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Ecological restoration of mining areas has mainly focused on the succession dynamics

of vegetation and the fate of microbial communities remains poorly understood. We

examined changes in soil characteristics and plant and microbial communities with

increasing reclamation period in an open coal mine. Bacterial, archaeal and fungal

communities were assessed by tag-encoded 454 pyrosequencing. At the phylum level,

Proteobacteria, Crenarchaeota, and Ascomycota had the highest detected relative

abundance within bacteria, archaea, and fungi, respectively. Partial regressions and

canonical correspondence analysis demonstrated that vegetation played a major role

in bacterial and archaeal diversity and assemblies, and soil characteristics, especially

nitrogen, were important for fungal diversity and assemblies. Spearman rank correlation

indicated that bacterial and archaeal communities showed synergistic succession with

plants; whereas, fungal communities showed no such pattern. Overall, our data suggest

that there are different drivers of bacterial, archaeal and fungal succession during

secondary succession in a reclaimed open mine.

Keywords: bacteria, archaea, fungi, 454 pyrosequencing, microbial succession, reclaimed mine

INTRODUCTION

Microorganisms are key drivers of global biogeochemical cycles and are critical for the
development, abundance, and diversity of aboveground plant communities (Falkowski et al., 2008;
Herzberger et al., 2015). Studies of microbial succession are increasingly important, and have been
explored in a variety of environments and over different timescales (Williams et al., 2013; Dini-
Andreote et al., 2014; Zhao et al., 2014). Previous studies have shown that soil microbial community
succession is a long and non-monotonic process (López-Lozano et al., 2013; Mastrogianni et al.,
2014). Lozano et al. (2014) showed that microbial community succession is closely correlated
with multiple ecosystem functions. However, the links between below-ground and above-ground
succession processes are poorly understood.

Soil factors and vegetation are important determinants of microbial community composition
and could determine the trajectory of ecosystem development (Yarwood et al., 2015). Dimitriu et al.
(2010) showed that reclamation-mediated effects on microbial properties are mainly attributable
to changes in abiotic properties such as soil pH; however, the composition of soil bacterial and
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fungal communities in forest soil is largely determined by
dominant trees (Urbanová et al., 2015). Both parent material
(sandstone and siltstone) and nutrient addition (including
nitrogen and phosphorus fertilization) affected the rate of
succession because of the differences in resource availability
(Knelman et al., 2014; Yarwood et al., 2015). In severely
degraded soil, microbial community structure and generation
were mediated by soil aggregation via the protection afforded by
soil organic carbon (Zhang et al., 2010). Microbial succession in
the volcanic deter of Mount Fuji was initially strongly affected by
the pioneer herbaceous plants and subsequent invasion of shrubs
(Yoshitake et al., 2013).

Bacteria and fungi demonstrate different succession patterns
(Schmidt et al., 2014). Banning et al. (2011) showed that the
bacterial community successional trend became more similar
to those of the surrounding non-mined forest with increased
rehabilitation age, but fungi did not show a similar successional
trajectory. Yannarell et al. (2014) found that both bacterial and
fungal communities demonstrated significant variation along
transects spanning the prairie–shrub–forest continuum, but their
predominant patterns were different. Cutler et al. (2014) showed
that the composition of plant communities was significant for
fungal communities, but less relevant for bacterial communities
during primary succession on an 850-year chronosequence of
lava flows. In retreating glaciers, the presence of plants was
important in bacterial successional dynamics, but played a
minor role in those of fungi (Brown and Jumpponen, 2014).
Soil substrates were the major drivers of archaeal community
succession across a receding glacier foreland (Nicol et al., 2005;
Zumsteg et al., 2012). In addition, the major soil factors that
were significantly correlated with bacterial, archaeal, and fungal
communities were different (Zumsteg et al., 2012; Li et al., 2013a).

High-throughput sequencing technologies have expanded
our understanding of microbial community assembly across
environmental gradients and during succession, and ecological
hypotheses have been tested and developed using microbes as
indicators (Nemergut et al., 2013). Dini-Andreote et al. (2015)
found that soil bacterial community composition was initially
subject to stochastic effects, but there was a progressive increase
in deterministic selection as succession proceeded in a salt
marsh chronosequence succession. Schmidt et al. (2014) found
a strong deterministic community assembly pattern for bacteria
but not for fungi during primary succession in the foreland
of a receding glacier. Temporal niche partitioning was the
dominant mechanism of bacterial community assembly in the
initial succession (Dini-Andreote et al., 2014).

