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Vertebrate vision is mediated by two types of photoreceptors, rod and cone cells. Rods

are more sensitive than cones in dim light, but are incapable of color discrimination

because they possess only one type of photosensitive opsin protein (rod opsin = RH1).

By contrast, cones are more important for vision in bright light. Cones also facilitate

dichromatic color vision in most mammals because there are two cone pigment genes

(SWS1, LWS) that facilitate color discrimination. Cone monochromacy occurs when

one of the cone opsins (usually SWS1) is inactivated and is present in assorted

subterranean, nocturnal, and aquatic mammals. Rod monochromacy occurs when

both cone photoreceptors are inactivated, resulting in a pure rod retina. The latter

condition is extremely rare in mammals and has only been confirmed with genetic

evidence in five cetacean lineages, golden moles, armadillos, and sloths. The first genetic

evidence for rod monochromacy in these taxa consisted of inactivated copies of both

of their cone pigment genes (SWS1, LWS). However, other components of the cone

phototransduction cascade are also predicted to accumulate inactivating mutations

in rod monochromats. Here, we employ genome sequences and exon capture data

from four baleen whales (bowhead, two minke whales, fin whale) and five toothed

whales (sperm whale, Yangtze River dolphin, beluga, killer whale, bottlenose dolphin)

to test the hypothesis that rod monochromacy is associated with the inactivation

of seven genes (GNAT2, GNB3, GNGT2, PDE6C, PDE6H, CNGA3, CNGB3) in the

cone phototransduction cascade. Cone-monochromatic toothed whales that retain a

functional copy of LWS (beluga whale, Yangtze River dolphin, killer whale, bottlenose

dolphin) also retain intact copies of other cone-specific phototransduction genes,

whereas rod monochromats (Antarctic minke whale, common minke whale, fin whale,

bowhead whale, sperm whale) have inactivating mutations in five or more genes in

the cone phototransduction cascade. The only shared inactivating mutations that were

discovered occur in the three Balaenoptera species (two minke whales, fin whale),

further suggesting that rod monochromacy evolved independently in two clades of

baleen whales, Balaenopteroidea and Balaenidae. We estimate that rod monochromacy

evolved first in Balaenopteroidea (∼28.8Ma) followed by P. macrocephalus (∼19.5Ma)

and Balaenidae (∼13.0Ma).
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INTRODUCTION

Vision in mammals is initiated when photoreceptors in the retina
are activated by light. The two types of photoreceptor cells in the
retina are rods and cones, each of which contains photosensitive
visual pigments that are comprised of an opsin protein plus a
chromophore. Rods are more sensitive than cones to dim light
but possess only a single type of photosensitive opsin protein (rod
opsin=RH1), which precludes color discrimination. By contrast,
cones are more important for vision in bright light. Cones have
higher spatial acuity than rods because their signals are not
spatially pooled to the same extent as rods, and in most mammals
allow for color discrimination because there are two cone opsin
classes, each with a distinct λmax: short-wavelength sensitive
opsin 1 (SWS1) and long-wavelength sensitive opsin (LWS).
Exceptions to the two-cone opsin condition (dichromacy)
include most anthropoids (Catarrhini, Platyrrhini) and a few
lemuriform primates (Propithecus coquereli, Varecia, Eulemur
flavifrons), which exhibit routine (catarrhines, Alouatta) or
polymorphic (most platyrrhines, Lemuriformes) trichromacy,
and various cone monochromats that are typically nocturnal or
aquatic and have an inactivated copy of the gene that encodes
SWS1 (Fasick et al., 1998; Peichl and Moutairou, 1998; Peichl
et al., 2001; Levenson and Dizon, 2003; Newman and Robinson,
2005; Tan et al., 2005; Levenson et al., 2006; Hunt et al., 2009;
Jacobs, 2009, 2013; Veilleux and Bolnick, 2009; Davies et al., 2012;
Emerling et al., 2015). There are also rod monochromats that
have inactivated copies of both cone opsins.Meredith et al. (2013)
provided the first genetic evidence for rod monochromacy and
their results suggested that this condition arose independently
in five different lineages of Cetacea including Balaenidae
(bowhead and right whales), Balaenopteroidea (rorquals plus
gray whale), Mesoplodon bidens (Sowerby’s beaked whale),
Physeter macrocephalus (sperm whale), and Kogia breviceps
(pygmy sperm whale).

Subsequent to Meredith et al.’s (2013) report of inactivated
SWS1 and LWS in multiple cetacean lineages, Emerling and
Springer (2015) documented the inactivation of additional
cone-specific genes in sperm whale and common minke
whale based on available genome sequences. Emerling and
Springer (2014, 2015) also documented rod monochromacy
in two species of Chrysochloridae (golden moles), some
Xenarthra (armadillos, sloths), and possibly Heterocephalus
glaber (naked mole rat). Importantly, eight of nine core
proteins in the cone phototransduction cascade (two cone
opsins, two of three GN proteins that comprise transducin,
two phoshodiesterase subunits [PDE proteins], two cGMP gated
channels [CNG proteins]) have inactivated genes in one or
more rod monochromatic taxa. By contrast, all of these genes
remain intact in mammalian taxa with cone trichromacy, cone
dichromacy, or cone monochromacy. The only exception is the
naked mole rat, which is either an SWS1-cone monochromat
or a functional rod monochromat based on genomic evidence
(Emerling and Springer, 2014).

