function of fossoriality
in the Carnivora: implications for
group-living
Michael J. Noonan, Chris Newman, Christina D. Buesching and David W. Macdonald *

Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney, UK

The societies of group-living carnivores that neither hunt nor interact cooperatively may

arise due to ecological drivers and/or constraints. In this study we evaluate whether

group-living may be intrinsically associated with fossoriality; a link that is well supported

in other taxa, but hitherto under-evaluated in the Carnivora. We make two over-arching

predictions: (i) that fossoriality will be associated with carnivoran sociality; and (ii) that this

association will be most evident in those species making extended use of subterranean

dens. From a meta-analysis of key behavioral, ecological, ontological, and trophic traits,

we demonstrate that three quarters of carnivore species exhibit some reliance on

underground dens. Congruence between life-history traits and metrics of fossoriality

evidenced that: (1) there are phylogenetic, and morphological constraints on wholly

fossorial life-histories; (2) fossoriality correlated positively with the extent of offspring

altriciality, linked to the use of natal dens; (3) burrow use increased with latitude; and (4)

insectivorous carnivores were more fossorial than predatory carnivores. Corroborating

work in the Rodentia, fossorial traits associated strongly with carnivoran group-living

tendencies, where species utilizing subterranean natal dens are 2.5 times more likely

to form groups than those that do not. Furthermore, using comparative analyses,

we evidence support for an evolutionary relationship between diet, fossoriality, and

sociality. We propose that fossorial dens act as a safe haven, promoting fitness benefits,

territorial inheritance and cooperative breeding. We conclude that, among smaller

(<15 kg) den-using carnivores, and especially for omnivorous/insectivorous species

for which food resource dispersion is favorable, continued cohabitation at natal dens

can promote cohabitation among adults; that is, philopatric benefits leading to (not

necessarily cooperative) spatial groups.

Keywords: burrowing ecology, subterranean mammals, socio-ecology, sociality, philopatry, resource dispersion

hypothesis

Introduction

Understanding the factors that enable conspecifics to congregate, or establish cooperative
societies is central to socio-ecology (Alexander, 1974; Smith et al., 2012; Macdonald and
Johnson, 2015). Axiomatically, group-living is theorized to evolve when the fitness benefits
of joining/remaining in a (natal) group outweigh the costs of sharing key resources (e.g.,
Alexander, 1974; Emlen, 1982; von Schantz, 1984; Bacon et al., 1991; Koenig et al., 1992),
and/or when there are strong ecological constraints on reproducing independently of the group
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(Lindström, 1986; Hatchwell and Komdeur, 2000; Kokko and
Ekman, 2002). Among many of the Carnivora, the benefits
of group-living manifest through enhanced hunting ability,
where packing power facilitates endurance hunting (e.g., gray
wolves, Canis lupus: MacNulty et al., 2014), or strategic kills
(e.g., lions, Panthera leo: Mosser and Packer, 2009). There are,
however, numerous group-living carnivores that do not hunt,
or interact co-operatively (reviewed in Gittleman, 1989; Creel
and Macdonald, 1995; Macdonald et al., 2004a; Macdonald and
Johnson, 2015).

We observe that among gregarious, yet broadly non-
cooperative carnivore species, many tend to have a substantial
reliance on subterranean dens. There are two provisos to
this observation: (i) these carnivores tend to be small;
and (ii) the inverse is not true (i.e., not all small, fossorial
carnivores are group-living). Understanding how these
factors relate to group-living requires deeper enquiry into
carnivoran fossoriality (L. to dig) and associated life-history
traits.

In this study we examine two over-arching predictions: (i)
that fossoriality will associate with carnivoran sociality; and (ii)
that this association will be most evident in those carnivores with
extended use of subterranean dens. Our primary set of questions
thus pertain to life-history traits associated with fossoriality;
particularly how morphological and energetic traits influence
both digging ability and/or reliance upon the subterranean
ecotope. For example, burrow size, and the cost of burrowing
scale allometrically, depending on substrate cohesion (McNab,
1979; Vleck, 1981; White, 2005), suggesting the action of
body size constraints on carnivoran fossoriality. Furthermore,
although interlinked with body-size, there is support for an
evolutionary relationship between longevity and fossoriality
across a wide range of taxa (Healy et al., 2014; Williams
and Shattuck, 2015), a factor of potential influence in the
Carnivora. In addition, carnivoran young are born along a
continuum of altriciality to precociality (Derrickson, 1992),
altriciality requiring a secure environment for rearing neonates
(Case, 1978a,b; Wolff, 1997). Although natal dens can be as
simple as a hollow log (e.g., Carter et al., 2012), increased
investment in natal den construction can enhance conditions
of warmth and security for dependent, altricial young (Kinlaw,
1999; McClellan et al., 2008). This indicates that the extent
of neonate altriciality, and parental investment are likely to
influence fossorial tendancies. As an extension of this, the
extended use of pre-excavated natal dens into adulthood can
influence use of the subterranean ecotope, andmake a substantial
contribution to group formation (Lindström, 1986; Koenig
et al., 1992; Kokko and Ekman, 2002). Furthermore, in line
with predictions of the Expansible Burrow Hypothesis (see
below), those carnivores that experience a substantial predation
threat into adulthood will tend to be more fossorial (Alexander
et al., 1991; Ebensperger and Blumstein, 2006). There is also
evidence for a link between climate and the extent of fossoriality
(Nevo, 1999). While endothermy allows carnivores to exploit
cold regions (Grigg et al., 2004), fossoriality can provide a
means of alleviating untolerable temperature thresholds in colder
environments (e.g., Fløjgaard et al., 2009).