The Antaibao mining area, with a documented management
history of over 30 years, is located in the east of the Loess Plateau,
China. The existence of gradients in vegetation succession
patterns and soil chemical characteristics has been clearly shown
in these rehabilitation sites (Zhao et al., 2012, 2013). Our
objective in the current study was to examine how soil microbial
communities develop and assemble with reclamation processes
in an open coal mine. A pyrosequencing-based approach was
used to determine bacterial, archaeal, and fungal phylogenetic
composition in reclaimed soils following reclamation of a period
between 2 and 30 years.

MATERIALS AND METHODS

Study Site Description
Our research was conducted at the Antaibao opencast
coal mining area in Plateau Loess (39◦23′−39◦23′ N;
112◦11′−112◦30′ E), China. The climate is terrestrial temperate,
and the area experiences monsoons. The altitude is 1300–1400
m. Annual average precipitation is about 450 mm, and annual
average air temperature is about 6.2◦C. The frost-free season
ranges in length from 115 to 130 days.

Study Plots Survey and Soil Sampling
To study the characteristics of the various plant communities,
quadrats of dimensions 20 × 20 m, 4 × 4 m, and 1 × 1 m
were established in forest, scrubland, and grassland communities.
We recorded the cover, height, diameter at breast height, and
the individual number for each tree species and the cover and
height for shrubs and herbs at 41 rehabilitation sites (Figure S1).
The sites were classified into 11 groups (Groups I-XI) using
TWINSPAN analysis (Zhang, 2005).

The upper 10 cm of soil was collected from six random
locations at each site and mixed into a single bulk sample in
July, 2013. Soil samples were sieved to 2 mm and homogenized.
Subsamples for microbial analysis were stored at−80◦C, and the
remainder was air dried for chemical analyses.

Soil Chemical Analysis
Soil bulk density (BD) was obtained using the gravimetric
method. Soil pH in distilled water was measured using a glass
combination electrode at a soil: solution ratio of 1:5 after 1 h. Soil
total carbon (C), nitrogen (N) and sulfur (S) were analyzed using
a Vario MACRO cube (Elemental Analyzer, Germany). Soil and
plant characteristics are given in Table 1.

RNA Genetic Pyrosequencing
DNA was extracted from 0.5 g soil using the Ultra-clean
TM soil DNA Isolation Kits (MoBio Laboratory, USA)
according the manufacturer’s protocol. Soil microbial rRNA
gene were amplified using primer sets containing the Roche 454
pyrosequencing adaptors (underlined), which followed bacterial
primer set (5′-CGTATCGCCTCCCTCGCGCCATCAG-
barcode-AGAGTTTGATCMTGGCTCAG-3′ and 5′-CTAT
GCGCCTTGCCAGCCCGCTCAG-GTATTACCGCGGCTGC
TGGCAC-3′) (Justé et al., 2008), archaeal set (5′-TTTTCT
ATGCGCCTTGCCAGCCCGCT-CAGCAGCMGCCGCGGTA
A-3′ and 5′-CGTATCGCCTCCCTCGCGCCATCAG-barcode-
GGCCATGCACCWCCTCTC-3′) (Kolganova et al., 2002),
and fungal set (5′-CGTATCGCCTCCCTCGCGCCATCAG-
barcode-CAGTAGTCATATGCTTGTCTC-3′ and 5′-CTATGC
GCCTTGCCAGCCCGCTCAG-GCTGCTGGCACCAGACTT
GC-3′) (Costa et al., 2006). There were 7-, 10-, and 10-base
barcodes for primers of bacteria, archaea, and fungi, respectively.
To amplify the rRNA genes, 50 µl of PCR reactions were carried
out according to the following reaction mixture: 5 µl 10×PCR
buffer (MgCl2, 2 mM), 0.5 µl dNTPs (10 mM), 0.5 µl Plantium
Taq (5 U/µl), 1 µl BSA (1 µl/µg), 10 ng genomic DNA, and 1 µl
of each primer (50 mM).
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Bacterial 16S rRNA gene PCR reactions were performed in the
following program: 3 min at 94◦C; 30 cycles of 45 s at 94◦C, 45 s
at 54◦C and 60 s at 72◦C, followed by a final extension period of 5
min at 72◦C. Archaea followed the program: 94◦C: 3min; 5 cycles
of 20 s at 94◦C, 20 s at 45◦C, 60 s at 72◦C; 25 cycles of 45 s at 94◦C,
45 s at 58◦C, 60 s at 72◦C; 5min at 72◦C. The 18S rRNA gene PCR
program for fungi was: 94◦C: 5 min; 30 cycles of 30 s at 94◦C, 30
s at 56◦C, 60 s at 72◦C; 5 min at 72◦C. The PCR products were
separated by 1% agarose gel electrophoresis and purified with
Wizard R© SV Gel and PCR Clean-Up System (Promega, USA).
High-throughput sequencing was determined using a Roche GS-
FLX 454 pyrosequencer (Roche, Basel, Switzerland) at Sangon
Biotech (Shanghai) Co., Ltd.

