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Marine ecosystems are increasingly recognized as exhibiting the principal hallmarks of

complex systems, including the possibility of sudden shifts in state among alternative

basins of attraction and both periodic and aperiodic dynamical behavior. Over the last

several decades a well-defined theory of complexity has emerged, integrating earlier

(and inter-related) concepts based on bifurcation theory, catastrophe theory, and chaos

theory. In this review, we trace aspects of the historical development of these ideas and

their application to marine systems. The manifestations of nonlinear dynamics in marine

ecosystems include regime shifts; mirage correlations in which causally-connected

system components can appear to be in-phase, asynchronous, or anti-correlated over

different stanzas of time; and related state-dependent behavior in which the response

of a focal variable to a driver differs depending on the present state of the system. We

describe the analytical underpinnings of each of these dynamical behaviors. Although

nonlinear dynamical systems are often portrayed in a deterministic setting, we emphasize

the phenomenon of stochastic resonance in which an underlying nonlinear system acts

as a noise amplifier in the presence of random perturbations. We next review the tools

available for analyzing nonlinear dynamical systems based on the concept of state-space

reconstruction and the application of techniques in nonlinear time series analysis. Finally,

we address the management implications of nonlinear dynamics in exploited marine

species and argue that considerations of predictability and forecast skill can serve as

effective criteria for model selection and inference.

Keywords: complexity, catastrophes, bifurcations, chaos, stochasticity, state space, regimes, alternate stable

states

INTRODUCTION

Understanding the causes of variability of exploited marine systems in space and time is
essential for effective management. Defining the linkages among physical oceanographic processes;
environmental drivers; internal regulatory processes at the population, community, and ecosystem
levels; and the role of human intervention is central to meeting this objective (Rouyer et al.,
2008; Fogarty, 2014). It is increasingly evident that these interactions can result in very complex
dynamical behaviors including sudden shifts in state and periodic and aperiodic patterns of
variability (e.g., Steele, 1998; Hsieh et al., 2005; Mangel and Levin, 2005; Ye et al., 2015). For
our purposes we will define dynamic complexity as the time-dependent dynamical behavior of
coupled systems governed by strong feedback mechanisms. A hallmark of dynamic complexity
is the emergence of large effects from small causes. We refer to the resulting dynamical behavior
as nonlinear. In contrast, “linear” dynamical systems are those in which we expect a proportional
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effect on the system in response to an underlying perturbation
(fishing, environmental change, etc.)1. Linear systems are
decomposable into additive components. In contrast nonlinear
systems are not separable, but rather exhibit state-dependent
behavior (e.g., Sugihara et al., 2012; Deyle et al., 2013).

While the fisheries literature is replete with observations
and models exhibiting dynamic complexity, the analytical
framework currently used to guide fisheries management
decisions is almost universally based on single-species models
characterized by globally stable equilibria. These models have
“well-behaved” (linear) dynamics in which populations are
expected to respond to changes in fishing pressure in predictable
(and reversible) ways. Here, our objective is to point to the
possibility of very different outcomes and the need to consider
these alternative dynamical behaviors in assessing risk under
alternative harvesting policies. We provide an overview of the
principal characteristics of dynamic complexity in exploited
marine ecosystems and describe some of the analytical tools
available for analysis of these systems. A roadmap to the types
of dynamical behavior considered in this review is provided in
Figure 1.

PATTERNS OF VARIABILITY AND CHANGE
IN EXPLOITED MARINE SPECIES

The remarkable reconstruction of Pacific sardine and anchovy
population levels in the Santa Barbara Basin spanning nearly
two millennia (Baumgartner et al., 1992) provides illuminating
insights into patterns of long-term variability in a marine system
(Figure 2). These estimates, derived from core samples taken
from anoxic regions of the basin, are resolved to decadal periods
of measurement. They provide a window into population change
prior to the advent of intensive mechanized harvesting of these

FIGURE 1 | Dynamical system roadmap for topics covered in this

review.

1Linear dynamical behavior is evident in models with nonlinear structural forms
for ranges of the parameter space resulting in globally stable equilibria. Some of
these models can also exhibit non-linear dynamical behavior for certain ranges of
the parameter space.

species at the turn of the twentieth century. It is clear that
the potential for dramatic change is an important property of
this system. This data set provides by far the most extensive
view of long-term changes in marine populations and therefore
stands apart. However, many other sources of information on
fishery systems (e.g., catch and abundance estimates, changes in
demographic structure), while not as extensive, provide fertile
ground for examining patterns of variability and change on
multidecadal time scales.

Caddy and Gulland (1983) provided an early taxonomy
of variability in marine populations. Four principal patterns
of variability were recognized: Steady, Cyclical, Irregular, and
Spasmodic. These evocative labels convey the diverse spectrum
of observed population patterns in exploited marine populations.
Steady populations are those characterized by globally stable
equilibria. As described below, cyclical dynamics can emerge
as a result of internal regulatory dynamics at the population
level. They also are found in simple predator-prey systems.
Irregular dynamics are characterized by high levels of variability
and are often associated with stochastic environmental forcing,
but can again reflect internal regulatory processes leading to
chaotic dynamics. Caddy and Gulland (1983) identify spasmodic
populations as ones distinguished by alternating periods of
high and low levels of abundance, possibly related to systems
characterized by alternate basins of attraction. The initial
classification scheme proposed by Caddy and Gulland (1983)
was expanded by Spencer and Collie (1997) to encompass Steady
State; Low-variation Low-Frequency; Cyclic; Irregular; High-
variation High-Frequency, and Spasmodic dynamics. Spencer
and Collie (1997) further provided an objective protocol for
classifying stocks to replace the subjective approach initially
applied by Caddy and Gulland (1983).

In a global examination of 366 fisheries collapses since 1950,
Mullon et al., (2005) noted that 33% exhibited a smooth decline,
45% underwent an erratic collapse (decline after a sequence
of ups and downs) and 21% showed an abrupt decline from

FIGURE 2 | Abundance indices (scale deposition rate per decade) for

Pacific sardine and anchovy in the Santa Barbara basin off California.

Here the index likely reflects changes in both abundance and distribution over

the basin area.
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a relatively stable plateau. The plateau collapses came with
no warning in fisheries thought to be stable. Mullon et al.
(2005) attributed these plateau collapses to cryptic increases
in fishing efficiency and intensity until a threshold level was
reached. Holling (1973) had earlier noted that attempts to apply
a maximum sustainable yield policy could mask an underlying
degradation of resilience in the population, leading to a sudden
collapse, foreshadowing the observations made by Mullon et al.
(2005).

Vert-pre et al. (2013) documented the ubiquity of shifts in
productivity in exploited fish stocks in an analysis of surplus
production trends for 230 species/stocks in the RAM Legacy
Stock Assessment Data Base (Ricard et al., 2012). The behavior
of nearly 70% of these populations was best explained by a
regime shift hypothesis in which sudden shifts in state appeared
to be unrelated to population abundance (38.6%) or by a
combination of regime-like behavior and underlying changes
in abundance under a mixed hypothesis (30.5%). In contrast,
trends for 18.3% of these stocks appeared to be attributable
principally to abundance trends and an additional 12.6% to
random perturbations in the dynamics of these stocks. In
analyses of the same data base, but focusing on recruitment
patterns, Szuwalski et al. (2015) reported evidence of regime-like
behavior in recruitment in 160 out of 224 stocks (71%) examined.