These factors are likely to interact with species’ evolutionary
trajectories however, where carnivoran fossoriality evolved
around the Eocene/Oligocene boundary (ca. 35 Mabp:
Andersson, 2004) for the excavation, or lithe pursuit, of
burrowing prey (Martin, 1989; Andersson, 2004). The most
fossorial carnivores tend to exhibit morphological adaptations
evolved to dislodge substrate (Hildebrand, 1985; Andersson,
2004); species we define here as primary excavators (Kinlaw,
1999). Notably, these fossorial exaptations (“pre-adaptations,”
sensu Gould and Vrba, 1982) permitted subsequent selection
for further intrinsic (reproductive/physiological) benefits
(Hypothesis of Phylogenetic Constraints, HPC: Burda et al.,
2000; Šumbera et al., 2007).

The involement of life-history traits linked to fossoriality
has received little attention in explaining carnivore social
systems. This is especially apparent in contrast to the substantial
support for a link between fossoriality and the evolution of
rodent societies (e.g., hystricognath rodents: Ebensperger and
Blumstein, 2006; Sobrero et al., 2014, and various marmot
species: Barash, 1989; Hoogland, 1995). Smorkatcheva and
Lukhtanov (2014) draw attention to three hypotheses, which
resonate with pre-established models of carnivoran sociality:
(i) the Territorial Defense Hypothesis (TDH: Nevo, 1979)
proposes that the low productivity of the subterranean ecotope
leads to strong resource competition, militating for solitary
social systems. Similarly, the prey of small predatory carnivores
tend to be localized and indivisible; conditions associated with
competition (Macdonald et al., 2004a) and territorial defense
(Waser, 1981); (ii) the Aridity Food Distribution Hypothesis
(AFDH: reviewed in Jarvis et al., 1994) highlights patchy and
unpredictable resources as a driver of sociality in subterranean
mole-rats (family Bathyergidae). This is consistent with the
Resource Dispersion Hypothesis (RDH: Macdonald, 1983;
reviewed in Macdonald and Johnson, 2015), which proposes that
groups will arise independent of cooperative benefits where the
dispersion, or renewal rate, of resources result in a territory
that can viably accommodate additional individuals; and (iii)
the Expansible Burrow Hypothesis (EBH: Alexander et al., 1991)
proposes that predator-free subterranean refuges militate for
philopatry, cooperation, and thus sociality. Crucially, while small
rodents are vulnerable to predation throughout their lives, for
large(r), predatory carnivores, this is only a substantial (or
greater) risk for their altricial young; hence the protective benefits
of a secure natal den for carnivore neonates. Potentially, as
with the EBH, some interaction between natal den use and
philopatry may also explain components of carnivore sociality
(e.g., Greenwood, 1980; Lindström, 1986; Blackwell and Bacon,
1993).

We also evaluate the role fossoriality may play in relation to
promoting group formation from a socio-ecological perspective.
This leads to our subsequent set of questions on behavioral,
developmental, and trophic traits, relating to why some
species can remain philopatric as they mature, leading to
the formation of adult groups, vs. those that disperse into
solitary territories. We propose that group formation in non-
co-operatively hunting carnivores will be more evident among
omnivorous/insectivorous species, in a suitable RDH-scape, in
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those species that extend the use of fossorial natal dens into
adulthood, which serve as a “central-place” facilitating societal
congregation. By way of “exceptions that prove the rule” this
framework yields two further postulates. First, that predatory
fossorial carnivores, for which the dispersion of their food supply
is not suitable, will not form stable adult groups; and second, that
omnivorous/insectivorous species that do not use subterranean
dens, will tend not to form stable adult groups.

Shifting vulnerable life-cycle stages below ground permits a
degree of independence from variable external conditions during
critical periods (Kinlaw, 1999; Ebensperger and Blumstein,
2006). This can benefit longevity (Healy et al., 2014; Williams
and Shattuck, 2015), energy budgets (Noonan et al., 2014,
2015), and facilitate extended periods of hibernation (Davenport,
1992), aiding the maximization of fitness (Nevo, 1999).
Depending on the relative importance of burrow construction,
often substantial energetic investments are made in den
construction/maintenance (Vleck, 1981). Furthermore, burrows
are important for secondary heterospecific competitors, which
comandeer burrows (referred to as “kleptoclaustromy,”; e.g.,
Mills, 1982; Kaneko et al., 1998; Kowalczyk et al., 2008). As
such, pre-excavated/actively maintained burrows are valuable
resources, often inherited by offspring (sensu Lindström, 1986).

This leads us to posit whether fossorial dens support a
“benefit-driven” basis for philopatry, as an extension of the
EBH and the benefits of philopatry hypothesis (Brown and
Brown, 1984; Pen and Weissing, 2000). Models of philopatry
are typically based on cost-driven criteria, such as the greater
mortality risk for dispersing individuals (Lucas et al., 1994),
competition for breeding opportunities (Kokko and Lundberg,
2001), and habitat saturation (Emlen, 1982)—i.e., the Ecological
Constraints Hypothesis (ECH: Pen and Weissing, 2000). In
contrast, we examine whether dens promote inclusive fitness
(Herre and Wcislo, 2011), territorial inheritance (Zack and
Stutchbury, 1992), and cooperative breeding (Koenig et al., 1992)
by acting as a “safe haven” (sensu Kokko and Ekman, 2002).
Conditions where there are strong ecological constraints on
dispersal from natal territories, limiting independent breeding,
favor the perpetuation of natal groups to form persistent
(sub-)adult groups (Emlen, 1982; Macdonald and Carr, 1989;
Creel and Macdonald, 1995; Waser, 1996; Isbell, 2004).