All raw sequence processing was conducted using QIIME
pipeline (Caporaso et al., 2010). Sequences were trimmed if
they were shorter than 300 bp and quality scores lower than
25. Sequences were clustered into operational taxonomic units
(OTUs) using UCLUST, with a 97% identity threshold (Edgar,
2010). The sequences comprising each OTU were aligned using
the Ribosomal Database Project (RDP, http://rdp.cme.msu.edu).

Data Analysis
Plant diversity indices for each quadrat were calculated following
Li et al. (2013a). Microbial diversity including Shannon,
ACE and Chao1 indices were determined using the Mothur
software (Schloss et al., 2009) (http://www.mothur.org). A
one-way analysis of variance and Duncan test were used to
examine the significant effects on microbial diversity indices
(Benes and Carpenter, 2015). Spearman rank correlation was
used to examine the association between plant species pairs
and microbial genus pairs (Li et al., 2013a). Pearson linear
correlations were calculated to determine whether there were
significant correlations between the environmental factors and
microbial properties.

We conducted partial regressions to correlate the vegetative
effects (including reclamation period and plant coverage,
richness, and evenness) with soil characteristics. We established
a pure model only containing plant or soil variables, and a
full model containing both plant and soil variables. The total
variation of microbial diversity was partitioned into independent,
co-varying, and unexplained components (Wang et al., 2011).

A matrix of important values for plants and matrices of genus
ratios for bacteria, archaea, fungi and total microbe were used
as the basis for community analysis. The total microbial matrix
was established using the following formula: Matrix (total microbe)
= (4 × ratios(Bacteria-genus) + 3 × ratios(Archaea-genus) + 3 ×

ratios(Fungi-genus))/10 (Li et al., 2013a). Environmental and biotic
matrixes were subjected to canonical correspondence analysis
(CCA) to examine the significant environmental factors on biotic
compositions. We used the Monte Carlo permutation to test
the significant level between species and environmental data in
CANOCO software (version 4.5) (Ter Braak and Smilauer, 2002).

RESULTS

Microbial Diversity
In the 41 study sites, there were 181,827, 30,205, and 97,230 high-
quality sequences for bacteria, archaea and fungi, respectively

(Figure S2). There were significant differences between the 11
groups in fugal diversity indices, but not in bacterial and archaeal
indices (Table 2). Significantly low fungal diversity indices (P <

0.05) were found in Pinus tabuliformis plantations (Groups IX, X,
and XI), and the significantly high fungal diversity indices (P <

0.05) were found in Robinia pseudoacacia (Group I) and Ulmus
pumila (Group-VII) with the longer reclamation period.

Microbial Taxonomic Distribution and
Affiliation
Bacterial rarefied sequences were affiliated to 33 phyla, and
12 phyla presenting sequences abundances were above 1%
(Figure 1A). The highest relative abundant sequences were
Proteobacteria at the study sites, except for group VIII, in which
Acidobacteria was the highest. Other bacterial phyla with average
abundance <0.1% were not universal for each plot (not listed).
At class level, the highest relative abundances were affiliated
to Actinobacteria in most study sites. Alphaproteobacteria

dominated among Proteobacteria sequences.
Classified archaeal sequences were Crenarchaeota and

Euryarchaeota, and Crenarchaeota accounted for the majority
(Figure 1B). Euryarchaeota sequences were classified as
Thermoplasmata, Methanobacteria, Methanomicrobia,
Archaeoglobi, and Methanopyri, and only Thermoplasmata
occurred across all samples. At genus level, sequences showed
that Fervidicoccus, with the highest relative abundance, was
common to every sample.