To illustrate some of these observed patterns, we provide a
sampler of the range of dynamical behaviors manifest in stocks in
three exploited systems: Pink salmon (Onchorhynchus gorbuscha)
in Bristol Bay Alaska; Peruvian anchovetta (Engraulis ringens)
and sardine (Sardinops sagax) in the Humboldt Current system;
and Atlantic haddock (Melanogrammus aeglefinus) Georges
Bank, located off the New England coast. These examples are
augmented in subsequent sections of this review with additional
illustrations. Although, no single measure can capture in full
the dynamical behavior of coupled human-ecological systems
and its underlying causes, documentation of harvest levels
in ecosystems on time scales from decades to centuries does
provide important insights into the complexity of fishery systems,
reflecting interactions among the social, economic and ecological
factors at play. Accordingly, here we will focus on observed
patterns of catch in these three stocks. We see cycles in the
catch (salmon), sudden shifts in state (salmon and haddock), and
apparent replacements of one species for another (anchovetta
and sardine).

Pink salmon (Onchorhynchus gorbuscha) catches from Bristol
Bay Alaska exhibited large fluctuations in interannual catch
levels during the period 1900–1920 (with peaks in 1906, 1912,
and 1920). The catch then dropped to a much lower level
and remained in this new state for approximately 30 years
(Figure 3A; data from RAM Legacy Stock Assessment Data Base,
Ricard et al., 2012). The average catch during 1900–1920 was
approximately 500 thousand fish with a coefficient of variation
(a measure of relative variability) of approximately 110%. After
1920, the catch dropped to less than 20% (on average) of its
former level, but actually had a higher coefficient of variation of
approximately 160%. Pink salmon, like all Pacific salmon of the
genus Onchorhnycus are anadromous. The adults return (with
some straying) to their natal streams and rivers to spawn once

FIGURE 3 | Landings trajectories over time of (A) Bristol Bay pink

salmon, (B) Peruvian Anchovetta and sardine, and (C) Georges Bank

haddock.

and die. A closer look at the pink salmon catch series reveals
an additional interesting twist. Pink salmon have a 2 year life
span. The young spend less than half a year in freshwater before
going to sea to spend the remainder of their life cycle before
returning to spawn. The fish returning to spawn in adjacent years
can be effectively thought of as separate populations (called lines).
Notice that all the major catches prior to 1921 were from even-
year lines. After the sudden drop following the large catches in
1920, the odd-year lines essentially went extinct for the remainder
of the period examined in Figure 3A. The large change in average
level signals the possibility of alternative basins of attraction in
this system.

We next turn to the Peruvian anchovetta (Engraulis ringens)
and sardine (Sardinops sagax) in the Humboldt Current system.
The anchovetta supports the largest single species fishery
in the world during periods of high abundance. However,
the anchovetta population has undergone large-scale changes
in abundance on multi-decadal time scales (Figure 3B). A
sharp decline in anchovetta landings in the early 1970’s has
been attributed to the interplay of fishing pressure and a
particularly strong El-Nino event which resulted in sharply
reduced productivity (Chavez et al., 2003). The decline of
the anchovetta population also held important ecosystem
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consequences, resulting in starvation of predators, particularly
sea birds populations strongly dependent on this species as a
staple of the diet. During the period of low anchovetta landings,
the sardine population and associated fishery increased rapidly,
effectively replacing the anchovetta (albeit at substantially lower
levels of yield). Although competitive interactions between
anchovetta and sardine have been hypothesized, the weight of
evidence appears to support an environmental factor related to
temperature patterns as the underlying cause for the apparent
replacement.

The Atlantic haddock (Melanogrammus aeglefinus) fishery on
Georges Bank, a highly productive fishing ground located off
the New England coast provides a dramatic example of multiple
stable states in fishery systems (Fogarty et al., 1992; Collie et al.,
2004). During 1931–1960, haddock biomass fluctuated around
a relatively stable level of 200 kt Figure 3C) under relatively
constant fishing mortality rates. The appearance of large factory
trawlers on Georges Bank in the early 1960s generated a massive
perturbation to the system (Fogarty and Murawski, 1998). In
1965, a particularly strong cohort of haddock attracted the
attention of the distant water fleet and reported catches increased
threefold the following year, with virtually all of the increase in
landings attributable to foreign vessels. The instantaneous rate
of fishing mortality on age 2 and older haddock quadrupled
during 1965–1968 (Fogarty et al., 1992) and the population
rapidly transitioned to a state of lower mean abundance where it
remained for over two decades (Figure 3C).We can view the time
period prior to the arrival of the distant water fleet as one in which
the population experienced a decades-long press perturbation.
Foreign fishing resulted in a superimposed pulse perturbation on
the population. This sharply defined event resulted in a rapid shift
in state (Figure 3C). The interplay of a stochastic recruitment
event (Fogarty et al., 1991, 1992) and the pulse perturbation
exerted by the distant water fleet, drove the population to a
tipping point. After more than two decades at a lower population
level, two strong year classes have appeared and have provided a
nucleus for recovery of the stock.

The key challenge in each of these examples is to dissect the
relative roles of environmental change, human impacts through
harvesting, the operative feedback mechanisms in the system,
and the potential interactions among all of these elements in
shaping its dynamical behavior. In particular, we are interested in
understanding whether the observed patterns of variability reflect
linear or non-linear dynamics. In the remainder of this review, we
focus on tools to examine this question in detail.

BIFURCATIONS, CATASTROPHES, AND
CHAOS

The field of dynamic complexity encompasses a suite of inter-
related topics connected by a common theme—the potential for
rapid and often unanticipated change in a wide spectrum of
physical, ecological, and social systems. Paradigms established
to explain one or more aspects of nonlinear dynamics in
the past including bifurcation theory (Ruelle, 1989; Kuznetsov,
2004), catastrophe theory (Poston and Stewart, 1978; Gilmore,

1981; Thom, 1989), and chaos theory (Devaney, 1989) are now
commonly integrated under the broad framework of complexity
(see Nicholis and Prigogine, 1989 for an excellent technical
introduction and Lewin, 1992; Waldrop, 1992; Casti, 1994;
Mitchell, 2009 for popular accounts). Bifurcation theory provides
an important structural foundation of both catastrophe and
chaos theory. A local bifurcation occurs when a smooth change in
the parameters of a system causes the stability of an equilibrium
to change, resulting in a sudden change in its behavior. Both also
invoke the concept of manifolds describing the state space of
the dynamical system. Regime shifts and alternative stable states
(or basins of attraction), sustained oscillations, and aperiodic
behavior are some of the observed manifestations of these
nonlinear system properties. See the Glossary for a definition of
these terms.

Catastrophes
Catastrophe theory was among the earliest nonlinear
mechanisms invoked to explain regime-like behavior in fishery
systems (e.g., Jones and Walters, 1976). Originally developed
by Rene Thom in the early 1970’s, the general concepts have
been applied both quantitatively and heuristically in an array
of scientific disciplines (for an overview see Thom, 1989). A
recent resurgence of interest in catastrophe theory for ecological
systems in general (Petraitis, 2013) and coupled human-
ecological systems in particular (Scheffer, 2009) has highlighted
the potential utility of this construct in understanding the
underlying dynamics of regime shifts and other complex
dynamical behaviors. The essential feature of a mathematical
catastrophe is an abrupt change in a system between alternate
states in response to changes in one or more drivers or control
variables. The change in the control variable(s) generating this
sudden change is smooth and continuous, but results in abrupt
change once a bifurcation point is reached. The change in
state is therefore often entirely unanticipated. A taxonomy of
mathematical catastrophes can be constructed according to the
number of control variables involved. Thom’s early development
encompassed 7 distinct types of catastrophes. Most applications
to ecological systems have been limited to a single control
variable resulting in a “fold” catastrophe or, alternatively, two
control variables leading to a “cusp” catastrophe (but see Loehle,
1989).