Here, we utilize genome sequences and exon capture data
from four baleen whales (Balaena mysticetus [bowhead whale],
Balaenoptera physalus [fin whale], Balaenoptera acutorostrata

[common minke whale], Balaenoptera bonaerensis [Antarctic
minke whale]) and five toothed whales (Physeter macrocephalus
[sperm whale], Lipotes vexillifer [Yangtze River dolphin],
Delphinapterus leucas [beluga whale],Orcinus orca [killer whale],
Tursiops truncatus [bottlenose dolphin]) to test the hypothesis
that rod monochromacy is associated with the inactivation of
seven cone-specific genes (GNAT2, GNB3, GNGT2, PDE6C,
PDE6H, CNGA3, CNGB3) in the cone phototransduction
cascade. In addition to cataloging inactivation mutations
(frameshifts, premature stop codons, splice site mutations), we
perform selection analyses to test whether these genes have
evolved neutrally in rod monochromatic cetaceans. We also use
estimates of selection intensity (dN/dS values) and published
timetrees for Cetacea to estimate when rod monochromacy
evolved in the balaenid, rorqual, and sperm whale lineages.

MATERIALS AND METHODS

Ethics Statement
Samples from Choeropsis liberiensis, Delphinapterus leucas, and
Balaenoptera physalus were obtained from the New York
Zoological Society, which maintained a “frozen zoo” as a
reservoir of wildlife samples that were made available to
researchers world-wide to study the conservation, evolution,
and ecology of various species. The sample for Choeropsis
liberiensis is an organ tissue specimen taken from a necropsy
of a captive animal from the Bronx Zoo that was collected ∼20
years ago. The blood sample for Delphinapterus leucas derives
from a regular health check-up that was administered to a
captive animal at the New York Aquarium (previously Coney
Island Aquarium) more than 15 years ago. The sample (skin)
for Balaenoptera physalus is ∼25 years old and derives from
a stranded (deceased) animal for which New York Zoological
Society staff collected samples. The Balaenoptera bonaerensis
sample was obtained from skin biopsies in the Southwest
Fisheries Science Center (SWFSC, specimen Z23603) Marine
Mammal and Sea Turtle Research (MMASTR) Collection,
which were obtained from the South Australian Museum,
Adelaide, Australia (SAM M15375). Our collaborator, Annalisa
Berta at San Diego State University, and her Masters student,
Amanda Rychel, requested a tissue sample from SWFSC and
utilized the sample to do a pilot study on mysticete (baleen)
whale phylogeny in approximately 2002–2003 and subsequently
published their work (Rychel et al., 2004). Shortly thereafter,
Gatesy and Berta requested a transfer of baleen whale samples
from SDSU to the University of California—Riverside. This
request was approved by SWFSC, and the transferred sample
was utilized in the hybridization capture experiments described
below.

Database Mining
Gene names (OPN1LW [LWS], OPN1SW [SWS1], CNGA3,
CNGB3, GNAT2, GNB3, GNGT2, PDE6C, PDE6H) were used
as key words to search for mRNA sequences in GenBank.
Nucleotide BLAST searches (http://blast.ncbi.nlm.nih.gov/Blast.
cgi) were performed against NCBI’s whole-genome shotgun
contigs using megablast with coding sequences from mRNAs
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as query sequences. Query sequences were from the same
taxon when available or from a close relative (e.g., Bos taurus
[cow] for Capreolus capreolus [roe deer]). We targeted the
genomes of six cetaceans with assembled genomes (Balaenoptera
acutorostrata, Balaenoptera bonaerensis, Physeter macrocephalus,
Lipotes vexillifer, Orcinus orca, Tursiops truncatus), and six
outgroups (Camelus ferus [wild Bactrian camel], Sus scrofa
[domestic pig], C. capreolus, B. taurus, Pantholops hodgsonii
[Tibetan antelope], Capra hircus [goat]). Retrieved contigs or
relevant portions thereof were imported into Geneious 8.1
(http://www.geneious.com, Kearse et al., 2012) and manually
annotated after usingMUSCLE (Edgar, 2004) to align exons from
Homo sapiens reference sequences against the individual contigs.
We also blasted the sequence read archive for Balaenoptera
physalus (fin whale; Yim et al., 2014) with query sequences
from two of its congeners, B. bonaerensis and B. acutorostrata.
Blast hits were downloaded and assembled in Geneious. Finally,
we imported the genome of Balaena mysticetus (bowhead
whale; Keane et al., 2015) into Geneious and queried this
genome with discontiguous megablast using sequences from
other mysticetes. Coding sequences were manually inspected for
inactivating mutations including altered start codon missense
mutations, premature stop codons, frameshift mutations, stop
codon mutations, and altered splice sites at intron boundaries.
The latter were identified following the AG (acceptor splice
site)/GT (donor splice site) rule with an allowance for GC donor
splice sites (Burset et al., 2000). Accession numbers for sequences
that were mined from databases are provided in Supplementary
Information.