Nevertheless, in many predatory, fossorial carnivores, prey
availability becomes a limiting factor as litters develop and begin
to forage independently (von Schantz, 1984; Clutton-Brock and
Lukas, 2012). Thus, while maternal-offspring groups may persist
temporarily (e.g., Dahle and Swenson, 2003; Kaneko et al., 2014),
these groups often dissolve as offspring mature. For omnivorous
and/or insectivorous species, however, the dispersion of trophic
resources is often such that they are not monopolized by primary
territory holders and, provided secondary individuals can tolerate
inconsistent food supply (Newman et al., 2011; Macdonald and
Johnson, 2015), their nutritional needs may still be met as they
mature—leading to persistent adult groups (Macdonald, 1983).

We test these sets of questions linking life-history, socio-
ecological, and evolutionary components of fossoriality to
the propensity for group-living, by compiling a database of
key ontological, ecological, and trophic variables across the

Carnivora. We then apply Bayesian modeling to conduct a
comparative analysis.

Materials and Methods

We applied our analyses to the 281 extant species of
Carnivora listed by Wilson et al. (2009); the 36 pinnipeds
were excluded a priori due to their predominantly aquatic
life-histories. Additionally, no, or too few, data were available
for 100 less well-known species, where we could access
only anecdotal records, or derive metrics from museum
specimens. The resultant database thus comprized a mix of
complete and partial data for 145 species (Table S1). Two
families (Nandiniidae, and Prionodontidae) were excluded
totally from our database because too few data were available
for extant species—consequently analyses were conducted
across 11 families (Ailuridae, Canidae, Eupleridae, Felidae,
Herpestidae, Hyaenidae, Mephitidae, Mustelidae, Procyonidae,
Ursidae, Viverridae). Reference sources for these data are listed in
Table S1, and detailed in Appendix 1 (Supplementary Material).

We define three response variables: group-living propensity,
fossorial propensity and burrowing class.

Group-living Propensity
Due to intra-specific variation in the level of social integration,
we rejected a Boolean, solitary/group-living classification, instead
classifying group-living typologies according to Johnson et al.
(2000) as: (i) solitary: species with predominantly solitary life-
histories; (ii) pair-living: species with predominantly pair-living
life-histories; (iii) facultative groups: species with both solitary
and group-living life-histories, variable across populations; and
(iv) group-living: species exhibiting predominantly obligate
groups.

Fossorial Propensity
In accord with Nevo (1999), we differentiate here between
truely “subterranean” species, which spend the majority of their
lives below ground, only emerging occassionally, and “fossorial”
species, which use the underground space for distinct activities
(e.g., shelter or reproduction), but forage above ground. We
therefore catagorize fossorial activities into the function of
burrows as a:

(1) natal den: during parturition and the rearing of young;
(2) weather refugia: during hibernation and/or to avoid

inclement weather;
(3) refuge from predation: for predator avoidance;
(4) food storage facility: used to store/cache food;
(5) residence: resting and/or sleeping site.

Several species utilize dens according to one or more of the
functions listed above, on an opportunistic basis, as an alternative
to epigean options (e.g., hollow logs, rock crevices, man-made
structures, etc.,). We therefore quantified subterranean den use
for each of the categories listed above as: (0) little or none; (0.5)
facultative; (1) predominant.

The summation of these five uses yielded a measure of
fossorial propensity, ranging on a scale from 0 to 5.
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Burrowing Class
To account for the energetic investment each species makes in its
burrow, we classified burrowers according to Kinlaw (1999) as:

(1) primary excavators: strong burrowers, for which digging
plays a major role in their life-history;

(2) secondary modifiers: species that inhabit and modify
burrows dug by primary excavators;

(3) tertiary occupants: species that play no role in digging
burrows, but take advantage of burrows dug by other species.

In certain instances, species overlap these burrowing categories
(i.e., able to dig their own burrow, but also making use of
existing burrows); these were treated as intermediate between
categories. Consequently, we quantified burrowing class as: (0)
no burrow use; (1) tertiary occupants; (2) secondary modifier;
and (3) primary burrowers; with intermediate species categorized
as the mean of their respective burrowing classes (i.e., 2.5 for
primay/secondary burrowers, and 1.5 for secondary/tertiary).
This yielded a measure of burrowing class on a scale from 0 to 3.

Predictive Traits; Life-History, Socio-Ecology, and
Phylogeny
We explored a diverse initial range of morphometric, ontological,
and ecological traits inferred to influence fossorial propensity
and burrowing class (with units in parentheses): (1) length:
mean adult head-body length, excluding tail (mm ± 0.1mm);
(2) height: mean adult shoulder height (mm ± 0.1mm); (3)
female mass: mean mass of adult females (kg ± 100 g); (4)
male mass: mean mass of adult males (kg ± 100 g); (5) adult
mass: mean combined mass of adult males and females (kg ±

100 g); (6) age eyes open: mean duration from birth, until the
neonates’ eyes open (days); (7) duration of lactation: mean length
of time, from birth, until the neonate becomes nutritionally
independent of lactation (days); (8) age of independence: mean
duration, from birth, until the neonates typically disperse
from the natal territory or, in philopatric group-living species,
become independent of parental food provisioning (days); (9)
gestation length: mean length of time between implantation and
parturition (days); (10) litter size: mean number of offspring
produced per parturition; (11) age of sexual maturity: mean age at
which offspring becomes physiologically capable of conception,
averaged across sexes (months); (12) absolute longevity: age of
the oldest living individual recorded in the wild; longevity records
of individuals living in captivity were disregarded (months); (13)
home range: mean combined home range of adult males and
females across their geographic range (km2); (14) predators:
number of known species that predate the adult life-stage;
(15) latitude of biogeographical distribution: the northern-most
distribution of the species (degrees north or south of the equator;
source IUCN Red List species database) as a proxy for surface
temperature, and seasonality therein (Fricke and O’Neil, 1999;
although limited by local variation in altitude and continentality:
Driscoll and Fong, 1992). Data and distributions concerning
expatric, introduced populations were not included beyond their
native range. Furthermore, as a categorical predictor we included:
(16) diet: a species’ main food source, defined as constituting at
least 60% of the diet (Gittleman, 1985); classified as: carnivorous,

insectivorous, omnivorous, frugivorous/herbivorous) as a proxy
for trophic RDH compatibility (see Macdonald and Johnson,
2015).