A classic example of a fold catastrophe can be found in
a simple harvesting model in which the catch-per-unit effort
is a nonlinear function of population biomass (Gulland, 1977;
Evans, 1981). The conceptual framework underlying traditional
fisheries management typically assumes that yield is a simple
convex function of fishing effort. The instantaneous rate of
fishing mortality is taken to be a linear function of fishing
effort in this construct. If the fishing effort increases beyond
the level resulting in maximum yield, it is assumed that a
remedial reduction in fishing pressure will allow recovery to
the maximum along the same path following some transition
period. However, it is not uncommon to find very different
pathways in real systems. If the harvest function intersects the
production function at two points, we have an upper stable
equilibrium point and a lower unstable equilibrium (Figure 4A).
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Evidence for a nonlinear harvest function is quite strong for a
number of stocks (Shelton et al., 2001). The resulting relationship
between biomass and yield as functions of fishing effort is
shown in Figures 4B,C. Once biomass is reduced below a
critical threshold, a sudden population collapse occurs. Because
virtually all actual applications of fisheries harvesting theory in
management assume a linear harvest function, such a collapse
would be totally unexpected.

Jones and Walters (1976) showed how change in two control
variables, harvesting efficiency, and fleet size can lead to a cusp
catastrophe characterized by several qualitative behaviors for
different levels of the efficiency factor. These include smooth,
abrupt, and discontinuous transitions between states. A key
characteristic of a cusp catastrophe is the emergence of hysteresis
effects in which reduction in a natural (e.g., disease, predation)
or anthropogenic stressor to a level below that which caused the

FIGURE 4 | Fishery-induced fold catastrophe generated by nonlinear

relationship between catch and abundance. In the upper panel (A), the

green curve shows the production function and the blue curve is the harvest

function. Once the population is reduced to a critical threshold level, the

population (middle panel, B), and yield (lower panel, C) undergo a sudden

collapse.

shift in state will be necessary to effect return to the earlier state
(if indeed it is possible). Spencer and Collie (1996) provide an
example in which the control variables are fishing pressure and
predation rates.

Evidence for the widespread occurrence of regime shifts
in marine ecosystems has been steadily accruing since the
introduction of the term to describe alternating patterns of
sardine and anchovy abundance (Lluch-Belda et al., 1989) and
the seminal analysis of regime shifts in the North Pacific by
Hare and Mantua (2000). Reviews by Bakun (2004), Lees et al.
(2006), Mollmann and Diekmann (2012) and Mollman et al.
(2014) (and references therein) document the near ubiquity
of multidecadal shifts in productivity throughout the world
ocean. Most analyses of marine regime shifts have focused on
empirical analysis of physical and ecological time series data.
Collie et al. (2004) explored a general analytical framework for
regime shifts in ecosystems in the context of catastrophe theory.
Specifically, Collie et al. (2004) invoked the concept of a cusp
catastrophe involving two control variables [external forcing and
internal structure (e.g., changes in carrying capacity, predator
efficiency etc.)] to illustrate the range of dynamical behavior over
a response surface or catastrophe manifold. At low levels of the
environmental driver, the system undergoes smooth transitions
in relation to internal structure (Figure 5). However, at low-
intermediate levels of the environmental forcing mechanism,
an abrupt (albeit continuous) transition to a lower system level
occurs (Figure 5). Finally at high levels of the environmental
driver in relation to internal structure, a sudden discontinuous
drop occurs, flipping the system into an alternate stable state
(Figure 5).

While transitions of this type are not inevitable in complex
systems, the potential for rapid and unanticipated shifts in
state are particularly problematic for resource managers (Mullon
et al., 2005). Nonlinear dynamics make rapid transitions between
ecosystem states more likely (Scheffer et al., 2001). Methods
to detect incipient transitions in time series observations
have been explored based on evidence of increased variance,

FIGURE 5 | Catastrophe manifold with two control variables, fleet size

and harvesting efficiency, showing a range of dynamical behaviors

including smooth (forward portion of surface), abrupt (middle portion),

and discontinuous (back portion) of the manifold surface (adapted

from Collie et al., 2004).
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autocorrelation, and skewness (asymmetry) and reduced rate of
recovery (critical slowing down) (e.g., Mantua, 2004; Brock and
Carpenter, 2006; Biggs et al., 2009; Scheffer et al., 2009; Dakos
et al., 2014). However, regime shifts are notoriously difficult to
predict. Existing techniques to anticipate regime shifts may not
be sufficiently sensitive under these conditions to detect changes
in autocorrelation and variance, particularly in short, noisy time
series (Perretti and Munch, 2012). Accordingly, an important
commitment to both precautionary and adaptive management
strategies is essential.

Deterministic Chaos
While catastrophe manifolds can embody rapid shifts to
alternate basins of attraction as described above, they do not
exhibit the apparently random behavior of chaotic systems

characterized by sensitive dependence on initial conditions.
Chaotic systems can, however, switch between alternate basins
of attraction as exemplified by the behavior of the Lorenz
“butterfly” attractor and therefore potentially provide an
alternative mechanism underlying regime shifts (see Sugihara
et al., 2012 for an illustration of movement on the manifold:
Movie S1 http://science.sciencemag.org/content/sci/suppl/2012/
09/19/science.1227079).

The discovery that simple difference equation population
models can exhibit extraordinarily complex behavior can be
attributed to Ricker (1954). Moran (1950) had earlier noted the
potential emergence of oscillatory behavior in models of this
type. Ricker went on to show not only the possibility of periodic
behavior, but also the potential for aperiodic behavior that we
would now label as “chaos.”

BOX 1 | VARIATIONS ON A THEME BY WILLIAM RICKER.

In the following, we introduce the Ricker Model and some simple extensions to it. Ricker’s equation can be written:

Nt+1 = αNte
−βNt

where Nt is the population size at time t, α is the slope of the production function at the origin, and β is a coefficient of compensation. Ricker (1954) developed most

of his arguments graphically. Only at the close of the paper did he present a version of his eponymous equation. As α increases, a sequence of period doubling

behaviors unfolds at successive bifurcation points (see left-hand panel in Figure below).

We can readily extend the model to the multispecies case. For example, a two species model of competition can be written:

N1,t+1 = α1N1,te
−β1N1,t−δ12N2,t

N2,t+1 = α2N2,te
−β2N2,t−δ21N1,t

where the subscripts 1 and 2 designate species, δ12 is the effect of species 2 on species 1, δ21 is the reciprocal interaction, and all other terms are defined as before

Here we find that by adding consideration of species interactions to the deterministic model, oscillatory behavior with a period of two occurs at lower level of α at the

origin for species 1 (right hand panel in the Figure below). In this model, we also find the emergence of “mirage” correlations to be explored in the section on State-

Dependence in the text (see Figure 9).

It is not uncommon to add physical environmental terms to the model in the form:

Nt+1 = αNte
−βN+γEt

where E is the environmental variable (the approach can be readily extended to multiple variables). We now have a 3 dimensional surface representing the effects of

spawning biomass and the environment on recruitment. We can further modify the model above to represent state-dependence in the effect of the environment:

Nt+1 = αNte
−βN+γNtEt

where we now have an additional term representing an interaction between spawning biomass and an environmental variable. The key point is that the environmental

term now enters the model in a non-additive way.
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For simple one-dimensional continuous time models, the
introduction of time delays or seasonality can result in complex
dynamical behaviors, but chaotic behavior can otherwise only
emerge in systems of three or more dimensions. Chaos can
be defined as bounded fluctuations characterized by sensitive
dependence on initial conditions (e.g., Hastings et al., 1993).
Lorenz’s (1963) demonstration of chaos in simple models of
atmospheric dynamics comprising three state variables is perhaps
the best-known example, but the issue had been presaged in
the difficulties in solving the three-body problem in classical
mechanics centuries earlier. Because Lorenz’s analysis essentially
concerned a problem in fluid dynamics, its potential implications
for oceanographic processes are clear. The transition from
laminar to turbulent flow is of course one very clearmanifestation
of complex dynamical behavior in the physics of the ocean.