Hybridization Capture and Next Generation
Sequencing
Hybridization capture and next generation sequencing were
used to obtain sequences for one outgroup taxon (Choeropsis
liberiensis, pygmy hippopotamus) and three cetaceans including
Delphinapterus leucas (beluga) and additional individuals of
two species (Balaenoptera physalus, and B. bonaerensis) whose
genome sequences are available on NCBI. DNA was extracted
using the DNeasy Blood and Tissue kit (Qiagen). Our protocol
for library construction and targeted enrichment for paired-end
sequencing is described in detail elsewhere and was performed
with the SureSelectXT Target Enrichment System for Illumina
Paired-End Sequencing Library kit (Agilent) (Springer et al.,
2016). We targeted the coding exons of seven genes (SWS1,
LWS, GNAT2, GNGT2, PDE6C, PDE6H, CNGB3) for enrichment
with a custom-designed biotinylated RNA library. Probes were
compiled from cetacean genome sequences (Tursiops truncatus,
Orcinus orca) and included 60-bp overhangs of introns at both
the 5′ and 3′ ends. The fasta file of target sequences (exon +

flanking introns) was entered into the Agilent SureDesign
algorithm to generate 120-base long oligomers with sufficient
overlap that each nucleotide position in the compiled database
was present, on average, in five different oligomers. Paired-end
sequencing (2 × 100) was performed on an Illumina HiSeq
2500 platform at the UC Riverside Institute for Integrative
Genome Biology Genomics Core. FastQC v.0.10.0 (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) with the
no-group setting used to visualize per-base quality distributions
of de-multiplexed fastq files for both read pair files. Based
on these results, we trimmed the first three bases and the
last base with FASTX-Toolkit v.0.0.13.2 (http://hannonlab.cshl.
edu/fastx_toolkit/index.html), which resulted in 97 bp reads.
We filtered out reads with all but three identical bases or
a quality score below 30 at any base position with FastX-
toolkit on each fastq file. PRINSEQ lite v.0.20.4 (Schmieder
and Edwards, 2011) was then used to find the read pairs that
passed these filtering conditions. These read pairs were then
interleaved into a single file using the ShuffleFastq script in
RACKJ v.0.95 (http://rackj.sourceforge.net/Scripts/index.html#
ShuffleFastq). Fastq files were imported into Geneious 7.1
(http://www.geneious.com, Kearse et al., 2012). Individual reads
were mapped to reference (“target”) sequences and consensus
sequences were assembled with a matching threshold of 85%.
Accession numbers for new sequences are KX064683-KX064690
and KX118304-KX118323.

Phylogeny Reconstruction
Individual gene trees and the concatenation tree based on nine
genes were estimated with RAxML 8.2.4 (Stamatakis, 2006, 2014)
on CIPRES (Miller et al., 2010). Analyses were performed with
a GTR + Ŵ model of sequence evolution (i.e., GTRGAMMA
option in RAxML), and the analysis with the concatenated data
set allowed each gene to have its own parameters for the GTR +

Ŵ model (RAxML does not allow for simpler models of sequence
evolution). Rapid bootstrap analyses (Stamatakis et al., 2008)
were performed with 500 pseudoreplicates. Bootstrap analyses
and a search for the best ML tree were performed in a single run.
In addition to maximum likelihood analyses, we also performed
maximum parsimony analyses with the concatenated data set to
determine if the results of different phylogenetic methods are
in agreement with each other. A maximum parsimony search
was implemented with PAUP 4.0a147 (Swofford, 2002) using
the branch-and-bound search algorithm. Amaximumparsimony
bootstrap analysis was also performed with PAUP and employed
500 bootstrap pseudoreplicates with a branch-and-bound search
for each pseudoreplicate.

Selection Analyses
Selection analyses were performed with codeml in PAML
(Yang, 2007) for seven cone-specific phototransduction genes
(LWS, GNAT2, GNGT2, PDE6C, PDE6H, CNGA3, CNGB3) for
which inactivation is associated with rod monochromacy in
various cetacean lineages (Meredith et al., 2013) as well as
other rod monochromatic mammals (Emerling and Springer,
2014, 2015). SWS1 is also cone-specific, but the inactivation of
this gene occurred on deeper branches in Cetacea (i.e., stem
odontocete and stem mysticete branches) and is associated
with cone monochromacy rather than rod monochromacy
(Meredith et al., 2013). GNB3, another phototransduction gene,
is never inactivated in rod monochromats. Frameshift insertions
were deleted and premature stop codons were recoded as
missing data prior to running codeml analyses. Analyses were
performed with Model 1 (one dN/dS ratio for all branches)
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FIGURE 1 | RAxML phylograms (GTR + Ŵ) for nine genes that encode proteins in the cone phototransduction cascade. SWS1 and LWS are opsins;

GNAT2, GNB3, and GNGT2 encode subunits of transducin; PDE6C and PDE6H encode subunits of phosphodiesterase; and CNGA3 and CNGB3 encode cGMP

gated-channel proteins.

and two additional models (Model 2, Model 3) that allowed
five separate categories for branch dN/dS values including a
category for functional branches leading to taxa with cone
dichromacy or monochromacy, three categories for transitional
branches where there is evidence that rod monochromacy
evolved (Physeter branch, Balaena branch, stem balaenopteroid
branch), and one category for fully pseudogenic branches in
crown balaenopteroid branches. Branches in the latter category
post-date the transition from cone monochromacy to rod
monochromacy. The dN/dS ratio for the crown balaenopteroid
branches was estimated in Model 2 and fixed at 1.0 in Model
3 given that this is the expected value for neutrally evolving
pseudogenes. Analyses were performed with the RAxML species
tree (see above) that is consistent with previously published
phylogenetic work (McGowen et al., 2009; Meredith et al.,
2011) and two different codon frequency models in codeml,
codon frequency model 1 (CF1) and codon frequency model 2
(CF2).