Many of the traits we initially considered proved inter-
correlated. To avoid the ineffectual inclusion of variables in our
models, we applied a principal component analysis (PCA) across
our continuous trait data to generate independent variables.
Two significant correlates of adult mass (female mass; and male
mass; Pearson’s r > 0.98, corresponding to a p < 0.001),
were not included in the PCA. Furthermore, height, and age
of independence were excluded from the PCA, due to too few
data. This procedure resulted in the retention of 3 principal
components (PC) as predictive variables (determined using the
R package nFactors; Raiche andMagis, 2010), which cumulatively
summarized 76.1% of the variance in these ontological/ecological
data (Table 1). Factor loadings indicated that body size, and its
correlates (home range; longevity; and age of sexual maturity)
were the most influential parameters along the axis of PC 1.
PC 2 was determined primarily by measures of altriciality, and
northernmost latitude, and PC 3 by predation threat. For clarity,
in subsequent analyses these components are refered to by
descriptive names based on factor loadings (i.e., body mass PC,
latitude/altriciality PC, and predation threat PC respectively).

Statistical Analyses
All statistical analyses were conducted in the R environment
(version 3.0.3; R Core Team, 2014). Due to phylogenetic inertia
(Hansen and Orzack, 2005), closely related species may exhibit
similiarities in life-history traits from common descent rather
than independent evolution, requiring controlled comparisons
(Harvey and Pagel, 1991). Accordingly, we did not treat species
data records as independent, but rather corrected for this inertia
by fitting models using Bayesian phylogenetic mixed models
using the R package MCMCglmm (Hadfield, 2010). By including
the phylogenetic relationships among species as a random

TABLE 1 | Summary of the first three components of a principal

components analysis performed over carnivoran ontological/ecological

trait data.

Variable PC 1 PC 2 PC 3

Eigenvalue 5.07 2.16 1.14

% of variance explained 46.05 19.68 10.34

Cumulative % of variance explained 46.05 65.73 76.06

FACTOR LOADINGS

Adult mass 0.40 0.15 0.03

Head-body length 0.38 −0.01 0.24

Home range 0.37 0.24 −0.04

Age of sexual maturity 0.37 −0.04 −0.13

Longevity 0.36 0.02 0.25

Gestation length 0.26 −0.45 0.14

Age eyes open 0.05 0.49 −0.59

Duration of lactation 0.37 0.11 0.01

Litter size −0.16 0.37 0.05

Number of predators −0.25 0.22 0.59

Northernmost latitude 0.05 0.53 0.38
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variable, this approach incorporates phylogenetic information
into species data, allowing independent evolutionary events
to be identified. Phylogenetic relationships were taken from
a recent consensus phylogeny of the Carnivora (Agnarsson
et al., 2010). For the Canidae, however, we took relationships
from Lindblad-Toh et al. (2005), chosen for its completeness.
Phylogenetic data were not available for four species in our
database (Caracal caracal; Leptailurus serval; Martes martes;
and Vulpes velox), consequently we excluded these from our
analyses.

To test our primary questions concerning the co-evolution of
fossorial propensity, burrowing class, and ontological/ecological
traits, the following two models were fitted:

(i) burrowing class= f (body mass PC+ latitude/altriciality PC
+ predation threat PC+ diet).

(ii) fossorial propensity= f (bodymass PC+ latitude/altriciality
PC+ predation threat PC+ diet).

To test our subsequent questions concerning the socio-ecological
association between subterranean life-histories, resource
dispersion, and sociality, the following model was fitted:

(i) social class = f (fossorial propensity + burrowing class +
diet).

Following Hadfield (2010), we used uninformative, inverse-
gamma prior distributions. The number of iterations, thinning
interval and the burn-in period were determined using diagnostic
tests in the R package coda (Plummer et al., 2006). Convergence

between model chains was verified using the Geweke diagnostic
(Geweke, 1992).

Results

Of the 145 carnivore species for which we were able to source
specific trait data, 113 made at least some use of subterranean
space, and 85 of these for more than a singular purpose
(Figure 1). Underground burrows were used, in descending
order, as natal dens (74.5%, n = 108), residences (57.2%, n = 83),
weather refugia (19.3%, n = 28), refuges from predation (19.3%,
n = 28), and/or for food storage (10.6%, n = 12).

Life-history, Socio-ecology, and Fossoriality
Bayesian modeling evidenced that a strong phylogenetic signal
exists in carnivoran burrowing class (Table 2), and fossorial
propensity (Table 3). Fossoriality was more prevalent in the
Caniformia (Figure 2) than in the Feliformia (Figure 3);
mephitids, mustelids, and hyaenids being the most fossorial
families. None of the felids, procyonids, or viverrids (for which
we had data) proved to be primary excavators, and of these
families, only two species of felids (Felis margarita; and Felis
nigripes) were secondary modifiers, the rest being tertiary
occupants. All other families included primary excavators, with
the mephitids having the highest proportion (87.5%) of these.

We found support for an evolutionary relationship between
fossorial life-histories and socio-ecological traits. Posterior
coefficient estimates for the latitude/altriciality PC, and the

FIGURE 1 | For each carnivore family, the proportion of species exhibiting at least facultative use of subterranean dens for each of the behavioral use

categories (i.e., natal dens, residences, weather refugia, predation refugia, and food storage).
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TABLE 2 | Relationship between burrowing class and life-history traits in

the Carnivora.

