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Apple proliferation (AP) and pear decline (PD) are the most severe diseases in pome

fruit growing areas. AP-infected trees show typical symptoms such as witches’ broom,

enlarged stipules, tasteless, and dwarf fruits. PD-infected pears show a progressive

weakening, reduced terminal growth, smaller fruits, and die within weeks (quick decline)

or years (slow decline). The diseases are caused by the cell-wall lacking bacteria

Candidatus Phytoplasma mali (AP phytoplasma) and Ca. P. pyri (PD phytoplasma),

respectively. In previous studies it has been shown that AP-infected apple trees emitted

higher amounts of the sesquiterpene β-caryophyllene, an attractant of the insect

vector Cacopsylla picta (Hemiptera: Psyllidae), thereby facilitating the dispersal of AP

phytoplasma. In the present study, volatile organic compounds (VOCs) occurring in

the headspace of plants infected with Ca. P. mali strains causing different severity

of symptoms in apple plants were collected, analyzed, and identified. Headspace

samples from healthy and AP-infected model plant tobacco (Nicotiana occidentalis)

and apple (Malus domestica) as well as from healthy and PD-infected pear (Pyrus

communis) were investigated via thermodesorption and GC-MS analysis. Significantly

higher concentrations of ethyl benzoate were produced in all phytoplasma-infected

plants compared to healthy ones and an as yet unidentified sesquiterpene differed

between the odor bouquets of healthy and by Ca. P. mali infected tobacco plants.

Additionally, statistically significant higher amounts of both compounds were measured

in the headspace of plants infected by the virulent AP strain. In apple, significantly higher

concentrations of ethyl benzoate and methyl salicylate were observed for trees infected

with strains of Ca. P. mali. Ethyl benzoate was also detected in the headspace of pear

trees infected with Ca. P. pyri.

Keywords:Candidatus Phytoplasmamali,Candidatus Phytoplasma pyri, quantitative headspace sampling device,

Nicotiana occidentalis, VOC, Malus spp., Pyrus spp., multitrophic interactions

INTRODUCTION

Phytoplasmas are prokaryotes of the class Mollicutes and obligatory parasitize two different
hosts, plants and vector insects. They occur in plants mainly in the phloem tissue (Doi et al.,
1967). Phytoplasmas lack a cell wall and require insects for transmission. The insect vectors
of phytoplasmas are phloem feeders of the order Hemiptera, mostly leafhoppers (Cicadellidae),
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planthoppers (Fulgoromorpha) and psyllids (Psyllidae;
Weintraub and Beanland, 2006). The vector insects feed
from the nutrient-rich phloem sap containing the phytoplasmas
and acquire them in their digestive system (acquisition feeding).
Infected insects can transmit the phytoplasmas again to the host
plants by feeding on healthy plants (inoculation or transmission
feeding). Some phytoplasmas have high vector specificity, being
transmitted by only one or a few vectors whereby others can be
transmitted by a huge range of insect vectors (Seemüller et al.,
2002; Mann et al., 2012). For the transmission of European
fruit tree phytoplasmas different psyllid species belonging to the
taxon Cacopsylla are responsible. Pear decline (PD) caused by
Candidatus Phytoplasma pyri can be transmitted by C. pyricola
and C. pyri (Davies et al., 1992; Carraro et al., 1998). In contrast,
the apple proliferation (AP) disease caused by Ca. Phytoplasma
mali is exclusively transmitted by C. picta (Mayer et al., 2009)
which forms a highly specialized relationship to its host plant of
the genusMalus spp. (Mayer et al., 2008a,b, 2011). Phytoplasmas
replicate intracellularly in both plant and insect tissues and have
different impacts on the fitness of their hosts. In most instances,
plants are negatively affected but infection of insect vectors may
have positive or no adverse effects on their fitness (Beanland
et al., 2000; Bressan et al., 2005; Mayer et al., 2011).

AP and PD are the most severe diseases in pome fruit
growing areas. The diseases are caused by the cell-wall lacking
bacteria Candidatus Phytoplasma mali (AP phytoplasma) and
Ca. P. pyri (PD phytoplasma), both belonging to the apple
proliferation (16SrX) group. AP-infected trees (Malus ssp.) show
typical symptoms such as witch’s broom, enlarged stipules,
tasteless and dwarf fruits. PD-infected pear trees (Pyrus spp.)
show progressive weakening characterized by reduced terminal
growth, smaller fruits, and die within weeks (quick decline)
or years (slow decline; Carraro et al., 2001). Seemüller and
Schneider (2007) divided a set of 24 strains of Ca. P. mali into
three categories due to their AP-disease severity in apple trees.
Virulent and severe strains induce the typical symptoms such as
witch’s broom and overall dwarfism. Moderate virulent strains
elicit milder symptoms, for example enlarged stipules. Avirulent
strains, on the contrary, induce unspecific symptoms, or none at
all. Avirulent and virulent strains exhibit considerable differences.
For example, virulent strains have larger genomes than avirulent
strains (Seemüller and Schneider, 2007). Additionally there are
suggestions that the severity of symptoms could be influenced
by environmental conditions or the titer of the phytoplasmas
(Seemüller et al., 1984). However, Seemüller and Schneider
(2007) showed that the symptoms differed between several strains
although they found identical numbers of phytoplasma cells.