Estimation of Inactivation Times
To estimate when rod monochromacy evolved in different
lineages of Cetacea (i.e., Balaenidae, Physeter, Balaenopteridae),
we used divergence times from McGowen et al. (2009) and
equations from Meredith et al. (2009) that employ dN/dS
ratios for functional (ωf), pseudogenic (ωp), and transitional
(= mixed) branches (ωm) where transitions from cone
monochromacy to rod monochromacy have been inferred
(Meredith et al., 2013). We combined sequences for seven
cone-specific, phototransduction genes that are inactivated in
one or more rod monochromatic cetaceans, as well as in
other mammalian rod monochromats (Emerling and Springer,
2014, 2015), to achieve more statistical power than is possible
with individual genes. An underlying assumption of this
approach is that all seven cone-specific genes have evolved
under neutral selection coincident with the evolution of rod
monochromacy in each of these lineages, even in cases where
the accumulation of frameshift mutations, premature stop
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FIGURE 2 | RAxML phylogram based on a partitioned analysis of the

concatenated alignment for nine phototransduction genes. Each gene

was allowed to have its own GTR + Ŵ model of sequence evolution. Bootstrap

percentages are shown for clades with support scores <100%.

codons, or other inactivating mutations has lagged behind the
presumably “jobless” role of these cone-specific genes following
inactivation of both SWS1 and LWS. For confidence intervals
on these inactivation dates, we used prop.test in the stats
package of R to determine 95% confidence intervals on the
proportion of nonsynonymous and synonymous substitutions
and the dN/dS ratio. For example, PAML returned N∗dN =

125.3 and S∗dS = 71.3 for the Physeter branch with CF1.
Based on these values, and their sum of 196.6, prop.test (125.3,
196.6) gives 95% confidence intervals of 0.566 and 0.704 for
the proportion of nonsynonymous substitutions and 0.296
and 0.434 for the proportion of synonymous substitutions.
These proportions were then used to estimate the number
of nonsynonymous and synonymous substitutions and the
dN/dS values associated with the 95% confidence intervals. For
the above example, 0.566 × 196.6 = 111.28 nonsynonymous
substitutions, 0.434 × 196.6 = 85.32 synonymous substitutions,
so that dN = 111.28/6824.3 = 0.0163 nonsynonymous
substitutions per nonsynonymous site, dS = 85.32/2853.7 =

0.0299 synonymous substitutions per synonymous site, and
dN/dS = 0.0163/0.0299 = 0.545 at the lower confidence interval
(values for the number of non-synonymous sites [6824.3] and
synonymous sites [2853.7] were taken directly from PAML
output).We then used these lower and upper confidence intervals
on dN/dS ratios and equations from Meredith et al. (2009)
to calculate 95% confidence intervals on inactivation dates.

Fossil occurrence data for Cetacea were downloaded from the
Paleobiology Database (26 January 2016) using the taxon names
Physeteroidea, Balaenidae, and Balaenopteroidea.

RESULTS

Alignments and Phylogeny
Alignments for nine phototransduction genes (SWS1, LWS,
GNAT2, GNB3, GNGT2, PDE6C, PDE6H, CNGA3, CNGB3)
are provided in Supplementary Information. RAxML gene
trees for each of the nine genes are shown in Figure 1. The
concatenated alignment is 11828 bp and the partitioned RAxML
tree (–lnL=−37085.256) with bootstrap support percentages is
shown in Figure 2. All clades received 100% bootstrap support
excepting Cetruminantia (97%) and Balaenoptera bonaerensis
(99%). Maximum parsimony analyses recovered an identical tree
(3694 steps) with 100% bootstrap support for all clades excepting
Cetruminantia (99%) and Balaenoptera bonaerensis (97%).

