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For evolutionary ecologists, the “holy grail” of visual ecology is to establish an

unambiguous link between photoreceptor sensitivity, the spectral environment, and the

perception of specific visual stimuli (e.g., mates, food, predators, etc.). Due to the bright

nuptial colors of the males, and the role female mate choice plays in their evolution, the

haplochromine cichlid fishes of the African great lakes are favorite research subjects for

such investigations. Despite this attention, current evidence is equivocal; while distinct

correlations among photoreceptor sensitivity, photic environment, and male coloration

exist in Lake Victorian haplochromines, attempts to find such correlations in Lake

Malawian cichlids have failed. Lake Malawi haplochromines have a wide variability in

their short-wavelength-sensitive photoreceptors, especially compared to their mid- and

long-wavelength-sensitive photoreceptors; these cichlids also vary in the degree to which

they express one of three basic color patterns (vertical bars, horizontal stripes, and solid

patches of colors), each of which is likely used in a different form of communication. Thus,

we hypothesize that, in these fishes, spectral sensitivity and color pattern have evolved in

a correlated fashion to maximize visual communication; specifically, ultraviolet sensitivity

should be found in vertically-barred species to promote “private” communication, while

striped species should be less likely to have ultraviolet sensitivity, since their color

pattern carries “public” information. Using phylogenetic independent contrasts, we found

that barred species had strong sensitivity to ultraviolet wavelengths, but that striped

species typically lacked sensitivity to ultraviolet light. Further, the only variable, even when

environmental variables were simultaneously considered, that could predict ultraviolet

sensitivity was color pattern. We also found that, using models of correlated evolution,

color pattern and ultraviolet sensitivity are correlated in Lake Malawi cichlid evolution, with

the likely ancestor being a vertically-barred, ultraviolet-sensitive species, the descendants

of which lost both ultraviolet sensitivity and a barred color pattern. These results,

indicating that communication of “public” and “private” signals is mediated via differing

perceptions of color patterns, suggest a functional connection between visual sensitivity

and color pattern, a novel finding in Lake Malawi cichlids.

Keywords: Lake Malawi, cichlids, visual ecology, ultraviolet photoreception, correlated evolution, phylogenetic

independent contrasts
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INTRODUCTION

For those who study the ecology of vision, the “holy grail”
of such studies is to discover an unambiguous link among
photoreceptor sensitivity, the wavelengths of light available
within the study organism’s habitat, and the perception of
ecologically relevant visual stimuli, such as food, predators, or
mates (Ryan and Rand, 1990; Endler, 1992; van Staaden and
Smith, 2011). This is, of course, a convenient “shorthand” view
of how vision works in animals, one that overlooks the complex
relationships and interactions among photons, opsins, neurons,
and the resulting image constructed by the organism’s brain
(Endler, 1990, 1991; Fernald, 2006). Nonetheless, organisms do
face fitness consequences if they fail to detect photons in the
proper context (Endler, 1978, 1992; Milner and Goodale, 1995;
Land and Nilsson, 2002), so this kind of proximate approach

FIGURE 1 | Maximum Likelihood phylogeny of Lake Malawi cichlids based on the ND2 mitochondrial gene.

to studying the perception of light is valuable as a first step
toward understanding the role color vision plays in ecological
circumstances (Endler, 1978, 1990; Endler and Mielke, 2005).

The cichlid fishes of the African great lakes have received
much attention from visual ecologists; the bright colors of the
males, as well as the presence and importance of visually-based
female mate choice, strongly suggest a history of correlated
evolution between nuptial coloration and visual sensitivity.While
such a connection has been shown in Lake Victorian cichlids
(Seehausen et al., 2008), this has not been as clearly demonstrated
in the Lake Malawi cichlids. In the most comprehensive such
study on Malawian cichlids, Dalton et al. (2010) fail to find
any correlation among sensitivity, photic environment, and
coloration; indeed, they found that depth does not influence the
perceptibility of cichlid hues, suggesting that depth may not have
an influence on photoreceptor sensitivity.
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Within the past 15 years, the existence of ultraviolet (UV)
vision in fishes has also attracted the attention of visual ecologists
(Losey et al., 1999). While initially thought rare, due in part
to the rapid attenuation of UV wavelengths in water, many
fishes have UV-sensitive photopigments or UV-reflective color
patterns (Losey et al., 2003; Marshall et al., 2003; Jordan et al.,
2004a; Siebeck et al., 2010). In fishes, UV vision is known to
aid foraging (Browman et al., 1994), species recognition (Cheney
and Marshall, 2009; Siebeck et al., 2010), and mate choice
Kodric-Brown and Johnson, 2002). The role of UV vision in
fish communication is particularly interesting because it is often
used as a “private” means of communication; i.e., a range of
wavelengths visible to conspecifics, but not to other species,
especially predators (Endler, 1992; Cummings et al., 2003).