β lower CI upper CI

FIXED TERMS

Intercept 2.03** 0.78 3.24

Body mass PC 0.04 −0.06 0.14

Latitude/altriciality PC 0.16* 0.03 0.31

Predation threat PC −0.14 −0.30 0.02

Omnivorous diet −0.57 −1.16 < 0.01

Carnivorous diet −0.50 −1.15 0.19

Herbivorous/frugivorous diet −1.36* −2.46 −0.28

RANDOM TERMS

Phylogenetic effect 0.94* 0.12 1.96

Residual variance 0.72** 0.52 0.95

Coefficient estimates (β), and their 95% confidence intervals (CI) are presented. Asterisks

denote variables that differed statistically from zero (based on 95% confidence intervals).

Note: 3.2× 106 iterations with 1.0× 105 burn-in and thinning interval of 5.0× 102. **p <

0.01, *p < 0.05.

TABLE 3 | Relationship between fossoriality propensity and life-history

traits in the Carnivora.

β lower CI upper CI

FIXED TERMS

Intercept 2.28** 0.87 3.66

Body mass PC −0.11* −0.22 −0.01

Latitude/altriciality PC 0.31*** 0.16 0.47

Predation threat PC 0.04 −0.13 0.21

Omnivorous diet −1.05** −1.67 −0.43

Carnivorous diet −0.85* −1.55 −0.12

Herbivorous/frugivorous diet −1.28* −2.48 −0.13

RANDOM TERMS

Phylogenetic effect 1.21* < 0.01 2.61

Residual variance 0.82** 0.57 1.10

Coefficient estimates (β), and their 95% confidence intervals (CI) are presented. Asterisks

denote variables that differed statistically from zero (based on 95% confidence intervals).

Note: 3.2 × 106 iterations with 1.0 × 105 burn-in and thinning interval of 5.0 × 102. ***p

< 0.001, **p < 0.01, *p < 0.05.

herbivorous/frugivorous dietary class indicated that these factors
contributed significantly to our model predictive of burrowing
class. Measures of body size and predation threat proved
relatively unimportant in this model.

There was also evidence for an evolutionary relationship
between fossorial propensity and diet, as well as PCs defined by
body mass and latitude/altriciality. Generally, smaller carnivore
species, producing large(r) litters, of altricial young were
more likely to be fossorial than larger carnivore species
producing smaller litters of well developed young. Indeed, no
fossorial, primary excavator had an adult mass that exceeded
15 kg. Furthermore, insectivorous carnivores were generally
more fossorial than carnivorous or frugivorous/herbivorous
species.

Fossoriality and Group-living
Modeling predictive of group-living evidenced that carnivores
from different burrowing classes differed significantly in their
propensity for group-living (Table 4). Primary excavators tended
to form groups significantly more often than other burrowing
classes; tertiary burrow users were least likely to form groups.
There was also clear support for an evolutionary relationship
between diet, fossoriality, and social class. Crucially, in tandem
with burrowing class, diet proved highly significant, where
carnivorous and frugivorous/herbivorous carnivores tended to
form groups significantly less often than insectivorous or
omnivorous carnivores.

Discussion

Of extant terrestrial mammals, 447 of 777 genera include
species that engage in burrowing behavior (Kinlaw, 1999).
These represent diverse mammalian species, from small
rodents and soricomorphs (Nevo, 1999) to the largest
extant burrowers, aardvarks (Orycteropus afer: Taylor and
Skinner, 2003). Reflecting the extent of fossoriality observed
across terrestrial mammals generally (Kinlaw, 1999), three
quarters of carnivore species exhibited at least some level of
reliance on the subterranean ecotope. Congruence between
ecological/ontological traits and metrics of fossoriality in the
Carnivora accorded with four broad themes: (1) there were
phylogenetic, and morphological constraints on wholly fossorial
life-histories; (2) fossoriality correlated positively with the
extent of offspring altriciality, linked to the use of natal dens;
(3) burrow use increased with latitude; and (4) insectivorous
carnivores were more fossorial than predatory carnivores.
Furthermore, congruent with the strong support for a link
between fossoriality and sociality in rodent societies (Barash,
1989; Hoogland, 1995; Ebensperger and Blumstein, 2006;
Sobrero et al., 2014), we evidenced a positive evolutionary
relationship between the extent of fossoriality and the propensity
for group-living. These fossorial traits have, functional,
mechanistic, ontogenetic, and phylogenetic components (sensu
Tinbergen, 1963), which, in turn, significantly influence species’
socio-ecology.

Allometric Constraints
We found an association between fossorial propensity and the
PC defined by body size, highlighting allometric constraints on
fossoriality (McNab, 1979; Vleck, 1981). Indeed, no fossorial,
primary excavator had a mean adult mass greater than 15 kg.
Although forelimb supination (see below) can support large body
sizes (e.g., 300+ kg ursids: Andersson, 2004), as weight increases,
cursoriality becomes more economical (Kram and Taylor, 1990).
Consequently, with increasing body size, the opposing effects of
relaxed running costs vs. greater burrowing costs (McNab, 1979;
Vleck, 1981) can act as significant drivers for, or against, fossorial
life-histories.

Although carnivores larger than 15 kg are still able to burrow,
smaller species made greater use of underground space. In
addition to the energetic cost of burrowing scaling allometrically
(sensuVleck, 1981), burrow size also scales allometrically (White,
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FIGURE 2 | Consensus tree of the Caniformia based on phylogenetic relationships from Agnarsson et al. (2010). Relationships between the Canidae were

taken from Lindblad-Toh et al. (2005). For clarity, the Feliformia are collapsed. Shading of the left hand branches depicts fossorial propensity scaled from wholly

epigean, to wholly fossorial. Shading of the right hand branch depicts burrowing class scaled from no burrow use, to primary excavators. Coloration of species labels

denotes group-living propensity, classified as: (black) solitary: species with predominantly solitary life-histories; (red) pair-living: predominantly pair-living species;

(green) facultative groups: species with both solitary and group-living life-histories, variable across populations; and (blue) group-living: species exhibiting obligate

groups. Data deficient species are listed in gray.