Inactivating Mutations
Inactivating mutations in SWS1 are present in all cetaceans
including mutations that are shared by all odontocetes and
mysticetes, respectively (Table 1). LWS, in turn, is inactivated in
Physeter macrocephalus, Balaena mysticetus, and all three species
of Balaenoptera (B. acutorostrata, B. bonaerensis, B. physalus) that
were investigated (Table 1) including two inactivating mutations
that are shared by all three species of Balaenoptera (Table 1).
The inactivation of SWS1 and LWS in Physeter, Balaena, and
Balaenoptera spp. confirms the presence of rod monochromacy
in these clades (Meredith et al., 2013). In addition, inactivating
mutations are present in one or more of these rodmonochromats
for all of the remaining phototransduction genes except GNB3
(Table 1, Figures 3, 4). Overall, P. macrocephalus has inactivating
mutations in six of nine phototransduction genes, B. mysticetus
has inactivating mutations in five of eight phototransduction
genes (GNGT2 is coded as Ns for this gene), and Balaenoptera
spp. have inactivating mutations in six (B. acutorostrata) or
seven (B. physalus, B. bonaerensis) phototransduction genes
(Table 1). Among the GN protein genes (GNAT2, GNB3,
GNGT2) that comprise transducin, there is an acceptor splice
site mutation (“AG” to “AC”) in intron 6 of GNAT2 that is
shared by the twominke whales (B. acutorostrata, B. bonaerensis).
Shared inactivating mutations in the phosphodiesterase subunits
include a premature stop codon in PDE6H that is present
in all three species of Balaenoptera and a 4-bp frameshift
deletion in exon 20 of PDE6C that is present in both
individuals of Balaenoptera physalus and polymorphic in B.
bonaerensis (present in exon capture individual, absent in NCBI
WGS individual). Finally, both of the cGMP gated-channel
genes (CNGA3, CNGB3) have acceptor splice site mutations
that are shared by the two minke whale species. Additional
inactivating mutations in the phototransduction genes of rod
monochromats are unique to single species including 13
mutations in Physeter macrocephalus, sevenmutations in Balaena
mysticetus, ten mutations in Balaenoptera physalus, one mutation
in Balaenoptera acutorostrata, and twomutations in Balaenoptera
bonaerensis.
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Selection Analyses
Table 2 summarizes the results of selection (dN/dS) analyses.
Model 1 (one dN/dS category for the entire tree) was rejected
(p < 1.0 × 10−9) in favor of Model 2, which allows for
five different dN/dS categories (one category for functional
branches, three categories for transitional branches where rod
monochromacy evolved, one category for fully pseudogenic
branches). The dN/dS value for functional branches (i.e., ωf) in
Model 2 is 0.171 and 0.161 with CF1 and CF2, respectively. The
dN/dS value for fully pseudogenic branches (i.e., ωp) in crown
Balaenoptera, in turn, is slightly elevated above 1 (1.198 with CF1,
1.134 with CF2), although ωp is not significantly different than
1.0 when Model 2 (ωp = free parameter) is compared to Model
3 (ωp = 1.0) (Table 2). This comparison (Model 2 vs. 3) suggests
that elevation of the dN/dS value above 1 in crown Balaenoptera
may be the result of random sampling error. For Models 2 and
3, two of the three transitional branches (Balaena, Physeter) have
dN/dS values between ωf and ωp as is expected for branches with
mixed histories that are part functional and part pseudogenic.
The dN/dS value for stem Balaenoptera is slightly higher than
for crown Balaenoptera, but the stem and crown Balaenoptera
values are not significantly different from each other based on
dN/dS analyses that enforced the same value for these branches
(Table 2).

Inactivation Dates
Point estimates and 95% confidence intervals for the timing of
the evolution of rod monochromacy in three different cetacean
lineages (Physeter, Balaena, stem Balaenoptera) are shown in
Figure 5 and summarized in Table 3. These estimates are based
on dN/dS ratios for the concatenation of seven cone-specific
genes (LWS, GNAT2, GNGT2, PDE6C, PDE6H, CNGA3, CNGB3)
that are known to become inactivated in association with rod
monochromacy. Estimates are based on two different codon
frequency models (CF1, CF2), estimated vs. fixed (1.0) values for
the dN/dS ratio on branches that post-date the evolution of rod
monochromacy, and equations that allow for one synonymous
rate or two separate synonymous rates for functional and
pseudogenic branches, respectively (Meredith et al., 2009). Eight
point estimates for the timing of rod monochromacy in Physeter
range from 23.58 to 15.94million years ago (mean= 19.46MYA).
Point estimates for the onset of rod monochromacy in Balaena
range from 15.94 to 10.40 MYA (mean= 12.97 MYA). Finally, all
of the point estimates for the evolution of rod monochromacy
on the stem Balaenoptera branch are coincident with the age
of crown Mysticeti (28.79 MYA) on the timetree given that the
dN/dS value on the stem Balaenoptera branch, which extends
from crownMysticeti (28.79 MYA) to crown Balaenoptera (13.80
MYA), is slightly higher than the estimated or fixed dN/dS value
for fully pseudogenic branches (Table 2). Similarly, the upper
95% confidence interval for the evolution of rod monochromacy
on the stem Balaenoptera branch is constrained by the age of
crown Mysticeti, i.e., the age of rod monochromacy cannot be
older than the age of crown Mysticeti because there are no
inactivating mutations in cone-specific genes that are shared by
all mysticetes. However, the lower bound of the 95% confidence
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FIGURE 3 | Examples of inactivating mutations in eight different cone-specific phototransduction genes of rod monochromatic cetaceans. Frameshift

deletions are highlighted in red boxes; frameshift insertions are highlighted in blue boxes; and premature stop codons are highlighted in green boxes. EC, exon

capture; SRA, sequence read archive; WGS, NCBI whole genome sequence.

interval suggests that rod monochromacy may have evolved as
late as 19.30 MYA in this lineage.

DISCUSSION

Inactivating Mutations in the Cetacean
Cone Phototransduction Cascade
All living cetaceans are either cone monochromats or rod
monochromats (Meredith et al., 2013). Cone monochromacy is
inferred to have evolved independently on the stem odontocete
and on the stem mysticete branches based on inactivating
mutations in SWS1. These inactivating mutations occurred after
a blueshift in RH1 on the stem cetacean branch, perhaps because
the benefit of possessing SWS1 cones, with less efficient photon
capture than rods, became increasingly small after the rods were
blue-shifted. Rod monochromacy, in turn, evolved on at least
five occasions in Cetacea based on the phylogenetic distribution