In Lake Malawi cichlids, there is wide variability in the peak
sensitivities of short wavelength sensitive (SWS) photopigments.
Some species have UV-sensitive SWS photopigments, while
others are violet- or blue-sensitive (Parry et al., 2005). Some
of the rock-dwelling species (“mbuna”) use their UV sensitivity
to aid foraging (Jordan et al., 2004b), and many species have
UV-reflective color patterns (Jordan et al., 2004a; Pauers et al.,
2004; Parry et al., 2005), though the use of UV vision or
UV-reflective color patterns in communication has not been
explicitly demonstrated. This variability in SWS sensitivity is in
stark contrast to the much smaller variation among the peak
sensitivities of the longer wavelength-sensitive photopigments
within these same species; the peak sensitivity of the SWS
photopigment ranges from 360 to 433 nm, while the peak
sensitivity of the longer-wavelength sensitive photopigments
ranges from 499 to 548 nm (Parry et al., 2005; Dalton et al., 2010).
This relatively broad range in SWS sensitivity strongly suggests
that there must be a function associated with the difference in
UV- vs. violet- or blue-sensitive SWS photopigments.

Lake Malawi cichlids also display marked differences in their
gross color patterns. Many species display vertical bars as a
major component of their color patterns, and horizontal stripes
are also common (Seehausen et al., 1999). Horizontal stripes
are well-understood to be used as camouflage, especially by
piscivorous cichlids, but the function of bars, on the other hand,
seems related to promoting crypsis in a highly structured habitat
(Seehausen et al., 1999). A third color pattern common to Lake
Malawi cichlids consists of solid patches of contrasting colors.
Interestingly, these “solid” patterns are likely to evolve under
conditions similar to those that promote the evolution of vertical
bars (Kenward et al., 2004), but are also likely to have evolved in
these fishes for the purpose of mate attraction (Seehausen et al.,
1999).

No matter the type of gross color pattern present, species
that use these patterns to be conspicuous to conspecifics
would have a selective advantage if they were simultaneously
cryptic to their predators (Endler, 1992; Cummings et al.,
2003). Further, predatory fishes would also have a selective
advantage if their camouflage markings were visible to their
prey, no matter the visual sensitivity of the observer. Thus, we
suggest that in Lake Malawi cichlids, SWS sensitivity and color
pattern have coevolved to create “private” and “public” bands of

TABLE 1 | Species used in phylogenetic analyses and GenBank accession

numbers for ND2 sequences.

Species Accession number

Aristochromis christyi EF585282

Copadichromis eucinostomus EF585268

Cyathochromis obliquidens GQ422579

Cynotilapia afra EF585264

Cyrtocara moorii AY930089

Dimidiochromis compressiceps EF585267

Dimidiochromis kiwingi GU946222

Genyochromis mento AF305297

Labeotropheus fuelleborni EF585259

Labeotropheus trewavasae GU946225

Labidochromis ‘bluebar’ GQ422573

Labidochromis gigas EF585276

Lethrinops auritus U07252

Maravichromis mola EF585274

Melanochromis auratus AY930069

Melanochromis perileucos GQ422574

Melanochromis loriae JX119227

Melanochromis vermivorous EF585270

Metriaclima aurora EF585266

Metriaclima callainos EF585271

Metriaclima heteropictus GQ422584

Metriaclima zebra DQ093114

Nimbochromis linni EF585279

Nimbochromis polystigma EF585262

Petrotilapia nigra EU661721

Placidochromis milomo GQ422590

Protomelas annectens EU661718

Protomelas spilonotus EF585253

Protomelas taeniolatus GU946232

Pseudotropheus livingstonii EF585273

Rhamphochromis esox GU946233

Taeniolethrinops praeorbitalis GU946236

Tramitochromis brevis AF305320

Tropheops “broadmouth” GQ422589

Tropheops gracilior EF585260

Tropheops “orangechest” GQ422583

Tropheops “redcheek” GQ422568

Tyrannochromis macrostoma EF585257

Tyrannochromis maculiceps GQ422571

Outgroups

Astatotilapia calliptera GU946219

Boulengerochromis microlepis AF317229

Oreochromis niloticus AF317237

communication. Specifically, we hypothesize that cichlids with
UV sensitivity are more likely to have color patterns featuring
vertical bars, since both are likely components of “private,”
cryptic signals. Conversely, predatory fish, which rely on clear,
obvious camouflage, are more likely to have color patterns with
horizontal stripes, and less likely to need “privacy” for this signal,
and are thus likely to lack UV-sensitive SWS photoreceptors.
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MATERIALS AND METHODS