2005) and there is an upper limit on burrow size. Simply,
even the most consolidated soil types cannot support the large
and extensive excavations that would be needed to house,
for example, a group of bears. Furthermore, although a wide
variety of small (<1.0 kg) subterranean species appear in the
paleontological record (Nevo, 1999), large fossil burrows are
rare (e.g., Voorhies and Toots, 1970). Indeed, fossil evidence
suggests that larger carnivorans were restricted to the use of cave
formations, rather than subterranean burrows, as denning sites
(e.g., cave bears, Ursus spelaeus: (Stiner, 1999); and cave hyaenas,
Crocuta crocuta spelaea: Diedrich and Žák, 2006).

Energetic Adaptations
Mammals exposed to cold winter conditions cope through two
mechanisms; (i) low thermal conductance to minimize heat
loss (e.g., thick winter fur and/or insulating fat layer: Shield,
1972; McNab, 1983); or (ii) by reducing their exposure to the
cold, through the use of refugia (Noonan et al., 2014, 2015),
and/or entering a torpid state therein (Harlow, 1981; Lyman,
2013). Thus, while endothermy allows carnivores to exploit cold
regions, and higher latitudes (Grigg et al., 2004), fossoriality
provides a means of mitigating temperature thresholds (Shelford,
1931; Pörtner, 2002), permitting the species to live in colder
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FIGURE 3 | Consensus tree of the Feliformia based on phylogenetic relationships from Agnarsson et al. (2010). For clarity, the Caniformia are collapsed.

Shading of the left hand branches depicts fossorial propensity scaled from wholly epigean, to wholly fossorial. Shading of the right hand branch depicts burrowing

class scaled from no burrow use, to primary excavators. Coloration of species labels denotes group-living propensity (see Figure 2). Data deficient species are listed

in gray.

environments (Fløjgaard et al., 2009). Also, small carnivores
often utilize the subnivean ecotope directly for hunting (e.g.,
American martens, Martes americana: (Raine, 1987); least
weasels,Mustela nivalis: (Sheffield and King, 1994); black-footed
ferrets, Mustela nigripes: (Hillman and Clark, 1980); European
polecats, Mustela putorius: Heptner and Sludskii, 2002). As a
consequence, we found that the PC defined by latitude was
influential in predicting the importance of fossoriality to species
across all sizes (irrespective of Bergmann’s rule, sensu Blackburn
et al., 1999). Smaller predatory carnivores, however, are less
suited to hibernation (for example no Martes spp. hibernate

whereas the largerMeles spp. do: Newman et al., 2011), and tend
not to form groups at high latitude.

High latitudes, and seasonality therein, also place particular
ecological constraints (ECH: Pen and Weissing, 2000) on
dispersing juveniles, leading to delayed dispersal (Ferreras et al.,
2004), due to greater seasonal variation in food supply, shorter
productive seasons and increased energetic requirements (Blank,
1992; Noonan et al., 2014). Futhermore, in those species large
enough to undergo extended hibernation, group-living may be
promoted by the thermoregulatory benefits of huddling in groups
within subterranean burrows (e.g., Roper et al., 2001; Hwang
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TABLE 4 | Relationship between social class, fossoriality and diet in the

Carnivora.

β lower CI upper CI

FIXED TERMS

Intercept 2.29*** 0.52 1.96

Fossorial propensity −0.08 −0.25 0.12

Burrowing class 0.32** 0.10 0.54

Omnivorous diet −0.52 −1.21 0.18

Carnivorous diet −1.05** −1.71 −0.41

Herbivorous/frugivorous diet −1.73** −2.95 −0.54

RANDOM TERMS

Phylogenetic effect 0.56* < 0.01 1.24

Residual variance 0.55* < 0.01 1.23

Coefficient estimates (β), and their 95% confidence intervals (CI) are presented. Asterisks

denote variables that differed statistically from zero (based on 95% confidence intervals).

Note: 3.8 × 107 iterations with 2.0 × 106 burn-in and thinning interval of 1.0 × 103. ***p

< 0.001, ** p < 0.01,*p < 0.05.

et al., 2007; Kitao et al., 2009). These factors are likely influential
in the integration of subsequent generations into natal groups
(Dahle and Swenson, 2003; Ferreras et al., 2004; Kaneko et al.,
2014).

Ontological Adaptations
Fossoriality and burrowing class were related to measures of
altriciality. Among the Carnivora, while offspring are born
along a continuum of altriciality to precociality (Derrickson,
1992), precocial young are incompatible with large litter sizes
(reviewed in Martin and MacLarnon, 1985). This is especially
so where pregnant females need to maintain hunting agility
(Case, 1978b; Woodroffe and Ginsberg, 1997). Thus, altriciality
is likely ancestoral (Hopson, 1973; Case, 1978b). Altriciality
however, requires a secure environment for rearing neonates
(Case, 1978a,b; Wolff, 1997), and although natal dens can be as
simple as a hollow log (e.g., Carter et al., 2012), subterranean
burrows are more thermally stable (e.g., Buffenstein, 1984; Nevo,
1999; Moore and Roper, 2003; Kaneko et al., 2010). Thus,
bespoke natal dens extend womb-like conditions of warmth
and security, while altricial offspring are provisioned with milk
(Kinlaw, 1999; McClellan et al., 2008). A similar scenario can be
seen in the Leporidae where cursorial, precocious hares (Lepus
spp.) are capable of following their mother soon after birth,
while burowing, altricial rabbits (Oryctolagus spp.) are born blind
and hairless, remaining underground until they are 4 weeks old
(Macdonald, 2006).