Some psyllids use chemical cues for orientation and host
identification (Soroker et al., 2004; Gross and Mekonen, 2005;
Martini et al., 2014a). The proteobacterium Ca. Liberibacter
asiaticus modifies the odors released by its host plant (citrus
trees) to attract its vector, the Asian citrus psyllid (Diaphorina
citri). Infection of citrus plants with this pathogen induces
release of methyl salicylate which specifically attracts its vector
(Mann et al., 2012). This pathogen causes huanglongbing, an
incurable disease that threatens commercial citrus industries
worldwide (Grafton-Cardwell et al., 2013). The proteobacterium

Ca. Liberibacter solanacearum is vectored by the tomato/potato
psyllid (Bactericera cockerelli) and causes Zebra chip disease
in potatoes. Infected tomato plants emit a qualitatively and
quantitatively different blend of VOCs compared to uninfected
plants. Infected psyllids preferred to settle on uninfected plants
and vice versa (Mas et al., 2014). Apple trees infected by a virulent
strain of Ca. Phytoplasma mali showed an overproduction of
β-caryophyllene (Mayer et al., 2008a), resulting in increased
attraction of “emigrant” adults of the vector Cacopsylla picta
(Mayer et al., 2008b, 2011). Through increased feeding on
infected plants, the probability of phytoplasma acquisition
increases after overwintering adults (“remigrant”) colonize
healthy plants. Behavioral changes of the vectors promote both
pathogen acquisition and transmission because remigrants prefer
uninfected plants for oviposition while emigrants prefer infected
host plants (Mayer et al., 2011). Consequently, the question arises
whether strains of Ca. P. mali of different virulence possess the
same ability to change plants’ VOCs emissions and, if so, what
are the differences?

In this study, the influence of two strains of Ca. P. mali,
one eliciting pronounced symptoms (virulent strain) and the
other less pronounced symptoms (avirulent strain), on volatile
emissions of the model plant tobacco (Nicotiana occidentalis)
were examined. Headspace samples from healthy and infected
tobacco were investigated via thermodesorption followed by
GC-MS analysis. The data were confirmed by collecting and
analyzing VOCs of both AP phytoplasma infected and healthy
apple trees and compared to VOC emissions of pear trees
infected by Ca. P. pyri.

MATERIAL AND METHODS

Plant Material and Phytoplasma
Cultivation: Tobacco
The model plant tobacco (N. occidentalis) was used in the
experiments because this plant grows much faster than woody
pome fruit trees (apple and pear), but the phytoplasmas
cause similar symptoms in the model plant. In the summer
and autumn of 1993, samples from symptomatic and non-
symptomatic apple trees infected by Ca. P. mali were collected
(Seemüller and Schneider, 2007). Infected shoot scions were
grafted on healthy rootstocks (M 11) followed by top-grafting
with cv. Golden Delicious and maintained by periodic grafting
(Seemüller and Schneider, 2007). For permanent cultivation of
these phytoplasma strains, they were transmitted to periwinkle
(Catharanthus roseus) by regular grafting in an insect-proof
greenhouse. For transmission from periwinkle to tobacco, the
phytoplasma strains Ca. P. mali 1/93 and 12/93 (Seemüller and
Schneider, 2007) were transmitted via the parasitic plant dodder
(Cuscuta europaea) which built phloem bridges between the
two plants; method described by Mikona and Jelkmann (2010).
Infection was proven through DNA extraction of phloem tissue
followed by real-time PCR (s.b.). The tobacco plants either
infected by the avirulent strain (1/93), by the virulent strain
(12/93), or without an infection, were examined every week over
a period of 5 weeks beginning with the week in which the first
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symptoms were detected in plants infected by the virulent strain
(= 8 weeks after inoculation with the phytoplasma). Volatiles
from the headspace of at least six plant individuals were collected
at each examination from every treatment group.

Plant Material and Phytoplasma
Cultivation: Apple and Pear
The apple plants (Var. Golden Delicious on rootstock M 9) were
grafted with scions from already infected apple trees (Ca. P. mali)
in 2012. Here the virulent strain AT 3/6 was used for infection.
Pear trees (Var. Williams Christ on root stock Kirchensaller)
were also inoculated by grafting with already infected pear
plants (Ca. P. pyri strain PDW). Infection was checked via DNA
extraction from the phloem tissue of plants and amplified by
specific primers (s.b.). From February to June, volatiles from
infected and healthy apple and pear trees were collected each with
four replications once a week. The plants were cultivated in an
insect-safe plastic-mesh greenhouse in order to provide natural
conditions (day length, light intensity, temperature following
natural fluctuations during a season) but without the threat of
herbivorous pest insects. A fungicide against apple mildew was
applied maintain the health of apple trees. The withholding
period between fungicide application and headspace sampling
was at least 1 week. Infected and healthy plants were cultivated
under the same conditions. Headspace sampling of apple and
pear plants started at phenological stage 00 following the BBCH-
scale (Meier, 1997) and stopped when emigration from the
reproductive host began. For direct comparisons, plants were
grouped into phenological growth stages according to the BBCH
scale for pome fruits (Meier, 1997): 2 = BBCH 7-11 (beginning of
bud break—first leaves unfolded), 3 = BBCH 19-33 (first leaves
fully expanded—shoots about 30% of final length), 4 = BBCH
34-35 (shoots about 40–50% of final length), 5 = BBCH = 35
(shoots more than 50% of final length, and 6 = remigration. For
the comparison of apple odor the growth stages 2–5, for pear odor
comparison all six growth stages were analyzed.