Malawi Cichlid Color Pattern,
Photoreceptor Sensitivity, and Ecological
Data
Data were compiled regarding photopigment sensitivities
(Hofmann et al., 2009); male nuptial color patterns (Ribbink
et al., 1983; Konings, 2007); diet (Hofmann et al., 2009; Konings
and Stauffer, 2012), depth (Ribbink et al., 1983); and the
wavelength of the radiance spectra about which quanta are likely
to be most abundant (λP50) at two locations in Lake Malawi,
Otter Point and Thumbi West (Sabbah et al., 2011). Regarding

photopigment sensitivities, Hofmann et al., 2009) report two
values: the peak sensitivity of the SWS opsin found in the single
cones, but only the stronger of the two sensitivities recorded
for the two opsins found in the double cones; we use both
values as reported, with the understanding that we are missing
information about the way the double-cone system discriminates
among wavelengths (Neitz and Neitz, 2011). Using Seehausen
et al. (1999) and Konings (2007) as guides, color patterns were
classified as barred, striped, or solid. Colors comprising≥ 50% of
the body were considered the main hue of the fish, and all long-
wavelength colors (e.g., yellows, oranges, and reds) were classified
as “carotenoid” colors. Maximum depths of most species (n =

FIGURE 2 | One example of the 1000 trees generated from the phylogeny in Figure 1, with color pattern (vertical bars, solid patches, or horizontal

stripes), SWS sensitivity (UV vs. non-UV), and dietary (piscivorous vs. non-piscivorous) characteristics mapped onto the phylogeny for each species.
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FIGURE 3 | One example of the 1000 trees generated from the phylogeny in Figure 1, containing the 21 species for which all ecological data were

available.

27) were obtained from Ribbink et al. (1983). The λP50 of
the sidewelling radiance spectra was used to represent spectral
habitats, as radiance spectra include radiant, reflective, and
transmissive sources (Endler, 1993). The λP50 at the maximum
depth of each species were estimated from Sabbah et al. (2011);
because these authors recorded spectral data at discrete depths
(at 1, 3, 5, 6, 9, 12, and 15m of depth) that did not always match
the distributions reported by Ribbink et al. (1983), the λP50 of
the next deepest depth was used (e.g., a species with a maximum
depth of 10m was assigned the λP50 at 12m). Further, species
with maximum depths ≥ 15m (n = 13) were assigned the λP50
of 15m.

Phylogenetic Independent Contrasts
We used RAxML (Stamatikis, 2014) to generate a ML tree
(Figure 1) using sequences of the mitochondrial ND2 gene
downloaded fromGenBank (Table 1). First, these sequences were
aligned using T-Coffee (Notredame et al., 2000), and we then
removed poorly aligned regions using stringent conditions in
Gblocks (Castresana, 2000). Using the GTRGAMMA model of
molecular evolution, we generated support values using 1000
pseudoreplicates. These 1000 trees were then imported into the
ape package (Paradis et al., 2015) in R, and we began by pruning
all outgroups (Figure 2). We then calculated a phylogenetic
independent contrast between the peak sensitivities of the SWS
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TABLE 2 | Phylogenetic Independent Contrast between opsin peak sensitivity and color pattern.

(A) SWS PEAK SENSITIVITY

Residuals Minimum 1st Quartile Median 3rd Quartile Maximum

−155.430 −52.920 −24.410 54.500 262.370

Coefficients Estimate Std. Error t-value Pr(>|t|)

Color pattern 31.150 6.421 4.851 0.00002

Residual standard error: 87.91 on 36 degrees of freedom

Multiple R2 = 0.395, Adj. R2 = 0.379

F(1, 36) = 23.530, p = 0.00002

Pairwise Comparisons; p-values Holm corrected

Bars Solid

Solid 0.02907 –

Stripes 0.00032 0.02907

(B) DOUBLE CONE PEAK SENSITIVITY

Residuals Minimum 1st Quartile Median 3rd Quartile Maximum

−139.603 −15.460 5.923 17.916 125.287

Coefficients Estimate Std. Error t-value Pr(>|t|)

Color pattern −1.182 3.264 −0.362 0.926

Residual standard error: 44.68 on 36 degrees of freedom

Multiple R2 = 0.0003, Adj. R2 = −0.024

F(1, 36) = 0.131, p = 0.719

Pairwise Comparisons; p-values Holm corrected

Bars Solid

Solid 1.00 –

Stripes 1.00 1.00

photoreceptors and color pattern of all species in the dataset
(n = 39). We then pruned the phylogeny again, leaving only
those species for which we had a complete set of photoreceptor
sensitivity and ecological data (Figure 3; n = 21). Using this
pruned phylogeny, two phylogenetic independent ANOVAs were
calculated. In the first, SWS peak sensitivity was the dependent
variable, and color pattern, diet, maximum depth, irradiance, and
body color were independent variables; in the second, the double
cone peak sensitivity was used as the dependent variable, with the
same set of independent variables.