The relative sequences of unclassified fungal sequences varied
among study sites (8.85–57.55%) (Figure 1C). The dominant
fungal phyla were Ascomycota, Basidiomycota, and Zygomycota.
At class level, Agaricomycetes had the highest ratios of the
classified sequences. Fungal classified sequences were affiliated to
28 classes, 88 orders, 177 families, and 463 genera.

Spearman Rank Correlation Test
The results of the Spearman rank correlation test of plants
and soil microbes are given in Table 3. The lowest and highest
plant species-pair ratios of positive to negative association
were observed in the shortest and longest reclaimed-time
P. tabuliformis plantations (i.e., Group IX and XI), respectively.
Both plant and bacteria ratios were significantly correlated
with reclaimed time (P < 0.05), and the Pearson correlation
coefficients were 0.700 and 0.630, respectively. There was a
positive relationship between plant and bacteria ratios (r =

0.641, P < 0.05). The genus-pair ratios of positive and negative
association for archaea were higher than those for bacteria and
fungi, except in Groups II and III. Fungal genus-pair ratios
retained a relatively low level in most samples.

Relationship between Microbial
Community and Environmental Factors
Partial regressions indicated that vegetation and soil
independently accounted for 12.3–28.0% and 2.7–5.2% of
variation in bacterial diversity indices, respectively, and their
joint effects accounted for 7.4–41.2%. The independent effects
of vegetation and soil on archaeal diversity variation increased;
however, their joint effects decreased. For fungal diversity
indices, soil independently explained more (17.7–26.2%) than
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TABLE 2 | Soil bacterial, archaeal and fungal diversity indices in the reclaimed mining area.