Headspace Sampling
An innovative headspace sampling device enabling an exact
collection of relative quantities of VOCs in headspace samples
was engineered for these measurements by the author JG
together with Ralph Kunath (Wagner Mess- und Regeltechnik
GmbH, Offenbach, Germany). The device consisted of five
parallel odor collection systems which were mounted on a plate,
connected by tubes and wired electrically (Figure 1). Each odor
collection system was constructed by a vacuum pump (KNF
Neuberger GmbH, Freiburg, Germany) connected with a mass
flow controller (M+W Instruments GmbH, Leonhardsbuch,
Germany). The controller measured both flow rate and total
collected air volume which was programmed using the integrated
TFT display or by connecting with a laptop computer. Flow
rate regulated the pump throughput constantly but, in case of
reduced air flow, the throughput of the vacuum pump was
increased automatically. Thus, an exact and comparable flow
rate between all five collecting systems was ensured. Between
the single odor collection systems no connections by tube were
made which prevented cross contamination. Single branches

FIGURE 1 | Newly developed five-channel headspace sampling device

enabling an exact quantitative measurement of VOCs in headspace

samples from both in vitro plants (picture, left) or bigger plants. For

detailed description compare material and methods. Photograph: Sabine

Wetzel, JKI.

of apple trees or tobacco plants were carefully wrapped in
oven plastic bags made of polyethylene terephthalate (20 cm
diameter, Melitta, Minden, Germany). A stream of purified air
(1000ml/min), controlled by the headspace sampling device, was
pumped through each bag until it reached the final volume of 100
L. The air stream was purified by passing through a gas washing
bottle filled with charcoal (granulated 4–8mm, AppliChem
GmbH, Darmstadt, Germany). An empty oven bag not enclosing
plant material connected to the sampling device served as a
procedural control. After each trial, the washing bottles and tubes
were rinsed with 70% ethanol (p.a.; Merck Millipore, Germany)
and baked at 100◦C for at least 2 h. Volatiles from headspace
sampling were trapped in stainless steel, prepacked sample tubes
with Tenax R© TA60/80 sorbent (PerkinElmer, Markes). Used
tubes were closed with Teflon-coated brass compression caps
(Swagelok, PerkinElmer) and stored for a maximum of 1 week
before being thermodesorbed. Headspace samples from tobacco
plants infected by the virulent (N = 42) or the avirulent Ca. P.
mali strain (N = 40) and headspace samples from healthy plants
(N = 27) were analyzed by GC-MS.

Thermodesorption-GC-MS
Samples were analyzed using an automated thermal desorber
(TurboMatrix™ ATD 650, PerkinElmer) connected to a
GC-MS (gas chromatograph coupled with mass spectrometer)
instrument. The thermal desorption details were as follows:
Tube desorption 10min at 250◦C and cold trap (Tenax TA) was
held at −20◦C throughout the tube desorption process, and
then heated at a rate of 99◦C/s to 250◦C; cold trap desorption
time 1min. The desorbed volatile compounds were separated
using a PerkinElmer R© Clarus R© 680 GC system coupled to
a Perkin Elmer quadrupole inert mass selective detector for
molecular structure analysis. A nonpolar Elite-5 (Crossbond 5%
diphenyl −95% dimethyl polysiloxane, PerkinElmer) capillary
column (30 × 0.25mm id × 0.25µm film thickness) was used
for the GC separation. Splitless injection was employed using
helium as the carrier gas (Helium, Air Liquide, Germany) at a
flow rate of about 5ml/min (column head pressure 150 kPa).
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The initial oven temperature was 40◦C and was held for 1min,
followed by a linear programmed temperature from 40 to
180◦C at a rate of 5◦C/min, and a rate of 20◦C/min from
180 to 280◦C. The final temperature of 280◦C was held for
6min. This temperature program was used for the analysis of
all samples. The ion source temperature was 180◦C and GC
inlet line temperature was 200◦C. Quadrupole mass detector
was operated in the electron-impact (EI) mode at 70 eV. The
electron multiplier was set to the auto tune procedure. All
data were obtained by collecting the full-scan mass spectra
within the range of 35–350m/z. The volatile compounds were
identified by comparing the characteristic ion fragmentation
pattern (mass spectrum) with data from mass spectra libraries
(NIST 08 Mass Spectral Library, National Institute of Standards
and Technology, Wiley; JKI-OW Library) and by comparing
retention times of standard compounds according to Weintraub
and Gross (2013). For relative quantification, the peak areas were
integrated, relative proportions of detected compounds were
calculated and used for further analyzing, in which the sum of
the selected compounds were set as 100%.