Correlated Trait Evolution
Following the methodology of Kelley et al. (2013), we attempted
to determine whether or not visual sensitivity and color pattern
have evolved in a correlated fashion in Lake Malawi cichlids. To
begin, we used the geiger package (Harmon et al., 2014) in R
to calculate λ, an estimate of phylogenetic signal (Pagel, 1999),
for both visual sensitivity and color pattern. We modified the
phylogeny described above (e.g., outgroups removed and all 39
species of Malawian cichlids included) to create two new trees,
one in which branch lengths were set to λ = 0, indicating no
phylogenetic signal; and another in which the branch lengths
were set to λ = 1, indicative of a random, Brownian motion of
traits. The fit of these models was compared to that of the original
phylogeny using likelihood ratio (LR) tests.

We then generated another ML tree from the original
ND2 sequence data, and generated support values using 1000
pseudoreplicates using the GTRGAMMA model of molecular

evolution. We then used these 1000 trees in our analyses of
correlated trait evolution. To simplify these analyses, we recoded
our traits as discrete, binary traits. For visual sensitivity, we
classified fish as either UV sensitive (e.g., SWS peak sensitivity <

400 nm) or non-UV (SWS peak sensitivity ≥ 400 nm). For color
pattern, we had to simplify our three classes (bars, solid, and
stripes) into two, bars and stripes. To do this, we examined
photographs of juvenile, female, and immature/subordinate
males (using Konings, 2007), in order to better distinguish
the underlying melanin patterns of solid-colored fishes; even
in species in which dominant, territorial males prominently
display solid patches of color, other life history stages display a
fundamental melanin-based pattern of vertical bars or horizontal
stripes (c.f., Baerends and Baerends-van Roon, 1950; Voss, 1980;
Seehausen et al., 1999). Thus, we were able to reclassify solid-
colored fishes as either having stripes (e.g.,Nimbochromis) or bars
(e.g., Labeotropheus).

The 1000 trees and the data matrix of binary visual sensitivity
and binary color patterns were imported into BayesTraits (Meade
and Pagel, 2014). We used the maximum likelihood (ML) model
of evolution to compare both independent (i.e., a model in which
discrete character states are assumed to evolve independently)
and dependent (i.e., a model in which the evolution of one
character depends upon the evolution of the other) models of
character evolution.

We originally assumed that, based on O’Quin et al. (2010), a
non-UV-sensitive, striped cichlid was the ancestor of the extant
Lake Malawi flock. As such, we coded both a lack of UV
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sensitivity and a striped color pattern as 0s in our data matrix,
while UV sensitivity and a barred color pattern were coded as
derived traits and were assigned values of 1. We then used the
ML models in BayesTraits to evaluate likely ancestral states by
running the dependent and independent models in three ways:
“unfossilized” (that is, with no a priori information given to
the program regarding ancestral state), “fossilized” at state 0,0
(i.e., fixing stripes and non-UV visual sensitivity as the likely
ancestral states), and “fossilized” at state 1,1 (i.e., bars and UV-
sensitivity as the likely ancestral state). We then compared these
models using LR tests. Finally, we investigated the direction of
significant evolutionary transitions by sequentially restricting all
eight possible changes in character state of the preferred (as
indicated by the LR test) model to zero and comparing these to
the original, “unfossilized” model.

Photography and Spectrophotometry
The methods used in this study have been described in detail
in Pauers et al. (2004) and are only summarized here. The fish
were anesthetized with a weak dose of MS-222 and then placed
in an ice bath. Upon removal from the ice bath, the fish was

FIGURE 4 | The relationship between color pattern and photoreceptor

sensitivity of Lake Malawi cichlids. (A) SWS photoreceptor sensitivity; (B)

double cone maximal sensitivity. Inset pictures show examples of each color

pattern type (bars, Metriaclima zebra; solid, Labeotropheus c.f. fuelleborni

“Katale”; stripes, Melanochromis auratus). Error bars = standard error.