We found that species utilizing subterranean natal dens tend
to form groups roughly 2.5 times more often than those that
do not. Natal dens can effectively support philopatric and social
behavior (benefits of philopatry hypothesis: Brown and Brown,
1984)—mirroring correlations found in birds where extended
parental care leads to delayed offspring dispersal (Brown and
Brown, 1984; Ekman and Rosander, 1992; Ekman et al., 1994).
Even in the absence of any other benefits of sociality, if local
environmental carrying capacity permits, then the continuing
philopatric use of natal dens (Isbell, 2004), resulting from delayed

dispersal (Kokko and Ekman, 2002), may impose communal
aggregation upon individuals (an extention of the EBH).

It is important to note, however, that in group-living species
where philopatry accrues fitness benefits through enhanced
survival (Kokko and Ekman, 2002), inclusive fitness (Herre and
Wcislo, 2011) and cooperative breeding (Koenig et al., 1992),
reproductive suppression of subordinates often occurs (Creel and
Creel, 1991; Creel and Macdonald, 1995). Indeed, even for those
non-cooperative breeders in which offspring always disperse,
reproductive opportunities may be just as limited as they are
for offspring that remain philopatric (Brown and Brown, 1984).
Thus, albeit through different mechanisms, both strategies result
in similar ecological constraints (ECH: Pen and Weissing, 2000).

Phylogenetic Exaptations
Paleo-ecological selection pressures favoring fossorial traits arose
around the Eocene-Oligocene boundary, circa 35 Mabp (Nevo,
1999). During this transition, the earth underwent a shift to
cooler (7–10◦C over the Paleogene; Savin, 1977), and increasingly
variable conditions (Katz et al., 2008), causing aridization
and greater seasonality (Prothero and Berggren, 2014). As a
result, forest ecosystems, abundant in the Eocene, gave way
to Oligocene grasslands (Vicentini et al., 2008; Prothero and
Berggren, 2014), impacting habitat availability and food chains.
This drove selection for two adaptive herbivore strategies;
(i) plains herbivores (Stebbins, 1981), which grew large and
migratory in developing prairies and savannahs; and (ii) smaller
rodent species, able to burrow for protection (Nevo, 1999). Prior
to this transition, carnivore ancestors tended to be arboreal
forest dwellers (Macdonald, 1992), however, in a typical “Red
Queen” response (Van Valen, 1973), carnivorans invading this
new grassland ecotope underwent selection along four formats:
(i) cursorial pursuit predators able to chase fleet-footed ungulates,
exemplified in the digitigrade canids (Martin, 1989; Andersson,
2004); (ii) “stalk and ambush” predators, with supinated
limbs adapted for grappling, common among extant feliformia
(Andersson, 2004); and strategists capable of pursuing prey
underground, giving rise to ecomorphs undergoing selection
for either; (iii) digging power, represented today by the bear-
badger type (with selection for specific forelimb anatomy for
digging; see Andersson, 2004; Samuels et al., 2013); and (iv)
slender ecomorphs evolved to slip into burrows to capture prey,
represented today by the polecat-mongoose type (Martin, 1989).

Ebensperger and Blumstein (2006) reported that evolutionary
trajectories constrained fossoriality in the Rodentia significantly.
Similarily, we found that use of the subterranean ecotope
was not consistent across all carnivore families. Phylogenetic
constraints were apparent, limiting which carnivores are able to
dig; inertia consequent of ancestral specialization for cursoriality,
scansoriality, and for grasping claws. For example, felids,
procyonids, and viverids proved the least fossorial carnivore
lineages. Indeed, ichnofossil evidence of burrowing behavior (as
distinct from den use, per se) also reflects that ancestral felids,
procyonids, and viverids evolved along trajectories incompatible
with digging (Macdonald, 1992; Andersson, 2004). The felids
are the only wholly carnivorous Carnivora family (Macdonald,
1992; Sicuro and Oliviera, 2011), and possess hook-shaped,
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retractable claws, adapted for hunting prey (Bryant et al., 1996;
Kitchener et al., 2010), which would be damaged by digging.
Burrowing species, in contrast, typically have flattened claws
adapted for dislodging soil (Hildebrand, 1985). Several epigean
viverid species also have retractable claws (Bryant et al., 1996).
Similarly, the substantially arboreal Procyonidae have forelimbs
adapted to climbing (McClearn, 1992). Coatis (Nasua spp.), being
predominantely terrestrial but with arboreal dens, provide an
interesting contrast to other procyonids. While they dig holes
proficiently to capture invertebrate prey, they do not excavate
subterranean burrows, and are the least agile climbers in this
family (McClearn, 1992).

Further in line with our findings here, a clear phylogenetic
signal for digging ability is evident in the forelimb morphology
of carnivores, where shared ancestry significantly constrains
kinesiology (Andersson, 2004; Samuels et al., 2013). Forelimb
supination is crucial for both scansorial and fossorial carnivores,
but is maladaptive for cursorial pursuit predators (Andersson,
2004). Unlike scansoriality however, scratch digging requires
elongated humeri and ulnae to provide stable elbow joints
(Van Valkenburgh, 1987; Andersson, 2004; Samuels et al., 2013).
Due to these phylogenetic constraints, those species that use
burrows but are unable to excavate them themselves, rely on
kleptoclaustromy, and so burrowing species are “keystone” (Mills
and Doak, 1993) to the subterranean ecotope (e.g., Whittington-
Jones and Bernard, 2011).