Statistical Analysis
After excluding peaks of irregular occurrence, such as
contaminants and compounds not separable on the elite
five column, multivariate techniques of data analysis—principal
component analysis (PCA) and discriminant function analyses
(DFA)—were employed to detect volatile compounds of tobacco
capable of differentiating between the three infection conditions
investigated. The relative proportions of the compounds,
which were consistent in all replicates of plant samples were
used in a PCA, followed by a DFA (Backhaus et al., 1987)
using SPSS 21.0 (IBM). All DFAs were performed with seven
principal components (PCs) with an Eigenvalue greater than
one. The standardized discriminant function coefficient and
the component loadings were used to assess the importance of
individual compounds. The two PCs with the highest component
loadings were considered to be the most influential components.
The chemical compounds which contributed significantly
to variations in plant odors were tested for significant
differences between respective groups using Kruskal-Wallis
non-parametric tests followed by a post-hoc Mann-Whitney
U-test and correction of α-levels for multiple comparisons
[following Bonferroni-Holm; Holm (1979)]. Hence, p1 < 0.0166;
p2 < 0.025; p3 < 0.05 for a global significance level of 0.05.
Comparison of relative volatile amounts released by infected and
healthy pome fruits were analyzed using Mann-Whitney U-test.
Significance level was set at p < 0.05.

DNA Extraction and Amplification
For identification of phytoplasma infections in plants, DNA
was extracted from the phloem tissue and amplified by
specific primers. Phloem tissue from the midrib of a leaf of
respective plant (tobacco, apple, pear) was abraded. Between
0.1 and 0.3 g of midrib tissue was selected for DNA-
extraction according to Doyle and Doyle (1990). The extraction
was performed under standardized conditions. The nucleic
acid pellets were resuspended in 50µl of sterile distilled

water and stored at −20◦C. Amplification of DNA was
performed in 25µl reactions containing 5 pmol of each
primer, 0.1mM of each dNTP, 1 U of heat-stable polymerase
(KAPA Biosystems) and 1 x polymerase buffer. The reaction
was cycled in a thermocycler (Eppendorf) with the following
parameters: initial denaturation 95◦C, 2min; 35 cycles of
denaturation (95◦C, 45 s), annealing (52◦C, 45 s), elongation
(72◦C, 1min); final elongation 72◦C 5min. The PCR-products
were electrophoresed on a 1% agarose gel containing ethidium
bromide (0.3µg/ml) in 1x TAE buffer (40mM GTris, 20mM
acetic acid, 1mM EDTA, pH 8.0). PCR-products were visualized
and photographed under UV light. For identification of the
phytoplasmas belonging to the apple proliferation group,
the primer pair fO1/rO1 (5′-CGGAAACTTTTAGTTTCAGT-
3′ and 5′-AAGTGCCCAACTAAATGAT) were used (Lorenz
et al., 1995). By the use of a Ca. P. mali specific primer
pair fAT/rAS (5′-CATCATTTAGTTGGGCACTT-3′ and 5′-
GGCCCGGACCATTATTTATT-3′) a 400 bp sequence in the
16S–23S ribosomal ribonucleic acid spacer region was amplified
and used to identify phytoplasma DNA from Ca. P. mali (Smart
et al., 1996).

Real-Time PCR
Real-Time PCR was performed with the iCycler IQ (Bio-
Rad Laboratories GmbH, Munich, Germany) only in
tobacco to differentiate between the two phytoplasma
strains (virulent and avirulent) analyzed. The amplification
was performed in 25µl reactions containing 25 pmol
of each primer (for strain 1/93: f460_B_1-93: 5′-
GTGCCCGAAATCCCTACAAAAG-3′ & r460short_1-93:
5′-GAAGGGGTAAATTTTATCTTTTTTT-3′; for strain 12/93:
f460_B_12-93: 5′-GTGCCCGAAATCCCTCCAAAAA-3′ &
r460_12-93: 5′-GTTTGAAGAGGTGAAATTTATATTTTTTC-
3′), 2 pmol of Taqman probe (for strain 1/93: 5′-
TTGGAACATCATTTAATTTTTTTTC-3′; for strain 12/93:
5′-CTGGAGCATCAGTTAATTTTT TTG-3′) with a reporter
fluorescence dye (for strain 1/93: Cy5; for strain 12/93: FAM) at
the 5′ end and a quencher dye (for strain 1/93: BHQ3; for strain
12/93: BHQ1) at the 3′ end, 0.2mM of each dNTP, 1U of heat-
stable polymerase (Tempase, Amplicon), 1 × polymerase buffer,
and 1µl of DNA. PCR conditions were as follows: 15min at 95◦C,
followed by a two-step protocol consisting of 39 cycles at 95◦C
for 15 s and 54◦C for 30 s. The primer pairs, as well as the marked
probe, are very specific for a target sequence of an AAA+ATPase
(APT00460) of each strain (Schneider, personal communication).

RESULTS

Identification of Volatile Compounds
Emitted by Model Plant (Nicotiana
occidentalis)
Thirty compounds were recognized by GC analysis. Twenty-
eight of these compounds were consistent in all replicates
of 109 plant samples and considered for statistical analysis
(Figure 2; Table 1). Twenty compounds could be identified with
confidence. For six compounds, only the substance class has
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TABLE 1 | Volatile compounds of tobacco plants included in statistical

analysis.