placed on a black cloth and illuminated from its dorsal surface
with a Newport 100 W ozone-free xenon lamp, a 385 nm LED
flashlight, and a 15 W blacklight. Using a quartz lens attached
to an Oriel Instaspec IV CCD, measurements of reflected
wavelengths were taken at two points on the fish; these two points
were chosen after examining the shapes of reflectance spectra
from several other points to represent regions of high contrast
within each species’ color pattern. After these measurements, the
fish was also photographed under both full spectrum and UV
only illumination. The spectral data were converted to actual
reflectances by dividing them by measurements taken from a
Spectralon white standard. The reflectances were then used to
calculate quantal catches for each type of photoreceptor in typical
ultraviolet- (e.g., peak sensitivities = 368, 488, 533 nm) and
violet- (e.g., peak sensitivities= 410, 482, 529 nm) sensitive visual
systems. In order to display the differences in sensitivity between
these visual systems, the quantal catches of each photoreceptor
found in both the model ultraviolet- and violet-sensitive visual
systems were plotted against reflected wavelengths.

These methods strictly followed the Guidelines for the Use of
Animals in Research published by the Association for the Study
of Animal Behaviour and the Animal Behavior Society, and were
approved by the University of Wisconsin Colleges Animal Care
Committee (protocol # 1020143) and were additionally approved
by the senior staff of the Milwaukee Public Museum (protocol on
file with Dr. Ellen J. Censky and available upon request).

RESULTS

Phylogenetic Independent Contrasts
Species with a barred color pattern have the shortest SWS
photoreceptor peak sensitivity, while those with horizontal
stripes have the longest, and solid-colored species have
intermediate sensitivities [F(1, 36) = 25.53, p < 0.0001; Table 2A,
Figure 4A]. There is no such relationship between color pattern
and the peak sensitivity of the double cone in cichlid retinae.
While striped fish have the longest double cone peak sensitivity,
and barred species the shortest, this difference is non-significant
[F(1, 36) = 0.1312, p = 0.719; Table 2B, Figure 4B].

The ANOVA results indicate that of the five independent
variables, only color pattern predicts the peak sensitivity of the
SWS photoreceptor expressed in the single cones of cichlid
retinae (Table 3A). The effects of body color, maximum depth,
radiance at maximum depth, and habitat type are all non-
significant. In the case of the double cone photopigments,
none of the variables, including pattern, predict peak sensitivity
(Table 3B).

Correlated Trait Evolution
The value of λ calculated for color pattern was significantly
different from zero, but not from one, suggesting that
evolutionary changes in color pattern occur gradually. Visual
sensitivity, on the other hand, was found not to be significantly
different from either zero or one, suggesting that the evolution of
visual systems in these fishes is neither purely phylogenetic nor
entirely random (Table 4).
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TABLE 3 | Phylogenetic Independent Contrasts performed on both (A) SWS opsin peak sensitivity and (B) double cone opsin peak sensitivity vs.

environmental and color pattern characteristics.

(A) MODEL 1. SWS PEAK SENSITIVITY

Residuals Minimum 1st Quartile Median 3rd Quartile Maximum

−161.314 −23.625 3.578 34.990 154.906

Coefficients Estimate Std. Error t-value p(>|t|)

Color pattern 25.314 10.211 2.479 0.0255

Diet −18.095 34.768 −0.520 0.6103

Maximum depth −0.232 0.351 −0.661 0.5184

Irradiance at maximum depth −2.095 1.018 −2.059 0.0573

Body color 4.044 17.263 0.234 0.8180

Residual standard error: 85.36 on 15 degrees of freedom

Multiple R2 = 0.5091, Adj. R2 = 0.3455

F(5, 15) = 3.112, p = 0.0401

(B) MODEL 2. DOUBLE CONE PEAK SENSITIVITY

Residuals Minimum 1st Quartile Median 3rd Quartile Maximum

−109.251 −23.078 2.589 16.460 43.273

Coefficients Estimate Std. Error t-value p(>|t|)

Color pattern 8.0873 4.7440 1.705 0.109

Diet −1.5978 16.1532 −0.099 0.923

Maximum depth −0.2151 0.1631 −1.319 0.207

Irradiance at maximum depth −0.0459 0.4727 −0.097 0.924

Body color −0.7253 8.0206 −0.090 0.929

Residual standard error: 39.66 on 15 degrees of freedom

Multiple R2 = 0.2591, Adj. R2 = 0.0122

F(5, 15) = 1.049, p = 0.4255

TABLE 4 | Estimates of phylogenetic signal (λ) between simplified color pattern (e.g., stripes vs. bars) and visual system (e.g., UV and non-UV).

Trait λ LL λ LL λ = 0 p LL λ = 1 p

Color pattern 0.544 −24.31 −27.03 0.02 −23.53 0.21

Visual system 0.448 −26.09 −26.46 0.39 −25.99 0.66

LL, log likelihood.