No. OTUs Shannon ACE Chao1

Bacteria Group-I 4833.25±610.52a 8.22±0.08a 28747.77± 5201.40a 16829.84±2283.31a

Group-II 4164.75±700.52a 8.06±0.26a 24906.56± 5418.70a 14661.80±3684.13a

Group-III 4257.75±393.71a 8.15±0.09a 29357.81± 2508.27a 16511.99±1202.98a

Group-IV 4155.67±862.99a 8.09±0.19a 27535.57± 6302.47a 15112.13±3047.66a

Group-V 4283.00±595.65a 8.12±0.18a 25400.05± 3829.09a 14693.77±2281.38a

Group-VI 4424.00±384.21a 8.16±0.10a 27528.86± 3685.90a 15594.29±2397.96a

Group-VII 4937.25±3770.67a 7.82±1.15a 28910.69± 20557.81a 16025.93±11878.00a

Group-VIII 4671.67±345.47a 8.24±0.10a 28457.66± 1928.11a 16755.26±1985.03a

Group-IX 3402.60±838.04a 7.65±0.76a 21809.82± 6643.29a 12109.45±3518.34a

Group-X 5368.33±731.97a 8.37±0.13a 31189.30± 2134.17a 18580.07±1746.12a

Group-XI 4762.75±412.82a 8.19±0.06a 30888.25± 3431.35a 16880.00±1277.45a

Archaea Group-I 685.50±268.22a 5.88±0.29a 2173.73± 619.15a 1345.96±414.71a

Group-II 723.25±152.99a 5.72±0.28a 2044.03± 567.68a 1501.17±275.19a

Group-III 651.75±464.28a 5.01±1.86a 1898.82± 1356.55a 1367.74±947.44a

Group-IV 477.33±302.73a 5.27±0.59a 1377.32± 650.28a 918.00±537.29a

Group-V 954.25±272.35a 5.72±0.55a 2505.20± 700.60a 1796.75±507.92a

Group-VI 850.33±130.63a 5.88±0.36a 2286.69± 356.01a 1627.76±270.71a

Group-VII 916.75±203.14a 5.80±0.64a 2320.66± 834.95a 1716.91±524.21a

Group-VIII 800.00±73.67a 5.56±0.28a 2078.19± 235.72a 1521.72±194.95a

Group-IX 552.40±501.66a 4.95±1.49a 1558.37± 1175.02a 1074.60±910.04a

Group-X 573.33±479.00a 5.34±0.37a 1900.60± 1344.89a 1205.88±929.81a

Group-XI 903.50±241.01a 5.72±0.55a 2444.65± 478.25a 1742.91±430.80a

Fungi Group-I 3072.50±405.35bc 7.41±0.10b 17334.63± 3486.92c 9457.48±1687.21b

Group-II 2380.00±1214.84ab 6.91±0.60ab 15372.82± 7157.62abc 7619.02±3717.78ab

Group-III 2857.25±428.65b 7.30±0.22ab 16573.27± 1398.54bc 9086.50±883.18b

Group-IV 2794.67±657.89b 7.21±0.34ab 16543.83± 1449.33bc 8840.83±1359.02b

Group-V 3105.25±1290.88b 7.37±0.27b 15855.90± 7033.14abc 9270.76±4042.97b

Group-VI 2431.00±282.96ab 7.24±0.25ab 15232.96± 1459.76abc 8324.95±1385.80ab

Group-VII 3148.25±739.88c 7.40±0.33b 17654.75± 3633.27c 9547.19±1812.56b

Group-VIII 1994.67±718.88ab 7.01±0.24ab 13009.95± 2331.61abc 6675.12±1284.73ab

Group-IX 1415.20±286.02a 6.78±0.34a 9404.66± 1118.59a 4862.49±498.52a

Group-X 1384.00±219.12a 6.89±0.10ab 10440.38± 2273.89ab 5124.42±688.21a

Group-XI 1522.00±368.31a 6.75±0.38a 9597.41± 3361.26a 5151.37±1448.34a

OTUs, operational taxonomic units.

Data are means ± standard deviations. Values followed by the different letters are significantly different (P < 0.05) based on Tukey test.

vegetation (6.3–7.9%). The highest residual variations were
associated with archaeal diversity indices, and the lowest were
associated with fungal indices (Figure 2).

The first two axes accounted for 54.9, 63.3, 42.6, and 45.2%
of correlations between environmental variables and bacterial,
archaeal, fungal and total microbial community compositions,
respectively (Figure 3). The year after reclamation significantly
influenced bacterial and archaeal compositions (Figures 3A,B).
Fungal compositions were significantly affected by soil N (P =

0.002), soil C (P = 0.024), and water content (P = 0.014)
(Figure 3C). Bulk density was strongly related to total microbial
compositions (Figure 3D).

At the bacterial phylum level, the relative abundances
of Proteobacteria, Acidobacteria, and Planctomycetes positively

correlated with reclamation period, water content, and total
N, and negatively correlated with water content. However, the
opposite correlations were demonstrated between the relative
abundance of Firmicutes and these environmental factors
(Table 4). Crenarchaeota positively correlated with total N. For
fungal phyla, the significant correlations were largely associated
with soil characteristics, except for Blastocladiales, which was
negatively correlated with plant richness.

DISCUSSION

Soil C (r = 0.375, P < 0.05) and N (r = 0.652, P <

0.01) were significantly correlated with reclamation period,
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FIGURE 1 | Relative abundance of different microbial phyla in the reclaimed mining area. (A) Bacterial phyla accounting for >1%. (B) Archaeal phyla. (C)

Fungal phyla.

which supports previous studies on an increase in organic
matter along the successional stage (Zhao et al., 2013; Lozano
et al., 2014). pH gradually approximated to neutral with
soil carbon improvement, and was negatively correlated with
soil C (r = −0.328, P < 0.05). Litter inputs, and root
and microbial exudates reduced pH, and the optimal pH
was beneficial for aboveground and belowground biomass
accumulations (Putten et al., 2013; Lozano et al., 2014). This
indicates that plant and soil mutually promote the rehabilitation
process.