No. Substance

1 3-Methyl-1-butanol

2 n-Hexanal

3 (Z)-3-Hexene-1-ol

4 1-Hexanol

5 2-Methylbutyl acetate

6 2-Methyl-2-butenyl acetate

7 Benzaldehyde

8 Unknown1

9 2-Methyl-2-heptene-6-one

10 2-Octanone

11 Octanal

12 (Z)-3-Hexene-1-ol acetate

13 Hexyl acetate

14 Butanoic acid ester1

15 Limonene

16 Benzyl alcohol

17 Ocimene

18 Linalool

19 Butanoic acid ester2

20 Butanoic acid ester3

21 Butanoic acid ester4

22 Ethyl benozate

23 Unknown2

24 Butanoic acid ester5

25 β-Caryophyllene

26 Geranyl acetone

27 α-Caryophyllene

28 Sesquiterpene 23.4

been identified and two compounds remained unknown. The
substance subset is composed by several plant volatiles such
as amino acid derivatives, esters, mono-, and sesquiterpenes.
The most abundant compounds found in all tobacco plant
headspace samples were green leaf volatiles (GLV) such as
n-hexanal (2), (Z)-3-hexene-1-ol (3), and (Z)-3-hexene-1-ol
acetate (12) in addition to an unidentified butanoic acid ester
(14), ocimene (17), a second unidentified butanoic acid ester
(19), and β-caryophyllene (25) with different compositions
within the tested odor bouquets (numbers following Figure 2).
An analysis of the relative concentrations of the compounds
revealed differences between infection status (virulent infected,
avirulent infected, healthy), as well as between stage of
infection (8–12th week after infection). The most obvious
identifiable VOC’s difference between the infected and the
healthy tobacco plants was the higher occurrence of ethyl
benzoate (22; RT 14.2) and an unidentified sesquiterpene at RT
23.4 (28) in infected plants as opposed to healthy tobacco plants
(Figure 2).

For the statistical analysis of both qualitative and quantitative
differences between the three treatments, the calculated relative
concentrations of the respective compounds were used (given

as percentages). Canonical linear discriminant function analysis
(DFA) was performed with seven PCs with an Eigenvalue above
one explaining 77.17% of the variance to test for differences in
tobacco VOC spectrumwithin different infection conditions. For
every week after infection, a uniqueDFAwas obtained (Figure 3).
Up until 9 weeks after infection, the plants’ odor pattern did not
differ—as revealed by the non-significant discriminant functions
(Figure 3A: e.g., 8th week: DFA: discriminant function 1: χ2 =

20.360, df = 14, p = 0.11; discriminant function 2: χ2 = 7.295,
df = 6, p = 0.294). After the 10th week, the volatile pattern
of the three conditions of tobacco plants could be statistically
separated with respect to relative concentrations of individual
compounds according to their infection condition (Figure 3B:
10th week: DFA: discriminant function 1:χ2 = 34.074, df = 14,
p = 0.002; discriminant function 2: χ2 = 11.508, df = 6,
p = 0.074; Figure 3C: 11th week: DFA: discriminant function
1: χ2 = 29.207, df = 14, p = 0.010; discriminant function 2:
χ2 = 7.776, df = 6, p = 0.255; Figure 3D: 12th week: DFA:
discriminant function 1: χ2 = 30.821, df = 14, p = 0.006;
discriminant function 2: χ2 = 5.177, df = 6, p = 0.521).
From the 11th week infection, the odor compositions of the two
infected plants were also separated statistically. It is important to
mention that the group centroid based on the odor of the plant
infected with the avirulent strain is located intermediate with
respect to the x-axis between the one infected with the virulent
strain and the healthy one (Figures 3C,D).

Discriminant functions were constructed using up to seven
PCs and every PC received an individual component loading
to assess the importance of individual compounds. Function 1
was always strongly correlated with PC4 which consisted of ethyl
benzoate, the unidentified sesquiterpene at RT 23.4 (ST 23.4)
and α-caryophyllene. Additionally, significant differences were
found between these particular compounds within tested plants
(Kruskal-Wallis, p < 0.05). Ethyl benzoate contributed to a
greater extent to the scent bouquet of infected plants relative to
healthy plants (Figure 4A; Mann-Whitney, p < 0.05, following
Bonferroni-Holm correction) and contributed to the separation
of infected and healthy plants. Among the two infected plant
treatments, there was no general difference of the relative amount
of ethyl benzoate. In contrast, the relative amount of ST 23.4
differed statistically significant between the three tested infection
conditions of plants 11 weeks after infection (Mann-Whitney,
p < 0.05, following Bonferroni-Holm correction; Figure 4B).
Hence, prior to this time, it is possible to distinguish between
infected and healthy plants as well as between the two infected
plant treatments based on ST 23.4.