There was a significant difference between the dependent and
independent models of trait evolution, and the dependent model
was favored by our analyses, having a much lower BIC than
the independent model (Table 5). Additionally, since this model
indicated that the likely ancestral state was a UV-sensitive fish
with a barred color pattern, we reran the dependent model two
different ways: One in which a UV-sensitive, barred fish was the
ancestor; and one in which a non-UV-sensitive, horizontally-
striped fish was the ancestor. All three of these models had very
similar log-likelihoods, so the differences among them, based on
LR, were not significant (data not shown), but since the original,
“unfossilized” model had the most favorable BIC, that is the most
likely (Table 5).

The eight possible transitions among the four possible pairs
of visual and color pattern characteristics are shown in Figure 5.
Of these eight possible transitions, only rates q34 (the transition
from vertical bars to horizontal stripes in UV sensitive fish) and
q31 (the loss of UV sensitivity in striped fish) are statistically
significant. These results further support the possibility that the

ancestor of the Lake Malawi cichlid radiation had a UV-sensitive
visual system.

Perception of Color Patterns by
UV-Sensitive and Non-UV Visual Systems
To better illustrate how different cichlid visual systems
would perceive different color patterns, we present the
spectrophotometric data and quantal catches of representative
barred, solid, and striped species in Figures 6–11. Two barred
species, Metriaclima zebra and Pseudotropheus flavus, are shown
in Figures 6, 7, respectively. The quantal catches of these species,
both of which are taken from a black bar marking, as well as
the respective background color, are greatly different between
UV- and violet-sensitive species. While a UV-sensitive species
would detect a great deal of contrast between these patches,
a non-UV-sensitive species would not (Figures 6C,D, 7C,D).
Striped species, represented by Dimidiochromis compressiceps
(Figure 8) and Melanochromis auratus (Figure 9), on the other
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TABLE 5 | Model selection based on likelihood ratio tests and Bayesian Information Criteria (BIC).

Model Log Likelihood BIC

Independent, complete model −50.565 45.868

Dependent, complete model −44.335 −21.854

Likelihood ratio test between the above models: 9.8481df , p = 0.002

Dependent, fossilized at 0,0 (non-UV, striped ancestor) −45.833 −18.858

Likelihood ratio test: Dependent, complete vs. Dependent, 0,0 models: 2.9951df , p = 0.080

Dependent, fossilized at 1,1 (UV, barred ancestor) −45.505 −19.514

Likelihood ratio test: Dependent, complete vs. Dependent, 1,1 models: 2.3401df , p = 0.130

The preferred model will have the lowest value for the BIC.

FIGURE 5 | Evolutionary transitions among SWS sensitivity and color

pattern character states in Lake Malawi cichlids. Black arrows: likely

transitions; statistically significant transitions are indicated by the thick arrows

and p-values indicated above arrows. Gray arrows: highly unlikely transitions.

Violet eyes: UV-sensitive; blue eyes: non-UV-sensitive. Notice that the likely

ancestral state of the Lake Malawi cichlids is a UV-sensitive, barred species,

descendants of which would subsequently lose both a barred color pattern

and UV sensitivity during the radiation of these fishes.

hand, would likely appear the same to either type of visual
system, as indicated by the closely overlapping quantal catches in
Figures 8C,D, 9C,D.

The solid-colored species, Labeotropheus c.f. fuelleborni
“Katale” and Iodotropheus sprengerae, have a surprising amount
of ultraviolet reflectivity, especially in their carotenoid-based
colors (Figures 10A, 11A, respectively). As such, the major
difference between howUV- and non-UV-sensitive species would
perceive these patterns would likely be in the amount of contrast
between the patches we selected for analysis.

To simulate how a UV-sensitive visual system would perceive
the colors of the fishes detailed above, we offer Figure 12

as a heuristic. In the left column of this figure are pictures
of each species taken under full-spectrum lighting, while
the right column has photographs of the same individuals
taken moments later under UV light. As predicted by
our hypothesis, the patterns of barred and solid-patterned
species look quite different under UV illumination, while
those with horizontal stripes look very similar no matter the
illuminant.