Models in Discrete Time

In his seminal paper on “Stock and Recruitment,” Ricker (1954)
demonstrated the existence of dynamic complexity in very simple
population models (see Schnute, 2006 for a review and Box 1 for
details of model structure). In particular, highly convex stock-
recruitment relationships can give rise to dramatic fluctuations
in recruitment in these models. Ricker noted that “...[when]
substantial reproduction is obtained over only a narrow range of
stock densities considerably below the equilibrium level, ... the
stock would be subject to violent oscillations” (Ricker, 1954, p.
5682; emphasis added). Today we would recognize Ricker’s apt
characterization as describing a chaotic system. To see how this
behavior emerges, we have plotted two cases differing in the rate
of increase of recruitment at low population levels (Figure 6).
In the left hand panel we see that by tracing the trajectory of
change for a recruitment curve with a relatively modest rate
of change at the origin, the population ultimately settles down
to a fixed point equilibrium. Here, the straight line through
the origin is the one-to-one replacement line and its point of
intersection with the recruitment curve gives the equilibrium
point. We next see that the steeper recruitment curve depicted
in the right hand panel never settles down to a stable equilibrium
point. At still higher values for the slope of the origin, we see
the outbreak of the “violent” oscillations (chaos) reported by
Ricker. The evolution of chaotic dynamics in the Ricker model
follows a classical period-doubling route in which oscillations of
period 2, 4, 8, ... 2k emerge as the slope of the recruitment curve
at the origin is increased, culminating in aperiodic dynamical
behavior. Each transition to higher order oscillations represents
a bifurcation point (see Box 1).

Beverton and Holt (1957) subsequently expanded on these
concepts in their classic monograph On the Dynamics of
Exploited Fish Populations (see below). In a series of highly
influential articles, May (1974, 1976, 1986, 1987) brought the
occurrence of seemingly random behavior in very simple (one-
dimensional) deterministic models to a wider scientific audience
and extended the analytical framework for understanding these
systems (see also May and Oster, 1976). The intellectual
excitement with the recognition of this fascinating dynamical

2Ricker (1954) noted that when the slope of the descending limb of the recruitment
curve was < −1, unstable dynamics resulted.

FIGURE 6 | Cobweb diagram depicting the approach to equilibrium for

a globally stable population (left panel) and the complex dynamics

exhibited by a highly convex recruitment curve (right panel). The

diagonal line is the one-to-one replacement line. The corresponding time

series for each upper panel is show in the lower section of the figure (every

point of contact between the recruitment curve and the blue cobweb iteration

lines provides a point in the time series trajectory shown in the lower panels).

behavior launched an extensive hunt for deterministic chaos in
ecological systems.

Models in Continuous Time

To illustrate the development of chaotic dynamics in continuous
time models and to introduce the concept of a phase space
representation of a system, we employ a three species system of
the Lotka-Volterra type with biological interactions (competition
and/or predation) among each of the species. Tanabe and Namba
(2005) provide such an analysis for a simple food web comprising
a basal resource species, an intermediate consumer species, and
a top level omnivore that feeds on the other two species (see
Box 2; for an earlier exposition see Gilpin, 1979). For certain
parameter values, highly irregular irruptive population patterns
can arise (see Figure 7 for population trajectories of each of the
three species). If we plot the trajectories of the species in three
dimensional space, we find that the highly irregular time series
we observe resolve themselves into a well-defined geometrical
object known as a “strange attractor” (see Figure 7 lower right
panel); for context, the attractor for a globally stable equilibrium
in phase space is simply a point. A key question is whether these
objects are merely mathematical curiosities or whether they can
be used to understand real-world dynamics3. Later we will see
how we can attempt to reconstruct an attractor from time series
information and test for nonlinearity.

Stochastic Resonance
Simple deterministic models cannot capture the full complexity
in real systems in which exogenous forcing is important. For

3The existence of a recognizable attractor is not in itself diagnostic of nonlinear
dynamics. For example a random series comprising a periodic signal and
superimposed autocorrelated noise can give a geometric object in phase space that
appears similar to a strange attractor. Diagnostic tests described below must be
used to confirm the occurrence of nonlinear dynamics (see Boxes 3, 4).
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BOX 2 | MODELS IN CONTINUOUS TIME.

In the absence of time delays (including seasonal forcing and time delays), the minimum number of dimensions for which complex dynamics in continuous time

models can emerge is 3. Consider a three species system comprising two predators that compete for a common prey [species 1 (designated X ) and species 3

(designated Z) also preys on species 3 (designated Y), (Gilpin, 1979; Tanabe and Namba, 2005)]:

dX

dt
= [α1 − c11X − c12Y − c13Z]X,

dY

dt
= [α2 + c21X − c22Y − c23Z]Y

dZ

dt
= [α3 + c31X + c32Y − c33Z]Z

where the αi are density-independent population coefficients and the cij are coefficient representing the effect of species j on species i (the cii are density-dependent

terms). This type of community interaction is called intraguild predation. Dynamic complexity in this model is illustrated in Figure 7.

FIGURE 7 | Time series for a three species (X,Y, Z) intraguild predation system in continuous time (see Box 3). The lower right hand panel shows the

state-space representation of this system demonstrating the existence of a strange attractor.

convenience, we will label the role of exogenous variables
as stochasticity. When coupled with an underlying nonlinear
dynamical system, environmental noise can be amplified4. In the

4Hastings et al. (1993) and Ellner and Turchin (1995) argue that no broad dividing
line between chaos and stochasticity should be drawn. However, noting that the
pathway to chaos in systems exhibiting stochastic resonance as defined here differs
from those leading to deterministic chaos, Dennis et al. (2003) recommend that the

following, we will adopt a very general definition of stochastic
resonance as a situation in which the dynamical behavior of
a system fundamentally changes when noise is added to an
underlying deterministic process. In particular, we are interested
in situations in which an underlying nonlinear process acts

term “Noise-induced Sensitivity” be used to distinguish deterministic chaos from
stochastic resonance.
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as a noise amplifier. This is significant in several ways. Most
importantly, we find that when stochasticity is added to a
nonlinear model, complex dynamics can emerge more readily
than in the corresponding simple deterministic model. In many
cases, it is found that in the purely deterministic case, the
parameter space that gives rise to chaotic behavior is not
necessarily biologically or ecologically reasonable. This has
been used to argue against the likelihood of observing chaotic
dynamics in real systems (e.g., Shelton and Mangel, 2011).
However, adding noise can serve to radically alter the range of
parameter space where we might observe complex dynamics (see
Coulson et al., 2004; Sugihara et al., 2011. Interestingly, Ricker
(1954) demonstrated this very point in simulations in which he
added noise to highly nonlinearmodels (see his Figure 11, p. 575),
a clear illustration of stochastic resonance. Beverton and Holt
(1957; p. 57) further noted:

“..most investigations on the causes of fluctuations in natural
populations have been concerned only with tracing their
correlation with fluctuations in environmental factors; but ...a
single change in environmental conditions, either transitory or
sustained, may be sufficient to set up permanent self-induced

oscillations in population abundance which would bear no
obvious relation to subsequent environmental changes” (emphasis

added).

Steele and Henderson (1984) demonstrated that a nonlinear
population process driven by periodic stochastic forcing can
give rise to regime-like behavior that is consistent with
observed decadal-scale patterns of variability in fish populations.
Dakos et al. (2014) invoke periodic forcing combined with
stochastic resonance as an underlying mechanism resulting
in transitions in which critical slowing down may not be
observed.