We assessed the succession of soil microbial communities
after mining reclamation through 454- pyrosequencing. Fungal
diversity indices significantly changed in response to reclamation
vegetation and time, but bacterial and archaeal indices were only
slightly influenced by reclamation characteristics (Table 2). A
potential explanation for this pattern is that bacteria and archaea
are less likely to be dispersal limited than fungi (Wilkinson et al.,
2012; Brown and Jumpponen, 2014). Another possible reason for
the three domains of microbes demonstrating different responses
is that bacteria and archaea have a broader range of physiologies
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TABLE 3 | The species/genus-pair ratios of positive to negative

association for plant and microbe in the reclaimed mining area.

Plant Bacteria Archaea Fungi

Group-I 0.49 0.92 1.30 0.83

Group-II 0.50 0.95 1.00 1.01

Group-III 0.60 0.93 0.78 0.90

Group-IV 0.61 0.91 1.67 0.86

Group-V 0.54 0.92 1.57 0.96

Group-VI 0.60 0.96 1.05 1.00

Group-VII 0.69 1.04 1.29 0.97

Group-VIII 0.67 0.92 1.63 0.84

Group-IX 0.32 0.84 0.96 0.82

Group-X 0.69 0.91 2.20 0.85

Group-XI 0.75 1.44 2.35 0.85

than fungi (Nemergut et al., 2013). The strong correlations
between soil N content with fungal ACE (r = 0.480, P < 0.01)
and Chao1 (r = 0.425, P < 0.01) indices support the suggestion
that fungi are more dependent than bacteria or archaea on C
and N sources prior to any significant organic matter build-up
as a result of succession (Schmidt et al., 2014). Li et al. (2013b)
found that the key competition for nutrients between vegetation
and microbes took place during the initial rehabilitation
period, which supports our suggestion that soil nutrients
represent a limitation for microbial communities in reclamation
succession.

Spearman rank pairwise correlations (Table 3), and
partial regressions (Figure 2) and CCA analysis (Figure 3)
demonstrated that reclamation vegetation played major roles in
bacterial and archaeal diversity, compositions and succession,
and soil properties produced strong effects on those of fungi.
In retreating glacier soils, the presence of plants was important
for structuring bacterial communities and played a minor
role in fungal communities (Brown and Jumpponen, 2014).
In forest ecosystems, the effect of trees on both bacterial and
fungal communities was stronger than that of soil properties
and explained a large proportion of the variation in community
composition (Urbanová et al., 2015). Furthermore, a strong
influence of wood type was also found on fungal community and
composition during decay in a forest soil (Prewitt et al., 2014).
The differences between studies suggest that the roles of soil
properties on fungal communities might largely depend on the
soil nutrient level. Soil nutrients would be limiting factors for
fungal communities in poor reclaimed and glacier soil; whereas,
changes to soil factors would produce little effect on fungi in
fertile forest soils.

Archaea are known to be able to live under extreme
conditions; therefore, it is easily understood that archaeal
diversity changed little with reclamation period (Table 2). Li
et al. (2013a) also found that in the Loess Plateau of China,
archaeal abundance and diversity did not change with restoration
of abandoned land. However, the decline or increase in diversity
took place along a successional gradient in a receding glacier
foreland (Nicol et al., 2005; Zumsteg et al., 2012). In the current

study, archaea at high taxonomic ranks, such as the phylum
or class level, displayed ecological coherence (Figure 1B), but
archaea compositions at family or genus level were visibly
different. According to archaeal genus composition, we found
that archaeal compositions significantly evolved with reclamation
period (Figure 3B), and the genus level pairwise association of
archaea was positively correlated with plant species pairwise
association (Table 3). Crenarchaeota are often found in plant
rhizospheres (Timonen and Bomberg, 2009), so Crenarchaeota-
dominated archaeal communities were more susceptible to
reclamation of vegetation than soil properties (Figures 1B, 2).
At the landscape scale, the variation in archaea was also more
strongly related to the changes in vegetation type, rather than
soil properties (Nielsen et al., 2010).Crenarchaeota are influenced
by soil organic matter (Zinger et al., 2011), and Crenarchaeota
increased with the enhancement of soil total N (Table 4). This
may partly originate from the shift from a Euryarchaeota-
dominated to a Crenarchaeota-dominated archaeal community
with chronosequence succession in a receding glacier (Zumsteg
et al., 2012).