DISCUSSION

There is some evidence indicating that differently-tuned SWS
opsins serve different functions in fishes. For example, among
coral reef fishes, UV-sensitive visual systems are important
in species recognition (Côté and Cheney, 2005; Cheney and
Marshall, 2009; Siebeck et al., 2010), and are particularly sensitive
to species-specific within-color pattern contrast (Losey, 2003;
Siebeck et al., 2010); also, UV-sensitive species are better able to
discriminate between helpful “cleaner” species and their harmful
mimics, largely due to distinctive UV reflectivity in the mimics’
color patterns (Côté and Cheney, 2005; Cheney and Marshall,
2009). Lake Malawi cichlids have been documented to use
particular color patterns for communication (Pauers et al., 2012);
however, our results are the first demonstration of a relationship
between gross color pattern and photoreceptor sensitivity.
Species with barred patterns have SWS peak sensitivity values at
wavelengths that are shorter than either of the other patterns;
indeed, these sensitivities tend to fall in the UV spectrum.
Further, only color pattern type could successfully predict
SWS peak sensitivity; no other variable, including depth and
irradiance, had statistically significant relationships with SWS
sensitivity. Most interestingly, our results indicate that visual
sensitivity and color pattern did evolve in a correlated fashion;
the ancestral cichlid was likely a UV sensitive fish with a barred
color pattern that first changed its pattern from barred to striped,
followed by a loss of UV sensitivity.

The peak sensitivity of the mid/long wavelength sensitive
double cone was not correlated with color pattern type among
species, nor did any variable successfully predict the peak
sensitivity of this photoreceptor. Further, double cone peak
sensitivity varied little across all species, so these fishes are all
receiving similar information with these cones. While the double
cone system may provide wavelength discrimination by means
of two distinct opsins, each with its own peak sensitivity, which
work in an opponent fashion (Neitz and Neitz, 2011), we are
unable to determine the ability of these double cones to provide
such discrimination, as only the stronger opsin sensitivity was
reported by Hofmann et al. (2009).

Our discovery of correlated evolution of visual sensitivity and
color pattern is of particular interest for several reasons. First, this
suggests a functional connection between visual sensitivity and
color pattern, a novel finding in Lake Malawi cichlids (Dalton
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FIGURE 6 | Metriaclima zebra. Each figure in Figures 6–11 is arranged in the same fashion. There are four panels in each figure: (A) is a photograph of the fish

under full-spectrum lighting (including UV illumination), indicating two points at which reflectances were measured; (B) illustrates the reflected wavelengths at the

points indicated in (A); (C,D) are comparisons of the quantal catches of the reflectances by the photoreceptors found in two different classes of Malawi cichlid retinae:

UV sensitive (solid lines) and non-UV sensitive (dashed lines). Photopigment sensitivities were taken from Hofmann et al. (2009).

FIGURE 7 | Pseudotropheus flavus.

et al., 2010). Secondly, in order for a loss of UV sensitivity to
occur, it appears that a horizontally-striped color pattern must
evolve first. This indicates that visual sensitivity responds to
the change in color pattern, suggesting that visual sensitivity
may adapt to maximize the efficacy of visual communication via
color patterns. Correspondingly, the values of λ for both visual
sensitivity and color pattern were less than one, suggesting that
traits are less similar among closely-related species than expected;
thus, our analysis explains the diversity in visual sensitivity
and color pattern seen within the Lake Malawi cichlid flock.

Finally, and perhaps most interestingly, the direction of this
evolution, from a barred, UV-sensitive ancestor, to a striped, non-
UV-sensitive descendant, is different from what had previously
been found in Lake Malawi cichlids. In a recently published
phylogenetic analysis of visual sensitivity in African cichlids
(O’Quin et al., 2010) found that the ancestor of Lake Malawi
cichlids most likely had to have a long-wavelength sensitive
visual system, and likely lacked UV sensitivity. This difference
between our result and theirs could be partially explained by
the different types of data we used; O’Quin et al. (2010) used
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FIGURE 8 | Dimidiochromis compressiceps.

FIGURE 9 | Melanochromis auratus.

continuous data, while we used categorical, but a recent paper
by Hunt and Peichl (2014) provides support for our findings.
While losses of UV sensitivity throughout evolutionary and
phylogenetic transitions are fairly common, the evolution of UV
sensitivity from non-UV-sensitive ancestors is quite rare; only
within the birds has UV sensitivity reappeared once lost (Ödeen
and Håstad, 2013; Hunt and Peichl, 2014). Thus, the evolution
of UV-sensitive cichlids from a non-UV ancestor is rather
unlikely.

In an interesting recent study, York et al. (2015) also found
that opsin evolution is likely related to the evolution of a different

sexually-selected characteristic in Lake Malawi cichlids. Among
the sand-dwelling cichlids, some species of which were included
in the present analyses, males build bowers of sand that are used
to attract females. These authors found that, between species that
build the two fundamental types of bower, “pits” and “castles,”
pit-building species had a longer-shifted SWS photoreceptor
sensitivity, while castle builders had a shorter-shifted SWS
photoreceptor, often with UV sensitivity. Further, there were
no differences between pit- and castle building species in the
sensitivities of the longer-shifted opsins found in the double
cones of these fishes. York et al. (2015) suspect that this may be
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FIGURE 10 | Labeotropheus c.f. fuelleborni “Katale.”