Diet, Trophic Resource Dispersion, and Sociality
Carnivores that evolved along phylogenetic trajectories adaptive
for fossorial traits are often those that also exhibit the tendancy
to form groups. Here diet proves important: among the 145
species examined, we found a 27.8% overlap (33 species)
between the 62 species showing a significant extent of fossoriality
and the 62 with omnivorous/insectivorous diets. Of these 33
species, only 3 were solitary; white-tailed mongooses (Ichneumia
albicauda); American hog-nosed skunks, (Conepatus leuconotus);
and Sechura foxes, (Pseudalopex sechurae).

This substantial interaction between fossoriality and
omnivorous/insectivorous diets proves insightful. Although 75%
of carnivores utilize fossorial natal dens, species consuming a
carnivorous diet tend to disperse as they mature because the
resources available in their natal territory cannot support the
requirements of multiple adults (von Schantz, 1984). For species
that consume a diet where food resources have a dispersion
able to support adult groups (typified by omnivory/insectivory;
sensu Macdonald, 1983), dispersal may be delayed or obviated.
When these species are small enough to cohabit, fossorial dens
act as foci leading to the formation of philopatric groups. By
increasing the variety of trophic resources available, omnivory
(to include insectivory) effectively reduces competition for
resources (Gittleman, 1986). Furthermore, the dispersion and
renewal characteristics of these alternative food types preclude
sufficient resources being monopolized by a primary individual
to prevent secondary conspecifics being tolerated in the same
range (Macdonald et al., 2004b; Macdonald and Johnson,
2015), leading to range sharing. This is a flexible process; many
omnivores form temporary “fission fusion societies” under
appropriate but temporary RDH conditions (e.g., raccoons,

Procyon lotor; red foxes, Vulpes vulpes; arctic foxes, Vulpes
lagopus; Blandford’s foxes, Vulpes cana; and kinkajous, Potos
flavus; reviewed in Macdonald and Johnson, 2015).

There are nevertheless likely limiations to a fossorial group
formation process among the Carnivora. Omnivores/insectivores
too big to cohabit will still be driven to disperse, although
they may congregate temporarily in rich resources patches,
(e.g., ursids at salmon runs: Reimchen, 2000). Furthermore,
secondary conspecifics need to have a physiology capable
of tolerating secondary food security (Newman et al., 2011;
Macdonald and Johnson, 2015). Small, subnivean and/or agile
scansorial predators for example, cannot carry sufficient body
fat without compromising required hunting athleticism (King,
1989; Newman et al., 2011). Chinese ferret badgers (Melogale
moschata) appear to be at the lower body-weight extreme
for being able to form burrow-dwelling groups, benefitting
from (sub-)tropical levels of productivity (Zhang et al., 2010).
Consequently, fossoriality, even in a suitable trophic resource-
scape, is unlikely to leverage group-living if these critera
are not met.

Conclusions

We evidence that the extent of fossoriality in the Carnivora
is an important driver of group-living behavior, resonating
with research in the Rodentia (e.g., Ebensperger and Blumstein,
2006; Smorkatcheva and Lukhtanov, 2014; Sobrero et al., 2014).
This provides consilient support to an ecological basis to non-
cooperative societies (sensu Macdonald, 1983). According to the
TDH (Nevo, 1979), under conditions leading to strong resource
competition, fossoriality leads to solitary social systems (sensu
Gittleman, 1989). Although the role of TDH in the evolution of
rodent societies was rejected by Smorkatcheva and Lukhtanov
(2014), we observed that extant (semi-) fossorial predatory
carnivores that compete for indivisible, small vertebrate prey,
which do not simultaneously satisfy RDH sociality criteria (see
Macdonald and Johnson, 2015), tend not to be gregarious (e.g.,
American badgers, Taxidea taxus: Long, 1973; least weasels:
Sheffield and King, 1994; black-footed ferrets: Hillman and Clark,
1980; European polecats: Heptner and Sludskii, 2002; wolverines,
Gulo gulo: Pasitschniak-Arts and Larivière, 1995; and sand
cats, Felis margarita: Sunquist and Sunquist, 2002). Similarly,
albeit satisfying dietary RDH criteria, certain epigean carnivores
(e.g., tayras, Eira barbara: Presley, 2000; ringtails, Bassariscus
astutus: Harrison, 2012; ursids, Ursus spp.: Pasitschniak-Arts,
1993; Larivière, 2001; and African civets, Civettictis civetta: Ray,
1995) proved less gregarious than otherwise ecologically similar
fossorial species; that is, fossoriality leverages group formation
under marginal circumstances.

Subterranean living is not without its challenges, including
hypoxia/hypercapnia, permanent darkness, and conditions of
high pathogen infectivity, which can lead to the spread of
disease and parasites (Nevo, 1999). Indeed den sharing has
been implicated in the spread of Mycobacterium bovis among
several social burrowers (e.g., yellow-bellied marmots, Marmota
flaviventris: Van Vuren, 1996; brushtail possums, Trichosurus
vulpecula: Corner et al., 2003; European badgers, Meles meles:
Rogers et al., 2003; wombats, Vombatus ursinus: Skerratt et al.,
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2004). For those carnivores where the benefits outweigh the
costs, we evidence that the extent of fossoriality accords with
the TDH, the EBH, and RDH criteria. In tandem with the
benefits of philopatry (Brown and Brown, 1984), this can act as
a significant precursor for group-living. This also explains why
certain carnivores that satisfy the dietary critera of the RDH,
but are not strongly fossorial, do not form (semi-) permanent
groups. Cohabitation provides the initial step toward group-
living. If conditions arise where omnivorous species, living
in an environment with suitable resource dispersion (sensu
Macdonald, 1983), continue to remain associated with their
fossorial natal dens, then a propitious scene is set for the
formation of permanent social groups.
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