Classification by cross validation, a statistical method to verify
the LDA model, confirmed these results, as 56.5–68.8% of cross
validated grouped cases were classified correctly (Table 2). Ten
weeks after infection, plants infected with the virulent strain
were never wrongly classified as healthy plants according to their
odor patterns and vice versa. In contrast, incorrect classification
of tobacco plants infected with the avirulent strain (mistaken
for plants infected with the virulent strain or healthy plants)
was common (Table 2). The VOCs of the plant infected with
the avirulent strain had similarities with both the VOCs of the
healthy plants and plants infected with the virulent phytoplasma
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FIGURE 2 | Total ion current chromatogram obtained from GC-MS analysis of odor spectra of tobacco plants under different infection conditions. The

visible symptoms (shoot proliferation) caused by the respective phytoplasma strain are shown in the photograph. (A) infected by the virulent strain; (B) infected by the

avirulent strain; (C) healthy tobacco plant. Amplification: 1*109. Ethyl benzoate (22) and an unidentified sesquiterpene at 23.4min (28) were present in the odor of

infected plants but not in the one of uninfected plants. Numbering of relevant peaks follows the numbering in Table 1. Photographs by Margit Rid, JKI.

strain. However, the longer a tobacco plant had been infected
(>9 weeks), themore distinctly a differentiation between infected
and healthy conditions could be detected. From the 10th week
onwards, even the influence of the type of strain (virulent or
avirulent) on the odor pattern could be detected.

Volatiles Emitted by Infected and Healthy
Apple (Malus communis) and Pear (Pyrus
communis) Plants
Twenty VOCs consistently present in chromatograms in all
replicates of apple and pear were selected for statistical analysis.
At the beginning of the experiment, apple trees infected
by Ca. P. mali showed earlier sprouting than healthy trees.
While the AP infected plants attained BBCH 07-09, healthy
apple trees remained in dormancy. Additionally, significant
higher concentrations of (Z)-3-hexene-1-ol, benzaldehyde and
linalool were produced by healthy apple plants at BBCH 19-33
(Mann-Whitney, p < 0.05; data not shown). At BBCH 34-
35, benzaldehyde, heptanal, and hexyl acetate occurred more
often in healthy plants (Mann-Whitney, p < 0.05; data
not shown). In contrast, a significant higher release of ethyl
benzoate (at BBCH 34-35; Figure 5A) and methyl salicylate
(at BBCH 19-33; Figure 5B) was observed for apple trees
infected with Ca. Phytoplasma mali (Mann-Whitney, p < 0.05).

At the beginning of sprouting (BBCH 7-11) there were no
noticeable differences in the occurrence of ethyl benzoate. From
BBCH 34-35 onwards, the relative concentration of this volatile
ester increased steadily. Increased release of methyl salicylate
by infected apple trees was confirmed for all phenological
stages except BBCH 7-11. In pear trees infected with Ca. P.
pyri, the expression of ethyl benzoate began at BBCH 19-
33, differed significantly between infected and healthy trees
at BBCH 34-35 but was not expressed at any other stages
(Figure 6).

DISCUSSION

This is the first indication that different strains of a phytoplasma,
differentiated by their virulence, possess different abilities to
modulate the emission of volatiles by hosts (tobacco and
apple). Significantly higher concentrations of ethyl benzoate
were produced by all phytoplasma-infected plants compared
to healthy plants and the concentration of an unidentified
sesquiterpene (ST 23.4) differed between the bouquets of
healthy and Ca. P. mali infected tobacco (Figure 4). Both ethyl
benzoate and ST 23.4 occur in infected tobacco plants in higher
concentrations independent of the virulence of the strain of
phytoplasma. Additionally, ethyl benzoate was also detected in
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FIGURE 3 | Comparison of the odor composition of tobacco plants’ headspace according Ca. P. mali infection conditions using a DFA. Group centroids

are depicted as squares. h, healthy plants (squares); a, tobacco plants infected by the avirulent strain (circles); v, tobacco plants infected by the virulent strain

(triangles). (A) 8 weeks after grafting (Nh = 6, Na = 9, Nv = 9; discriminant function (df) 1: ns, df 2: ns); (B) 10 weeks after grafting (Nh = 6, Na = 8, Nv = 9; df 1: sig,

df 2: ns); (C) 11 weeks after grafting (Nh = 4, Na = 6, Nv = 6; df 1: sig, df 2: ns); (D) 12 weeks after grafting (Nh = 6, Na = 9, Nv = 8; df 1: sig, df 2: ns).

statistically higher concentrations in the odor of pear trees (Pyrus
communis) infected by Ca. Phytoplasma pyri (Figure 6).

Ethyl benzoate is an ester formed by the condensation of
benzoic acid and ethanol. It is very common in flower and
fruit odors of many plants. Some animal species utilize ethyl
benzoate in their chemical communication system. For example,
it is part of the pheromone mix of the interdigital gland of male
white-tailed deer (Gassett et al., 1996) and it is an attractant
for some tephritids like the oriental fruit fly Bactrocera dorsalis
and the West Indian fruit fly Anastrepha oblique (Chu et al.,
1996; Cruz-López et al., 2006). While ethyl benzoate is not a
common volatile of leaves, it was produced by apple leaves after
infestation by the spider mite Tetranychus urticae (Takabayashi
et al., 1991). In our tobacco model, as well as in the host plants
apple and pear, a higher emission of ethyl benzoate by infected
plants was observed. It seems that there is a direct link between

infection with phytoplasmas and ethyl benzoate production.
Ethyl benzoate may be an active compound for the vector of the
apple proliferation disease C. picta. The concentration of ethyl
benzoate emitted by apple leaves is higher when infected with Ca.
P. mali than by healthy apple plants. Ethyl benzoate is capable
of eliciting reactions from insects of other genera (Chu et al.,
1996; Cruz-López et al., 2006; Beck et al., 2011) but to confirm
whether psyllids, especially C. picta, recognize and are responsive
to it will require that additional EAG (electroantennography) and
olfactometer experiments are performed.