The dynamics of Dungeness crab (Cancer magister)
populations on the west coast of North America exhibit
the hallmarks of stochastic resonance. Dungeness crab landings
in Northern California exhibit pronounced oscillatory dynamics
(Figure 8). An extensive examination of endogenous dynamics
and exogenous environmental forcing factors has been made
in an attempt to determine the origin of these apparent
cycles (Botsford and Hobbs, 1995). Simple models without
demographic structure (Berryman, 1991) and more complex
age-structured models (Higgins et al., 1997) show that in the
absence of exogenous forcing, a stable equilibrium point is
expected. However, the addition of even modest stochastic
forcing in the models results in the emergence of the more
complex behavior observed in the landings data. The apparent
periodic behavior observed does not fall within the chaotic range
(Higgins et al., 1997). Fogarty (1989) showed that the Northern
California Dungeness crab catch series could be described by a
(linear) autoregressive-integrated moving average model with a
period of 9 years.

Autocorrelated Noise
To this point, we have implicitly focused on the role of
stochastic forcing by uncorrelated random processes (“white

FIGURE 8 | Time series of Dungeness crab (Cancer magister) landings

(a proxy for abundance) in Northern California. The inset shows a

time-delayed embedding of the time series reflecting periodicity in the data.

This system is not chaotic.

noise”). However, autocorrelated random variability in an
exogenous driving variable introduces certain challenges in
interpreting dynamical system behavior. In particular, it can
obscure diagnostic differences in the rate of decay of forecast skill
between chaotic systems and ones dominated by autocorrelated
forcing. Steele (1985) noted that processes characterized by a
reddened spectrum are more prevalent in marine systems than
terrestrial ones5. Depending on the level of autocorrelation, the
trajectories of these drivers may appear to exhibit regime shift-
type behavior. When there is a difference in the characteristic
time scale of a physical process and that of a population affected
by the driver, regime-like behavior may be induced (Hsieh and
Ohman, 2006). When the time scales are closer in synchrony, the
population will respond in a more linear fashion to the driver.
Greater divergence in synchrony can give rise to regime-like
behavior. Di Lorenzo and Ohman (2013) expanded on this theme
to demonstrate that a difference in the characteristic time scales
of atmospheric and oceanic process may result in a reddened
spectrum in the oceanographic process even when driven by a
white noise atmospheric process. In turn, a difference in time
scales between an autocorrelated oceanographic process and the
dynamics of a pelagic population can result in an accentuated
reddened spectrum for the population. Interestingly, Hsieh et al.
(2005) found that environmental drivers operating at different
spatial and temporal scales in the Northeast Pacific could be
adequately described by linear autoregressive models and did
not exhibit the hallmarks of nonlinear dynamical behavior while
biological populations did exhibit the distinctive signature of
complex dynamics.

ANALYTICAL TOOLS FOR NONLINEAR
DYNAMICAL SYSTEMS

Evidence for nonlinear dynamics in marine systems using
empirical analysis of time series data has been examined in phyto-

5Time series with reddened spectra exhibit increased variance with increasing
length in association with temporal autocorrelation.
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BOX 3 | QUANTIFYING CHAOS USING LYAPUNOV EXPONENTS.

Chaotic systems are characterized by sensitive dependence on initial conditions. Give two initial starting points, the distance between these two trajectories diverge

exponentially with successive time steps in a chaotic system. For a globally stable system in contrast, the distance between two initial conditions converges with

successive iterations. Using this simple concept as a starting point, we can measure the average rate of divergence or convergence over an attractor to characterize

the dynamics of the system.

We first define the separation distance of two starting values xo and xo′ as

δo =
∣

∣xo − xo′
∣

∣

For simplicity, we have assumed that the starting values lie on the attractor and there are no transients at the start of the series. We are interested in the magnitude

of the separation distances between the trajectories, but not their direction (sign) and so we take absolute values. The difference after N iterations is:

δN =
∣

∣xN − xN′
∣

∣

and the relationship between δN and δo is given by:

δN = δoe
λN

where λ gives the slope of this relationship. This slope gives a local rate of divergence or convergence for these starting conditons. We are interested in the average

slope over all starting conditions (and sections of the attractor). The largest value of this quantity is given by:

λ∗ = lim
N→∞

1

N

n−1
∑

i=0

loge
δN

δo

This is called the Lyapunov exponent. A positive Lyapunov exponent is diagnostic of chaos. A negative value indicates a stable system.

and zooplankton communities (Sugihara and May, 1990; Ascioti
et al., 1993; Belgrano et al., 2004; Hsieh et al., 2005, 2006; Benincà
et al., 2008; Liu et al., 2012) and fish communities (Powers, 1991;
Dixon et al., 1999; Royer and Fromentin, 2006; Anderson et al.,
2008; Glaser et al., 2011, 2014; Liu et al., 2012, 2014; Sugihara
et al., 2012; Deyle et al., 2013; Perretti et al., 2015; Ye et al., 2015).
Most of these analyses have employed methods of state-space
reconstruction.

The dimensionality of marine ecosystems is potentially very
high and there are limits to the number of physical, chemical, and
biological/ecological variables we can routinely monitor. Of the
biological and ecological variables we can and domonitor, we can
infer that they essentially encode information on other factors
(e.g., other species, environmental variables, etc.) that affect their
dynamics, but may be unobserved or not otherwise routinely
measured. Takens (1981) showed that for nonlinear systems it
is, in principle, possible to decode some of this information by
translating the observed series to a system of higher order by
constructing a vector of lagged observations of the original series
(see Box 4). In effect, the broader dimensions of the system can
potentially be captured by a more limited set of observations
on one or more variables if the system is driven by nonlinear
deterministic processes. To do this, we construct a time-delayed
coordinate system using the lagged variables. This takes the form
of a vector: Xt = (Xt,Xt−d, ...Xt−(p−1)d)) where d is a time lag and
p is the number of lags included to describe the system (referred
to as the embedding dimension). Often the lag period is taken to
be d= 1 but with autocorrelated series, it is desirable to have d >

1. For a system of dimensionality D, Taken’s theorem states that
the properties of lagged coordinate systems is equivalent to that of
the original state space when the embedding dimension p is >2D

+ 1. In practice, it is often substantially less when determinism is
high.

Takens’ (1981) key insight was that the basic properties of
the state space for the overall system can be reconstructed
by examining the time-delayed structure of just one of the
variables. The resulting geometric shape in state space is
directly related to the true underlying attractor, giving a
“shadow” attractor which, as noted above, retains the dynamical
properties of the original provided a sufficient number of
lags have been incorporated. When this condition is met, the
Lyapunov exponent, a diagnostic measure of chaos (see Box 3)
of the shadow attractor is the same as that of the original.
Although, state space reconstruction cannot of course identify
the unobserved variables of importance, we can make important
inferences about the effective dimensionality and degree of
nonlinearity in the system. All methods of nonlinear time
series analysis used to assess dynamic complexity employ time-
delay coordinate systems as the foundation for determining the
dimensionality and nonlinearity of the system (for a readable
account, see Kaplan and Glass, 1995).

The time-evolution of nearby points in state space emerges as
a critical consideration in understanding and classifying complex
dynamical behavior. Formals tests for chaos based on the
Lyapunov exponent depend on measures of the rate divergence
of points over time derived from points starting in very close
proximity in state space (refer to Box 3). Because regions of state
space of a chaotic system are expected to be revisited in arbitrarily
close proximity, methods based on estimating the recurrence
of observations in state space have also been used to detect
nonlinear dynamics (e.g., Kaplan and Glass, 1995, pp. 315–318;
Kantz and Schreiber, 2003, pp. 44–45). Royer and Fromentin
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BOX 4 | TIME SERIES METHODS FOR STATE SPACE RECONSTRUCTION.