of inactivating mutations in LWS (Meredith et al., 2013). Three
instances of rod monochromacy are found in odontocetes
(Physeter macrocephalus, Kogia breviceps, Mesoplodon bidens)
and two occur in mysticetes (Balaenidae, Balaenopteroidea). In
all cases, rod monochromatic cetaceans are known to dive to
depths of at least 100m with physeteroids (P. macrocephalus,
K. breviceps) and ziphiids (M. bidens) among the deepest
diving mammals. The “pure rod” retina in rod monochromatic
odontocetes may be viewed as an extreme adaptation to dim-light
conditions in the mesopelagic (150–1000 m) and bathypelagic
(>1000m) zones where there is little (mesopelagic) or no
(bathypelagic) down-welling light. In these instances, the pure
rod retina may be useful for detecting bioluminescent prey,
which in the extreme case of the bathypelagic zone are the only
source of light. Odontocetes are capable of echolocation, and the
combination of rod monochromacy plus echolocation may be
more effective in locating prey than echolocation alone. Deep-
diving mysticetes, in turn, are known to batch filter aggregations
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FIGURE 4 | Summary of inactivated genes in the cone phototransduction pathway of cone monochromatic and rod monochromatic cetaceans. Opsins

(SWS1, LWS) are depicted with circles; transducin subunits (GNAT2, GNB3, GNGT2) are depicted with triangles; phosphodiesterase subunits (PDE6C, PDE6H) are

depicted with squares; and cGMP gated-channel protein genes (CNGA3, CNGB3) are depicted with pentagons. Blue and red correspond to intact and inactivated

genes, respectively, and green indicates a gene that is represented by a string of Ns in the genome of Balaena mysticetus (bowhead). Arrows indicate the directionality

of the phototransduction cascade, and the absence of arrows indicates the predicted disruption of that portion of the cascade.

of tiny, bioluminescent prey at night and may also benefit from
a pure rod retina with its higher density of rods that are more
effective than cones at contrast detection (Meredith et al., 2013).

Among the rod monochromatic lineages, P. macrocephalus,
Balaenidae, and Balaenopteroidea are represented by taxa
with genome sequences or exon-capture data for cone
phototransduction genes. Beyond inactivating mutations in
SWS1 and LWS, all three rod monochromatic cetacean lineages
included in our study have inactivating mutations in additional
genes in the phototransduction cascade: GNAT2, GNGT2,
CNGA3, and CNGB3 in Physeter; PDE6C, CNGA3, and CNGB3
in Balaena; and GNAT2, PDE6C, PDE6H, CNGA3, and CNGB3
in two or all three species of Balaenoptera. The occurrence of
inactivating mutations in both cone opsins (SWS1, LWS), as
well as in other genes that are crucial for the phototransduction
cascade, provides compelling evidence that these taxa are
rod monochromats as originally suggested by Meredith et al.
(2013) based on inactivating mutations in SWS1 and LWS.
With the exception of CNGA3, all of the phototransduction
genes with inactivating mutations in one or more cetacean
rod monochromats also have inactivating mutations among
non-cetacean rod monochromats including golden moles, sloths,
and armadillos (Emerling and Springer, 2014, 2015). Among
the phototransduction genes that we investigated, only GNB3
is intact in rod-monochromatic cetaceans, presumably because
this gene is pleiotropic (Keers et al., 2011; Kumar et al., 2013).

Similarly, this gene remains functional in golden moles and
xenarthrans (Emerling and Springer, 2014, 2015). By contrast, all
LWS-cone monochromats that have been investigated, including
odontocetes in the present study (Tursiops, Lipotes, Orcinus,
Delphinapterus) and non-cetacean taxa such as the Chinese
pangolin (Manis pentadactyla; Emerling and Springer, 2015),
have intact copies of the abovementioned phototransduction
genes except for SWS1.

The Timing of Rod Monochromacy in
Cetacean Clades
The oldest member of Physeteroidea (sperm whales) is
Ferecetotherium kelloggi from the late Oligocene (28.1–23.03 Ma)
of Azerbaijan (Lambert et al., 2008; Gol’din and Marareskul,
2013). The physeteroids Diaphorocetus poucheti, Idiorophus
bolzanensis, and Scaldicetus bellunensis are known from the early
Miocene (Aquatanian, 23.03–20.44Ma) (Paleobiology Database).
McGowen et al.’s (2009) timetree for Cetacea suggests that
crown physeteroids last shared a common ancestor 24.21 Ma.
Our point estimates for the evolution of rod monochromacy
in Physeter macrocephalus are in the range of 23.58–15.94
Ma (mean = 19.46 Ma) and were calculated with McGowen
et al.’s (2009) timetree date of 34.69 Ma for crown Odontoceti.
These estimates are consistent with independent inactivations
of LWS in P. macrocephalus and Kogia breviceps (pygmy sperm
whale) after these taxa diverged from a common ancestor
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TABLE 2 | Results of dN/dS analyses with different branch categories and two different codon frequency models (CF1, CF2).

Analysis, Number of Branch Categories, and

Statistical Comparisons

Codon Models, dN/dS Values, Likelihood Scores, and Statistical Tests

CF1 CF2

MODEL 1. ONE DN/DS CATEGORY

All branches 0.228 0.214

Ln likelihood −30410.398 −30306.970

MODEL 2. FIVE DN/DS CATEGORIESa

Branches leading to cone dichromats or cone

monochromats (ωf )

0.171 0.161

Physeter branch 0.734 0.696

Balaena branch 0.630 0.601

Stem Balaenoptera branch 1.247 1.182

Crown Balaenoptera branches (ωp) 1.198 1.134

Ln likelihood −30272.266 −30167.709

Model 1 vs. Model 2 21ln likelihood = 276.263, p < 0.000000001 (df = 4) 21ln likelihood = 278.521, p < 0.000000001 (df = 4)