The sesquiterpene ST 23.4 occurs in the odor of infected
tobacco plants in different concentrations. Since this compound
was only emitted by tobacco, we refrained from attempting a
full identification which would have been difficult and costly.
Apple and tobacco plants are both capable of producing β-
caryophyllene. While in apple plants, Ca. P. mali elicited
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FIGURE 4 | Relative amounts of two compounds of tobacco (Nicotiana occidentalis) at three plant infection conditions at different infection states in

direct comparison. (A) Ethyl benzoate, (B) sesquiterpene 23.4. Different letters indicate statistical differences (Mann-Whitney, p < 0.05, followed by Bonferroni-Holm

correction). Notice that outliers are indicated by circles and extremes by asterisks. The relative amounts of emitted ethyl benzoate and ST 23.4 are at every time point

higher in the infected plants, compared to healthy ones.

an increase of β-caryophyllene (Mayer et al., 2008a,b), ethyl
benzoate and methyl salicylate expression, an increase in another
sesquiterpene (the unidentified compound ST 23.4) was induced
in tobacco. Both sesquiterpenes may share identical precursors
for their biosynthesis (Dudareva et al., 2004) but the reason why
Ca. P. mali elicits the emission of different sesquiterpenes in two
plant species, which are both able to produce β-caryophyllene,
is still elusive. A possible explanation is that in both studies,
different strains of Ca. Phytoplasma mali were used. The apple
plants analyzed by Mayer et al. (2008a,b) were infected with

strain AT and tobacco plants analyzed in this study with
strains 1/93 (avirulent) and 12/93 (virulent). Additionally, also
different cultivars of apple were used in the two studies. While
Mayer et al. (2008a,b) conducted their investigations using the
cultivar “Gala,” the cultivar “Golden Delicious” was used in
this study. It was shown that β-caryophyllene was emitted by
the roots of European maize cultivars infested by subterranean
Diabrotica virgifera larvae (Rasmann et al., 2005). Nevertheless,
this important defense compound could not be detected in
most American maize cultivars (Köllner et al., 2008). Thus, as a
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FIGURE 5 | Relative amounts of two compounds in the direct comparison of infected and healthy apple plants (Malus domestica) at different

phenological growth stages. (A) Ethyl benzoate, (B) methyl salicylate. Different letters denote statistical differences (Mann-Whitney, p < 0.05). Notice that outliers

are indicated by circles and extremes by asterisks.

consequence of artificial selection for specific traits like size, smell
or color, many crop plant varieties underwent genotypic and
phenotypic changes during their domestication which may have

been associated with the loss of specific VOCs. In the final step of
terpene biosynthesis only one enzyme defines the differentiation
in a mono- or sesquiterpene. Volatile terpenoid biosynthesis is
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FIGURE 6 | Relative amounts of ethyl benzoate in the direct comparison of infected and healthy pear plants (Pyrus communis) at different

phenological stages. Different letters denote statistical differences (Mann-Whitney, p < 0.05). Notice that outliers are indicated by circles and extremes by asterisks.

TABLE 2 | Classification table of cross validation results for group

memberships of tobacco plants.

Predicted Infected by

avirulent

Ca. P. mali

strain

Infected

by virulent

Ca. P. mali

strain

Not infected

Original

8th week

58.3%a
Infected by avirulent

Ca. P. mali strain

5 (55.6%) 1 (11.1%) 3 (33.3%)

Infected by virulent

Ca. P. mali strain

2 (22.2%) 5 (55.6%) 2 (22.2%)

Not infected 2 (33.3%) 0 (0.0%) 4 (66.7%)

10th week

60.9%a

Infected by avirulent

Ca. P. mali strain

5 (55.6%) 2 (22.2%) 2 (22.2%)

Infected by virulent

Ca. P. mali strain

4 (50.0%) 4 (50.0%) 0 (0.0%)

Not infected 1 (16.7%) 0 (0.0%) 5 (83.3%)

11th week

68.8%a
Infected by avirulent

Ca. P. mali strain

4 (66.7%) 0 (0.0%) 2 (33.3%)

Infected by virulent

Ca. P. mali strain

1 (16.7%) 5 (83.3%) 0 (0.0%)

Not infected 2 (50.0%) 0 (0.0%) 2 (50.0%)

12th week

56.5%a
Infected by avirulent

Ca. P. mali strain

3 (33.3%) 3 (33.3%) 3 (33.3%)

Infected by virulent

Ca. P. mali strain

2 (25.0%) 6 (75.0%) 0 (0.0%)

Not infected 2 (33.3%) 0 (0.0%) 4 (66.7%)

aof cross validated grouped cases were classified correctly.

predominantly regulated at transcription (Sharon−Asa et al.,
2003; Wang et al., 2008). Thus, it is likely that pathogen virulence
factors may change the overall volatile blend of a plant by
regulating gene expression by terpene synthases/cyclases (TPS).
Like seen for inducing β-caryophyllene in apple (Mayer et al.,
2008b) and ST 23.4 in tobacco, Ca. P. mali possess the ability
to change sesquiterpene production in plants. However, silent
TPSs, which are not expressed under normal conditions but in
pathological circumstances, were reported recently (Orlova et al.,
2009). The genes affected and mechanisms remain unknown.
Phytoplasma virulence factors have been shown to interfere with
gene regulation of infected plants (Hoshi et al., 2009; Sugio et al.,

2011b;Maclean et al., 2014). If they are capable of interfering with
terpene biosynthesis, they should become the focus of further
investigation.