Approaches that have been used to estimate parameters describing the internal dynamics of the time-delayed coordinate system including a parametric modeling

approach based on response surface methodology (Turchin and Taylor, 1992) and a number of non-parametric representations including piece-wise polynomial

approximations (splines; McCaffrey et al., 1992); neural networks (Nychka et al., 1992); and a combined sequential strategy using nearest neighbor forecasting

methodology to determine the embedding dimension coupled with a kernel regression method to determine the degree of nonlinearity (Sugihara and May, 1990). For

illustration, in the following we will focus on just two of these approaches, the response surface methodogy of Turchin and Taylor, 1992) and the kernel regression

method of Sugihara (1994). The reader is referred to the excellent reviews by Ellner and Turchin (1995) and Hastings et al. (1993) for further details on these and

additional methods in state space reconstruction. In the illustration below, we show the shadow attractors for each of the three variables in the intraguild predation

model described earlier (see Figure 6) along with true underlying attractor (lower right panel).

The Turchin and Taylor (1992) approach employs a generalized polynomial of the form:

loge

(

Nt+1

Nt

)

= g

(

N
21
t N

22
t−1,N

23
t−2, ...N

2d
t+1−d

)

where the 2i are coefficients for the Box-Cox transformation which includes many standard transformations (e.g., logarithmic, square root etc.) as special cases.

The expression on the left hand side of the equation is the natural logarithm of the replacement rate. The model can be fit by nonlinear regression when the 2Iare

free parameters. Alternatively, a range of fixed values for the 2i can be applied for all possible combinations and the best fitting model selected. Once the form of

the model has been determined, it can be used to simulation population trajectories for different starting values. The rate of divergence of the trajectories for different

initial conditions can then be determined to provide an empirical estimate of the Lyapunov function.

In contrast, Sugihara and May (1990) employ nonparametric estimators and rely on measures of forecast skill for model selection. A form of kernel regression to

estimate the degree of nonlinearity in a system with embedding dimension d is used. Specifically, a forecast of X (t∗+p) from the state space vector x(t∗) reconstructed

from the lagged coordinate system is made using a linear model C:

X̂
(

t∗ + p
)

= Co +

E−1
∑

j=0

cjxj
(

t∗
)

where the scaling factor c is estimated using a form of Principal Components Analysis for the system of equations:

B = AC

where B is a vector of dimension n of weighted future values Xt for each observed time t:

Bi = w
(
∥

∥xt − x∗
∥

∥

)

Xi
(

t + p
)

and A is an n × d dimensional matrix with elements:

(Continued)
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BOX 4 | Continued

Aij = w
(∥

∥xt − x∗
∥

∥

)

Xi (t)

Because A is a non-square matrix, the solution (which requires inverting A) employs singular value decomposition.

The weighting function w is defined as

w
(

d
)

= e
−θd�

d

where the parameter 2 determines the degree of nonlinearity in the system (system is linear for 2 = 0 and nonlinear for 2 > 0). The expression is normalized by

distance between x(t∗) and the observed points x(t):

d =
1

n

n
∑

j=1

‖x (t) − x
(

t∗
)
∥

∥

In principle, it is possible to search over all combinations of the embedding dimension d and values of the shape parameter Q to determine the choice that provides

the greatest skill in out-of-sample forecasts. However, the search time for such an exercise can be extensive. Sugihara and May (1990) recommend an alternative

approach in which the dimensionality of the system is first determined using a nearest neighbor forecasting algorithm.

FIGURE 9 | Simulated time series for a two species competitive system

showing strongly correlated (I), uncorrelated (II), weakly correlated (III),

and anti-correlated (IV) stanzas for the multispecies Ricker model

described in Box 1.

(2006) provide an application of recurrence mapping to extensive
catch histories of Atlantic bluefin tuna in the Mediterranean.

Turchin and Taylor (1992) proposed the use of a parametric
model based on polynomial regression (see Box 4) to construct
response surfaces for the time delayed coordinate system. It is
then possible to test formally for evidence of nonlinear dynamics
(Ellner and Turchin, 1995) by estimating the parameters of the
polynomial; making forward projections from the model; and
empirically determining the Lyapunov exponent by measuring
the rate of divergence of near-by points in phase space. The
response surface methodology is based on familiar model forms
and is easy to apply with standard statistical software. For short
time series it has been suggested that it may hold advantages
over other methods that require more data for fitting (Ellner and
Turchin, 1995).

Examples of nonparametric models used to fit lagged
variables include applications of neural networks (Nychka et al.,
1992); thin-plate splines (McCaffrey et al., 1992); and the

combined application of nearest neighbor simplex algorithms
(to estimate dimensionality) and a variant on kernel regression
to estimate nonlinearity (Sugihara and May, 1990, see Box 4).
In the following, we will focus on the latter because it is
the approach most frequently applied to marine systems to
date. The nonparametric (“equation-free”) approach has the
virtue of attacking the problem of model uncertainty in an
innovative way (see DeAngelis and Yurek, 2015). We often do
not fully understand the processes operating at the population,
community, and ecosystem levels and the combination of state-
space construction and flexible non-parametric approaches offers
a potential (and powerful) alternative approach to structural
models.

While the methods of Turchin and Taylor (1992) and Ellner
and Turchin (1995) are expressly used to test for chaotic
dynamics, the Sugihara and May (1990) approach focuses on
distinguishing between linear and nonlinear dynamics and
Lyapunov exponents are not directly calculated. Here, the
forecast skill of the nonlinear model is tested against a null linear
vector autoregressive model. Assessing out-of-sample forecast
skill in which some data (typically at the end of the series) are
held in reserve for testing is the preferred approach. However, for
shorter time series, it is often necessary to use cross-validation
studies instead in which one or more observations within the
series are randomly removed, the model fit to the remaining
points, and predictions for the removed points compared with
the observed.

State-Dependence
Here, state-dependence will be taken to refer to situations in
which the effect of one variable on another is conditioned
on the state of an explanatory variable. In an early suggestive
example, Skud (1982) identified cases in which the sign of a
correlation between landings (taken as an index of abundance)
and temperature of Atlantic herring (Clupea harengus) and
Atlantic mackerel (Scomber scombrus) off New England changed
during different stanzas of time depending on whether herring
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or mackerel were more abundant. In this case, the abundance
proxy is the state variable of interest. Skud (1982) reported similar
results for California sardine (Sardinops sagax) and anchovy
(Engraulis mordax). Using multivariate nonlinear time series
models, Sugihara et al. (2012) and Deyle et al. (2013) confirmed
the existence of state dependence in the relationship between
California sardine abundance and temperature.

Brander (2005) combined information for 6 Atlantic cod
(Gadus morhua) stocks in the Northeast Atlantic and partitioned
the spawning stock and recruitment values of each into high,
medium, and low categories. A similar categorization scheme
was applied to values of the North Atlantic Oscillation (NAO).
Brander found that under low (negative) NAO conditions, the
probability of low recruitment at low spawning stock sizes
was significantly higher than when positive NAO conditions
prevailed.

State-dependence can lead to “mirage” correlations (Sugihara
et al., 2012) in which functionally related series can appear to
change synchronously or asynchronously over different stanzas
of time depending on the state of different elements in the system
(Figure 9). In this situation, Bishop Berkeley’s famous aphorism
can be reversed: lack of correlation does not (necessarily) imply a
lack of causation (Sugihara et al., 2012).

Causality
Our discussion of state-space reconstruction has centered on
analysis of a single time series. Extending our frame of reference
from the univariate case to a multidimensional view of system
dynamics offers opportunities not only for improved forecast
skill, but for inferring causal connections among observed system
elements. Deyle and Sugihara (2011) developed a multivariate
extension of Takens’ embedding theorem that sets the stage for
this approach.