Firmicutes, including many endospore formers including
Bacillus and Clostrium, are advantageous traits under poor
nutrient and dry conditions. Therefore, it would be better to
understand that Frimicutes decreased with increased reclamation
period and enhancement of soil N (Table 4). Shrestha et al. (2007)
reported that Betaproteobacteria and Gammaproteobacteria
were typical at the early stage, while Alphaproteobacteria and
Actinobacteria prevailed in late succession. We also found
that Proteobacteria was significantly correlated with reclamation
period (Table 4); however, the classes of Proteobacteria displayed
no distinct succession pattern. Negative and positive correlations
between soil content and relative abundance of Actinobacteria
and Bacteroidetes were found in this study, respectively, which
supports results from the Ödenwinkelkees glacier foreland across
the chronosequence (Philippot et al., 2011). This phenomenon
might be because Actinobacteria and Bacteroidetes prefer arid
and wet environments, respectively. Kuramae et al. (2011) found
that under low nutrient conditions, the combination of soil
available phosphorus and ammonia nitrogen produced a positive
effect on a number of OTUs of Planctomycetes. In the current
study, we found that the relative abundance of Planctomycetes
was positively correlated with reclamation period, plant cover
and richness, and soil N.

Plant species pairwise ratios significantly correlated with
bacterial genus pairwise ratios, which suggested that plant
and bacterial communities displayed a similar pattern along
the reclaimed succession; however, fungal succession showed a
dissimilar pattern. In a dry environment, microbial succession
may lag behind plant succession, but plant and microbes
demonstrate a similar succession pattern (Lozano et al., 2014).
Previous studies reported that bacteria and fungi evolved along
different trajectories under various conditions, such as secondary
succession in a restored ecosystem (Banning et al., 2011; Li
et al., 2013a), shrub encroachment (Yannarell et al., 2014),
and the primary succession of lava flows (Cutler et al., 2014)
and glacier soils (Brown and Jumpponen, 2014). The different
succession patterns were determined by the range of microbial
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FIGURE 2 | Comparisons between effects of vegetation and the effects of soil properties on microbial diversity indices by partial regressions. The

variation of microbial diversity indices is partitioned into (a) the independent components of plant and (c) soil properties, (b) the covarying component and (d) residual

variation.

FIGURE 3 | CCA ordination biplot of 41 quadrats and environmental factors for microbial communities in the reclaimed mining area. (A) Bacteria, (B)

Archaea, (C) Fungi, and (D) Total microbe. ** Significant environmental factor at the 0.01 level (Monte Carlo permutation test).
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TABLE 4 | The Pearson correlation coefficients for the linear regressions between environmental factors and microbial phylum-level relative abundance.

Reclaimed time Coverage (%) Richness Water content Bulk density pH Total C Total N

Proteobacteria 0.322(*) 0.329(*) −0.342(*) 0.317(*)

Actinobacteria −0.445(**)

Acidobacteria 0.370(*) 0.317(*) −0.309(*) 0.392(*)

Firmicutes −0.425(**) −0.370(*) 0.418(**) −0.434(**)

Bacteroidetes 0.399(**)

Verrucomicrobia 0.379(*)

Planctomycetes 0.372(*) 0.421(**) 0.447(**) −0.315(*) 0.433(**)

Crenarchaeota 0.327(*)

Glomeromycota −0.333(*)

Mucoromycotina 0.456(**)

Basidiomycota −0.371(*) 0.472(**)

Blastocladiales −0.374(*)

Zoopagales 0.361(*)

**Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).

Blank is no significant correlation.

physiologies, dispersal ability, and assembly pattern (Schmidt
et al., 2014).

CONCLUSIONS

Our study demonstrates that bacterial, archaeal and fungal
communities are dynamic along a secondary succession in a
reclaimed mining area. Soil C and N significantly improved with
reclamation period. Reclamation scenarios and times produced
more significant effects on fungal diversity indices than on
bacterial and archaeal indices. Vegetation had stronger effects
on the variations in bacterial and archaeal diversity, and a
lower effect on the variations in fungal diversity than soil
characteristics. Reclamation period was significant for bacterial
and archaeal assemblies, and soil N, C and water content
significantly influenced fungal assembly. Bacterial and archaeal
succession followed plant succession, but fungi did not. Taken
together, our data highlight that fungal successional dynamics
distinctly differ from bacterial and archaeal successional
dynamics.
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