FIGURE 11 | Iodotropheus sprengerae.

due at least in part to depth, as pit bowers are more common in
deeper waters and castles more common in shallow. While these
authors did not perform a phylogenetically-corrected analysis
between opsin sensitivities and bower type, it is nonetheless
interesting that they recovered a similar relationship between
SWS opsin sensitivity and the form of a sexually-selected signal
in Lake Malawi cichlids (York et al., 2015); it would be further
tantalizing to determine whether or not evolutionary changes in
SWS sensitivity follow innovations in the shape of bowers in the
sand-dwelling Malawian cichlids, similar to how we have found
that a loss of UV sensitivity follows the loss of a vertically-barred
color pattern.

The results presented here are consistent with the
hypothesis that stripes and bars represent “public” and
“private” information, respectively, and that barred and
solid-patterned species maintain this privacy via a UV-sensitive
SWS photoreceptor. UV sensitivity could maintain or enhance
color contrast among color pattern elements, or could even
allow for “private” communication by changing the way a
color pattern is perceived. Species that lack UV sensitivity,
on the other hand, are likely not able to clearly perceive the
fundamental message communicated via barred and “solid”
patterns. Further, since the horizontal stripes found in non-UV
species likely represent a form of camouflage, such a pattern
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FIGURE 12 | Lake Malawi cichlid color patterns under full-spectrum

light and UV lighting. (A,B), Metriaclima zebra; (C,D), Pseudotropheus

flavus; (E,F), Dimidiochromi scompressiceps; (G,H), Melanochromis auratus;

(I,J), Labeotropheus c.f fuelleborni “Katale;” (K,L), Iodotropheus sprengerae.

Species displaying different hues were selected to emphasize that the

fundamental pattern, and the messages encoded therein, are independent of

hue. In the barred and solid species, notice how UV lighting emphasizes the

contrast between bars and background (B, e.g.,) or among color pattern

elements (J, e.g.,), sometimes revealing hidden or de-emphasized contrasts

(the highly reflective bars and the contrast between peduncle and flank in J). In

the striped species (E–H), the balance among elements stays the same

whether the illumination is full-spectrum or UV, thus suggesting that this

pattern is meant to be visible and understood by all visual systems.

would need to be clearly perceived by all species; if the patterns
appeared differently to UV-sensitive and UV-insensitive fishes,
concealment would be compromised. These results, then, suggest
that the overall purpose for animal color patterns consisting of
patches of alternating hues, as opposed to patches of alternating
brightness, is to provide either “private” signals visible to only
certain species (e.g., nuptial color patterns; Endler, 1992); or
“public” information, like camouflage or advertisement of
services (e.g., cleaner fishes), visible to species of varying visual
sensitivities.

Our results also offer an explanation why Dalton et al. (2010)
found no close concordance between photoreceptor sensitivity
and cichlid body reflectance, as would be predicted if sensory
drive processes were responsible for male nuptial coloration

(Endler, 1992). Lake Malawi cichlids with a barred color pattern
display a wide range of colors across the spectrum including blue
(e.g.,Metriaclima zebra), yellow (e.g., Pseudotropheus flavus), and
brown bars (e.g., P. crabro, P. livingstonii, and P. lombardoi).
The sensory drive hypothesis predicts that species with blue
bars should be most sensitive to short wavelengths, while those
with yellow or brown bars should be most sensitive to longer
wavelengths. The results presented here indicate otherwise;
barred cichlids, no matter the colors present in their patterns,
have short-shifted visual sensitivities. This calls into question
the role that sensory drive processes, based on color alone, may
have played in the evolution of male nuptial coloration in the
Lake Malawi cichlids. For example, female Labeotropheus c.f.
fuelleborni “Katale” prefer sympatric, conspecific males with high
contrast among color pattern elements (Pauers et al., 2004).
Actual reflected wavelengths may not matter as long as contrast
is maintained, and the contrast defines a distinct pattern that is
perceptible by the fishes themselves (Pauers, 2011). This resolves
a long-standing conundrum surrounding Lake Malawi cichlids:
How is species recognition maintained in these fishes when the
putative major cue for mate recognition, male nuptial coloration,
is limited to the same color palette across species, and when
photopigment sensitivity is also similar among species? Color
may certainly play a role, but both the arrangement and contrast
of color pattern elements may be just as important.
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