Granger (1969) proposed that for stochastic systems, causality
could be inferred for the case where including one or more
“explanatory” variables in an analysis increases the prediction
skill for a “response” variable. For deterministic multivariate
systems however, another approach is required. In effect, issues
related to state-dependence in a nonlinear dynamical system
make it impossible to truly separate the component parts.
Sugihara et al. (2012) tackle this problem by reconstructing the
attractors for each series using lagged coordinate systems. If
information on one attractor at a given time point can be used
to effectively predict the state of the other attractors, a direct
causal connection is inferred. The concept of Granger Causality
can therefore be extended to systems with a strong nonlinear
deterministic component. This approach has been used to
examine evidence for causal connections between environmental
drivers and abundance of Pacific sardine (Deyle et al., 2013) and
sockeye salmon (Ye et al., 2015). This focus on predictability as
measure of model performance resonates with earlier calls for the
development of a predictive ecology (e.g., Peters, 1991).

FISHERIES AS COMPLEX SYSTEMS

Fisheries lie at the intersection of an interwoven set of ecological,
social, economic, and governance considerations. Although,

fisheries are now widely recognized as a major social-ecological
system type providing a critically important ecosystem service,
far less is known concerning the full implications of the
interplay between ecosystem and social dynamics in this context.
Allen and McGlade (1986, 1987) provided one of the first
formal explorations of fisheries as complex systems. Worldwide
initiatives are now underway to transform management of
marine systems using a more holistic approach incorporating
fundamental ecosystem principles treating humans as in integral
part of the ecosystem. A key element in this transformation is the
recognition that a much broader palette of dynamical responses
to human intervention and impacts must be entertained
(Fogarty, 2014). In the following, we examine ways in which
harvesting can change the dynamical behavior of ecosystems.

Glaser et al. (2014) examined this fundamental issue in a
comparative analysis of over 200 taxa in two marine ecosystems,
the California Current System and Georges Bank. Abundance
indices based on both fishery-dependent (e.g., catch-per-unit
effort) and fishery independent data (scientific surveys) were
used in conjunction with information on catch data to ask
whether differences in estimated dimensionality and degree of
nonlinearity could be detected in these very different data types.
Differences in system dimensionality and nonlinearity were
found and associated with human intervention through fishing,
implying that the coupling between human and natural systems

FIGURE 10 | Population index values for Sockeye Salmon

(Onchyrhyncus nerka) from the Shaswap River, British Columbia

(upper panel; source: Ye et al., 2015) and simulated time series using

the method of Myers et al. (1998; see Box 5) demonstrating stochastic

resonance (lower; the horizontal line shows the equilibrium series

generated with no stochastic forcing).
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BOX 5 | EFFECTS OF EXPLOITATION ON DYNAMICAL BEHAVIOR.

In the following, we explore four examples of incorporating fishing mortality in models at the population and community levels.

Myers et al. (1998) proposed a mechanism underlying the famous 4 year cycles in Sockeye salmon (Onchorhyncus nerka) based on a modification of the Ricker

model to reflect harvest pressure and stochastic forcing:

Nt+4 = α (1−Ht)Nte
−βNt+εt

where Ht is the fractional harvest rate in year t, εt is a white noise random perturbation with mean 0 and constant standard deviation σε and all other terms are

defined as before. Myers et al. reported that for observed levels of H∼0.75–0.8 and σε ∼0.8 derived from observed sockeye populations, pronounced 4 year cycles

can be produced. This topic is explored further in the section on Stochastic Resonance in the text (see Figure 10).

To explore the implications of age or size-specific harvesting, we can incorporate a form of simplified demographic structure comprising juveniles (designated by

the subscript J) and adults (A):

Nt+1 = sA,tNA,t + sJ,t,αNA,t+1−re
−βNA,t+1−r

where sA= exp[-(FA,t+Ma,t )] is the fractional survival rate of adults in year t, FA,t is the instantaneous rate of fishing mortality imposed on adults in year t and MA,t

is the instantaneous rate of natural mortality of adults due to predation, disease, and other factors. For juveniles, we have sJ = exp(-rFJ ) where r is the duration of

the juvenile phase; the term α already incorporates natural mortality during the juvenile phase in this formulation. In the following, we will simplify the model to fit the

case where the adults produce juveniles which become adults after 1 year (r = 1). The first term on the right hand side of the equation therefore gives the number of

adults surviving from the previous time year and the second term is the number of juveniles entering the adult stage in year t+1. In Figure 11 we explore two cases:

(a) only adults are exploited and (b) both juveniles and adults are harvested. In the upper panel of Figure 11 we vary the adult survival rate by changing the fishing

mortality rate on adults while prohibiting fishing on juveniles. In the lower panel of Figure 11 we impose a constant level of fishing on juveniles while again varying

adult survival by changing the fishing mortality rate on adults.

We next turn to a simple predator-prey model in discrete time (Basson and Fogarty, 1997). The model for the prey (species 1) and the predator (species 2) can be

written:

N1,t+1 = α1N1e
−β1N1,t−δ12N2,t−F1

N2,t+1 = α2N2,te
−β2N2,t+δ21N1,t−F2

where the sign of the δij indicates the nature of the interactions (the predator has a negative effect on the prey and the prey has a positive effect on the predator

through the conversion of prey numbers into predator abundance. Here our interest centers on how the fishing mortality rates(F) exerted on each species affects the

expression of complex dynamics of this simple community and the F.

As a final example, we examine the effects of fishing on the three species system described by Hastings and Powell (1991). In this model, a basal resource species

(species 1 designated X) is preyed on by an intermediate predator (species 2 designated Y) and this predator in turn is preyed on by a top-level predator (species 3

designated Z). In both instances, the predators exhibit a saturating functional feeding response:

dX
dt

=
[

α1 − c11X −
A1X
B1+X Y

]

X,

dY
dt

=
[

C2
A1X
B1+X −

A2Y
B2+Y Z − D2 − F2

]

Y

dZ
dt

=
[

C3
A1Y
B1+Y − D3 − F3

]

Z

where a1 is the intrinsic rate of increase of X and c11 is an intraspecific interaction term; the Ai and Bi are coefficients of the functional feeding response of species

i; the Ci are prey conversion efficiencies for species i; the Di are mortality terms due to causes other than predation and fishing; and the Fi are fishing mortality rates

imposed on species i (see Figure 13). For an alternative parameterization of this model see McCann and Yodzis (1994).

generated dynamics distinct from those detected in the natural
subsystem alone. Such patterns have been previously examined
in other coupled social-ecological system types (Liu et al., 2007;
Horan et al., 2011).

Glaser et al. (2014) reported that catch data exhibited the
highest level of dimensionality, followed by abundance of
exploited species, and abundance of non-exploited species in
that order. The catch series were significantly less predictable
than the corresponding abundance measures for individual
species. The observed catch data presumably reflects not only
the underlying dynamics of the resource base, but a sequence
of interactions including fishermen behavior and choice, costs,
market conditions, and regulations on fishing effort resulting in a
form of layered complexity in the fishery system as a whole.

Fishing and Dynamical Response
We have seen in the context of catastrophe theory that fishing
can induce sudden changes in state of the resource. Both fold
and cusp catastrophes have been invoked to explain sudden
population collapse in ecosystems. More generally, in nonlinear
systems, fishing and other anthropogenic stressors can strongly
alter the dynamic landscape, either inducing or dampening
the expression of dynamic complexity. In the following, we
will provide different illustrations of how these differences can
emerge.