Methyl salicylate was released by infected apple trees of all
phenological growth stages, except BBCH 7-11 (Figure 5A). This
ester is naturally produced by many species of plants and has
been reported in numerous floral scents (Knudsen et al., 1993).
It has been shown that methyl salicylate was also released from
vegetative tissues attacked by herbivores (Van Poecke et al.,
2001). In another plant-pathogen system it was recently shown
that methyl salicylate was induced in the leaves of Citrus spp.
by Ca. Liberibacter asiaticus (Mann et al., 2012). Moreover,
methyl salicylate is attractive to Diaphorina citri and has been
suggested to mimic a psyllid pheromone (Mann et al., 2012).
Methyl salicylate is also attractive to some insect predators and
parasitoids (Van Poecke et al., 2001; Martini et al., 2014b; Jones
et al., 2015).

In addition to specific secondary compounds, general (GLVs)
contributed a considerable proportion to the odor of infected
and healthy tobacco and apple plants in our study. GLVs are
C6 molecules which are produced and emitted rapidly following
herbivory or pathogen infection by almost every green plant
(Scala et al., 2013). Mechanical damage of plant tissues can
result in both quantitative and qualitative changes in the volatile
emissions of GLVs (Scala et al., 2013). It has been shown
that phytoplasmas can interfere with the synthesis of jasmonic
acid (JA) (Sugio et al., 2011a). Since both JA and GLV are
produced via the lipoxygenase pathway (Dudareva et al., 2004),
it is possible that phytoplasmas are also capable of inducing
emissions of GLVs. Moreover, because the emission of GLVs
was observed in some healthy tobacco plants, it is possible that
some of the control plants had been accidently damaged by
handling.

Due to the short generation time of tobacco, as opposed to
woody apple, greater replication was achieved in a shorter time.
Although tobacco exhibited several differences to apple, both the
development of disease symptoms and odor alteration due to
infection, were able to investigated with this model (Figure 2).
While tobacco is not a suitable host for the vector, changes in
odor due to infection with Ca. P. mali appear similar to those in
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apples and provide hints as to the compounds which should be
included in future investigations. Presumably, tobacco and apple
share some VOC biosynthesis pathways (Dudareva et al., 2004),
in particular the production of mono- or sesquiterpenes which
rely on identical precursors.

The relative amount of compound ST 23.4 in tobacco varied
significantly between the two virulence strains. On one hand,
the higher emission of VOCs in plants infected with Ca.
Phytoplasma mali could be caused by an increased amount of
vascular tissue and leaf surface due to the proliferation associated
with the production of witch’s broom symptoms—as suggested
by Mayer et al. (2008a). On the other hand, the plant tissue
infected by the virulent strain may emit higher concentrations
of VOCs. The less virulent strain is unable to elicit typical
disease symptoms presumably because it lacks a factor which
suppresses the plant’s immune system. That the immune system
can overcome a phytoplasma infection is one explanation of the
so-called “recovery phenomenon” in AP-infested trees (Carraro
et al., 2004). The recovery phenomenon is accompanied by
a higher concentration of JA in asymptomatic but infected
plants; in contrast, infected plants exhibiting disease symptoms
have reduced JA concentrations (Patui et al., 2013). Thus, the
virulent strain may suppress the plant immune system more
effectively than the avirulent strain. The variation in symptoms
observed in infected plants coincides with differential presence
of phytoplasma effector genes (Sugio and Hogenhout, 2012).
Whether effector proteins are involved in changing the odor
profile is unknown.

Some species of psyllid have been shown to use
semiochemicals in interspecific and intraspecific communication
(Soroker et al., 2004; Mayer et al., 2011; Gross, 2013; Weintraub
and Gross, 2013; Lubanga et al., 2014). While sex pheromones
may play a role in mate location in some species of psyllid, it
appears that vibrational signals may be even more important
and perhaps effective for mate location and selection (Eben
et al., 2014; Lubanga et al., 2014; Wood et al., 2015). Psyllid
behaviors related to aggregation will be important to elucidate
to better understand the epidemiology of phytoplasmas.
Nevertheless, olfactory, gustatory and visual plant cues affecting
psyllid behavior also need to be documented to understand
the movement of psyllids between hosts and among modules
within hosts (Farnier et al., 2014, 2015; Orlovskis et al., 2015).

The differences in VOCs emitted by infected host plants
depending on pathogen virulence add a new dimension to plant
attractiveness to C. picta. Ongoing research will aim to clarify
the underlying physiological and molecular interactions between
phytoplasma and host plant as they relate to the emission of
VOCs. Furthermore, the role of VOCs in vector attraction and
phytoplasma epidemiology will be investigated.
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