MODEL 3. FIVE DN/DS CATEGORIES WITH ωP =1.0b

Branches leading to cone dichromats or cone

monochromats (ωf )

0.171 0.161

Physeter branch 0.734 0.696

Balaena branch 0.630 0.601

Stem Balaenoptera branch 1.250 1.184

Crown Balaenoptera branches (ωp) 1.000 1.000

Ln likelihood −30272.878 −30168.000

Model 2 vs. Model 3 21ln likelihood = 1.224, p = 0.269 (df = 1) 21ln likelihood = 0.582, p = 0.446 (df = 1)

aThere is no significant difference between Model 2 with five categories and a model with four categories that enforces the same dN/dS value for stem and crown Balaenoptera branches

(CF1: ωp = 1.2076, p = 0.91702; CF2: ωp = 1.1428, p = 0.91221).
bThere is no significant difference between Model 3 with five categories and a model with four categories that enforces dN/dS = 1.0 for stem and crown Balaenoptera branches (CF1:

ωp = 1.0, p = 0.50913; CF2: ωp = 1.0, p = 0.61853).

Abbreviations: CF1, codon frequency model 1; CF2, codon frequency model 2; ωf , dN/dS for functional branches; ωp, dN/dS for fully pseudogenic branches.

(Meredith et al., 2013). However, it will be important to
examine other cone-specific genes in Kogia to determine if
Kogia and Physeter share inactivating mutations in other
cone phototransduction genes that are inactivated in Physeter
(Figure 4; GNAT2, GNGT2, CNGA3, CNGB3).

All of our point estimates for the evolution of rod
monochromacy in Balaenoptera are coincident with McGowen
et al.’s (2009) timetree estimate of 28.79 Ma for the most recent
common ancestor of crown Mysticeti because the dN/dS value
for the stem Balaenoptera branch, which extends from crown
Mysticeti to the most recent common ancestor of B. physalus, B.
bonaerensis, and B. acutorostrata, is slightly above one. However,
95% confidence intervals on these estimates suggest that rod
monochromacy may have evolved as late as ∼22–19 Ma in
the lineage leading to Balaenoptera. Meredith et al. (2013)
reported an intact copy of LWS in the neobalaenid Caperea
marginata (pygmy right whale), which is the extant sister taxon
to Balaenopteroidea (McGowen et al., 2009; Meredith et al.,
2011; Gatesy et al., 2013). The putatively functional copy of LWS
in C. marginata suggests that rod monochromacy evolved in
the lineage leading to Balaenoptera (and other balaenopteroids)
after Neobalaenidae diverged from Balaenopteroidea. McGowen
et al.’s (2009) timetree date for this split is 22.59 Ma,
although the putative stem balaenopteroid Mauicetus parki
is slightly older (>23.03 Ma) and suggests an earlier split

for Neobalaenidae and Balaenopteroidea (Boessenecker and
Fordyce, 2015). If Caperea retains functional LWS-cones, as
suggested by an intact copy of LWS in this taxon, then rod
monochromacy in Balaenopteroidea probably evolved soon
after the Neobalaenidae-Balaenoptera split. However, it will be
important to determine if the shared stop codon in exon 3 of
PDE6H, which occurs in all three species of Balaenoptera that
were investigated, is also shared by other balaenopteroids and
possibly Caperea.

The second mysticete lineage with rod monochromacy is
Balaenidae and is represented in our study by Balaena mysticetus.
Meredith et al. (2013) reported an inactivating splice site
mutation in LWS that is shared by both extant balaenid genera,
Balaena and Eubalaena. Our estimates for the evolution of
rod monochromacy in Balaena suggest that this condition
originated 15.94–10.4 Ma, which pre-dates McGowen et al.’s
(2009) estimate for the last common ancestor of Balaenidae
at 5.38 Ma and is consistent with Meredith et al.’s (2013)
evidence for the evolution of rod monochromacy in the
common ancestor of extant balaenids. The oldest stem balaenid
fossil is Morenocetus from the early Miocene (∼22–20 Ma)
(McGowen et al., 2009). Our point estimates for the evolution
of rod monochromacy in Balaena are all younger than 20 Ma
and suggest that Morenocetus retained LWS-cones, although
95% confidence intervals on these estimates allow for the
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FIGURE 5 | Timetree for nine cetaceans and seven cetartiodactyl outgroups based on divergence dates from McGowen et al. (2009) for Cetacea,

Hassanin et al. (2012) for Ruminantia, and Meredith et al. (2011) for deeper divergences. Mean estimates for the onset of rod monochromacy in Physeter,

Balaena, and Balaenoptera are averages of eight different values, and 95% confidence intervals on these estimates encompass the entire range of eight different

analyses (Table 3).

TABLE 3 | Estimates for the timing of rod monochromacy in Physeter, Balaena, and stem Balaenoptera based on dN/dS (= ω) values.

Synonymous substitution model and lineage Estimated ωp Fixed ωp (= 1.0)

CF1 CF2 CF1 CF2

1. ONE SYNONYMOUS SUBSTITUTION RATEa

a. Physeter 19.03 (12.61, 27.77) 19.09 (12.68, 27.79) 23.58 (15.62, 34.40) 22.13 (14.70, 32.21)

b. Balaena 12.86 (6.20, 23.70) 13.02 (6.29, 23.83) 15.94 (7.68, 28.79b) 15.10 (7.29, 27.61)

c. Stem Balaenoptera 28.79b(20.59, 28.79b) 28.79b(20.63, 28.79b) 28.79b(22.22, 28.79b) 28.79b(21.72, 28.79b)

2. TWO SYNONYMOUS SUBSTITUTION RATESc

a. Physeter 15.94 (9.90, 25.58) 16.00 (9.97, 25.61) 20.73 (12.63, 34.26) 19.16 (11.78, 31.23)

b. Balaena 10.40 (4.64, 22.03) 10.54 (4.71, 22.19) 13.38 (5.84, 28.49b) 12.54 (5.52, 27.13)

c. Stem Balaenoptera 28.79b(19.30, 28.79b) 28.79b(19.34, 28.79b) 28.79b(20.89, 28.79b) 28.79b(20.38, 28.79b)

Estimated ages are in millions of years ago.
aCalculations based on Equation 3 of Meredith et al. (2009).
bDate fixed by timetree age of crown Mysticeti (Figure 4).
cCalculations based on Equation 5 of Meredith et al. (2009) with dSf /dSp = 0.70.

Abbreviations, CF1, codon frequency model 1; CF2, codon frequency model 2; ωp, dN/dS for fully pseudogenic branches.

possibility that rod monochromacy in balaenids is as old as
Morenocetus.

The Fate of Cone Cells in Rod
Monochromatic Cetaceans
Schweikert et al. (2016) confirmed the total loss of cone-
based photoreception in the retina of Balaena mysticetus based

on immunofluorescence, histology, and ultrastructural analyses.
Despite the loss of the outer segments of cone cells, where
opsins reside, the retina of B. mysticetus retains putative cone
pedicles and somata in addition to cone bipolar cells, which
may be retained for rod-based signaling in mammals (Schweikert
et al., 2016). Cone bipolar cells are required for the transmission
of rod-based signals to the brain (though see below), so
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the retention of cone bipolar cells is perhaps not surprising.
Schweikert et al. (2016) suggest that conservation of cone
signaling structures (i.e., cone synapses and cone bipolar cells)
may facilitate multi-channel, rod-based signaling that is more
sensitive to a broad range of light intensities than would be
possible with rod-to-rod bipolar cell signaling alone.

A different arrangement occurs in Heterocephalus glaber
(naked mole rat), where unusual retinal wiring may be consistent
with functional rod monochromacy (Mills and Catania, 2004).
Typical retinal wiring includes synapses between rods and rod
bipolar cells, with the latter then synapsing to cone bipolar cells
via AII amacrine cells before ultimately connecting to retinal
ganglion cells. However, the rod bipolar cells of H. glaber depart
from this canonical rule (in mammals) of making exclusive
contact with AII amacrine cells. Instead, connections with AII
amacrine cells are diminished and some rod bipolar cells make
direct contact with retinal ganglion cells (Mills and Catania,
2004). These findings suggest that the need for cone bipolar
cells in H. glaber has been effectively reduced, and is consistent
with the inactivation of several cone phototransduction genes
(LWS, GNAT2, PDE6C, PDE6H) in this species that hint at
functional rod monochromacy even though SWS1-cones are
present (Emerling and Springer, 2014). An alternative hypothesis
is that SWS1-cones in H. glaber have co-opted rod-specific
paralogs of inactivated cone-specific genes (GNAT2, PDE6C,
PDE6H; Emerling and Springer, 2014).

The phylogenetic mapping of inactivating mutations suggests
that placental mammal diversity includes at least seven other
lineages where rod monochromacy evolved independently
(Balaenopteroidea, Physeter macrocephalus, Kogia breviceps,
Mesoplodon bidens, Chrysochloridae [golden moles], Cingulata
[armadillos], Folivora [sloths]). Placentalia therefore provides a
natural laboratory for inquiring whether or not cone somata
and pedicles are always retained in rod monochromats or if
there are multiple solutions to retinal rewiring in the absence
of photosensitive cone cells. Importantly, investigations into the
loss of cone input to the cone bipolar cells in these divergent
lineages may shed light on fundamental questions regarding
the evolutionary plasticity of neural (brain) circuitry. In the
case of Cetacea, our point estimates for the origins of rod
monochromacy in different lineages suggest that this condition
evolved earlier in both P. macrocephalus (∼23.6–15.9 Ma) and
Balanopteroidea (∼28.8) than in Balaenidae (∼15.9–10.4 Ma), so
there has been more time for fine tuning of rod-based signaling
to the brain in the absence of light-sensitive cones. The onset of

rod monochromacy in two xenarthran lineages, Cingulata and
Folivora, is estimated to have occurred even earlier near the
KPg boundary (∼66 Ma) based on dN/dS ratios (Emerling and
Springer, 2015). Emerling and Springer’s (2015) point estimate
of ∼66 Ma for the onset of rod monochromacy in Folivora
implies that rodmonochromacy evolved in the common ancestor
of Folivora (sloths) and Vermilingua (anteaters), which last
shared a common ancestor ∼56 Ma. However, the hypothesis
that anteaters are also rod monochromats remains to be tested
with genomic data (Emerling and Springer, 2015). Detailed
investigations of retinal morphology in all of these lineages with
immunofluorescence and histological/ultrastructural techniques,

as in Schweikert et al. (2016), should provide insights into both
developmental and functional constraints associated with rod
monochromacy in diverse placental mammals.
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