Myers et al. (1998) proposed that a form of stochastic
resonance could underlie the phenomenon of cyclic dominance
in Sockeye salmon (Onchorhyncus nerka). Sockeye salmon in
British Columbia have a 4 year life cycle (although a small
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FIGURE 11 | Bifurcation diagrams for a simple age-structured model in

which (A) harvesting is exerted only on the older age classes and (B)

when 40% of the juveniles are also exploited.

fraction return to their native rivers to spawn and die after 5
years). Cyclic dominance refers to the disparity in population
size of different “lines” of sockeye giving rise to 4-year cycles
in a number of populations. Ricker (1997) reviewed potential
underlying ecological and fishery-related mechanisms giving rise
to this fascinating periodic pattern (Figure 10; upper panel).
Myers et al. (1998) showed that the interplay of harvesting
and stochastic forcing can recreate basic patterns of this type
for certain ranges of the parameter space and exploitation
levels in a Ricker model (see Box 5). In the absence of
random perturbation, stable equilibria are obtained for all four
lines. Myers et al. (1998) found that when applying estimated
parameter values derived from ameta-analysis of sockeye salmon
stocks with no external forcing and catch levels within the
normal range of the fishery, a stable equilibrium was obtained.
However, when environmental variability was added to the
model, a 4-year cycle similar to observed sockeye patterns was
obtained (Figure 10; lower panel). Interestingly, this result holds
only for certain ranges of the catch and levels of random
variability and these coincide with past observation. This form
of stochastic resonance involves a specific interaction between
human intervention through harvesting and environmental
variability.

FIGURE 12 | Dynamical landscape for an exploited two-species

predator-prey system using a simple Lotka-Volterra type production

model. Regions of the exploitation phase space for complex (blue), cyclic

(red), and stable (green) dynamics are shown. The interplay between

harvesting, species interactions, and the internal dynamics of the two species

generates islands of complexity in the landscape (adapted from Figure 3 of

Basson and Fogarty, 1997).

Size- or age-selective harvesting practices can also affect the
expression of complex dynamics in exploited marine species.
For example, in populations with multiple age classes, selectively
harvesting older age classes can be destabilizing when nonlinear
dynamics originates in processes affecting the younger life
stages. In this case, the stabilizing effect of maintaining a broad
portfolio of age classes is degraded as the survival rate of
older age classes declines due to harvesting (Figure 11 upper
panel). The underlying complex dynamics generated during the
early part of the life cycle can be effectively masked under
low exploitation rates. Anderson et al. (2008) further note that
this decreased stability can also reflect induced changes in the
intrinsic rate of increase in exploited populations subject to
juvenescence. Thus, the observation by Glaser et al. (2011) of
higher levels of nonlinearity in exploited populations relative to
unexploited ones may reflect, in part, the effect of size-specific
harvesting strategies in which larger individuals are targeted.
In contrast, when harvesting affects both older individuals
and some fraction of the younger age classes, the expression
of complex dynamics can be substantially altered relative to
the case where only adults are harvested (Figure 11 lower
panel).

If we increase the dimensionality of the system to include
more than one species, the range of possibilities for dynamical
behavior further increases. For example, Basson and Fogarty
(1997) show that in a two-species production model with
no age or size structure, an examination of the state space
framed by the fishing pressure on each species reveals islands
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FIGURE 13 | Dynamics of a predator-prey system comprising three species: X (upper row), Y (middle row), and Z (lower row). The fourth row shows the

three-dimensional attractors for the system. The first column shows results for no fishing (Hastings and Powell 1991); the middle column shows results of adding low

to moderate fishing (F = 0.2); and the third column shows results for higher fishing mortality (F = 0.4).

of complexity where stable, cyclic, and chaotic behaviors exist in
different (but intermixed) regions of the exploitation landscape
(Figure 12). Human choice with respect to the relative fishing
intensities imposed on the predator and prey strongly affects
the expression of complex dynamics. In this case, understanding
the underlying processes is essential in understanding whether
avoiding actions that will induce complex dynamics is at all
possible.

Hastings and Powell (1991) traced the development of
complex dynamics in a three-species system comprising a simple
linear food chain with a basal resource species and two predators.
In this case, the predators have a saturating functional feeding
response, distinguishing it from the intraguild predation model
we examined in Box 2 (see Figure 7). We can explore the
implications of adding fishing to this system (see Box 5). In
the absence of exploitation, the time trajectories of the three
species do not attain a simple stable equilibrium for parts of
the parameter space and a strange attractor emerges (Hastings
and Powell, 1991, Figure 13) left column. However, introducing
a simple form of harvesting in which yield is extracted in
proportion to the population size of the prey dampens the
expression of complex dynamics for this same range of parameter
space. Even for a relatively low level of fishing mortality (F =

0.2), the system switches from chaotic dynamics to a limit cycle
(Figure 13 middle column). For a higher level of exploitation

(F = 0.4), the system settles down to a stable equilibrium point
(Figure 13 right column).

The main message that emerges from these examples is that
the exact nature of human intervention, coupled with the form
of the nonlinear processes governing the system dynamics, can
strongly alter the expression of dynamic complexity. In a single
species context, non-selective harvesting can hold very different
implications than size or age-selective patterns of exploitation.
Adding consideration of environmental variability and species
interactions can further alter the dynamical landscape. The
application of empirical methods of state-space reconstruction
in effect allows the data to speak. Given the uncertainty
in our understanding of system dynamics and underlying
governing processes, this approach offers a potentially powerful
complement to more traditional methods based on structural
equation modeling.

Other Forms of Human Intervention
We note that in the quest for enhanced yields from marine
ecosystems, humans have altered these systems in many ways.
These alterations encompass not only removal of biomass from
natural populations through catches but supplementing natural
populations through large-scale hatchery operations. Young fish
(or shellfish) are grown through the critical early life stages
during which mortality rates are typically high, and then released
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to augment the natural population for subsequent harvest. The
number of Pacific salmon released from hatchery systems is in
the billions and considerable controversy over the efficacy and
potential environmental impacts of artificial enhancement of this
type exists (Naish et al., 2008). Fagen and Smoker (1989) raised
the interesting question of whether large-scale introduction of
hatchery-reared salmon could alter the expression of complex
dynamics in the population. In particular, because the hatchery
operation is intended to deliberately increase the juvenile survival
rate during a vulnerable period of the life history, it is important
to know whether this change could be manifest in the emergence
of complex dynamics. Fagen and Smoker (1989) show that
an effective increase in the intrinsic rate of increase of the
population given a sufficiently large hatchery production can
in fact lead to complex dynamics. Although, no empirical
analyses have been undertaken to explore evidence for the
effects of hatchery operations on the expression of dynamic
complexity, McCarl and Rettig (1983) had earlier noted an
increase in variability in Pacific salmon returns with increasing
hatchery releases.

CONCLUSIONS

As noted in the Introduction, complexity theory emerged from
earlier developments in nonlinear dynamics (bifurcation theory,
catastrophe theory, and chaos theory). Complexity theory goes
beyond its antecedents, however, in focusing on issues such
as the emergent properties of complex systems and concepts
such as “order out of chaos” (e.g., Waldrop, 1992). In this
construct, systems characterized by Lyapunov exponents ∼0
are most likely to exhibit these properties. Some evidence
from ecological systems suggests a mode in the distribution of
Lyapunov exponents calculated from a broad array of natural and
laboratory populations consistent with this concept (Ellner and
Turchin, 1995).While chaotic systems exhibit strong dependence
on initial conditions and short termmemory in system dynamics,

the behavior of complex systems is more typically associated
with the importance of past history in shaping the future. In
fisheries systems, there is substantial evidence that higher levels of
ecological organization such as guilds and communities are often
more stable and predictable than lower levels (populations and
species), possibly reflecting emergent properties in these systems
(e.g., Fogarty and Murawski, 1998; Fogarty, 2014).

Recognition of the potential for complex dynamical behavior
in exploited marine ecosystems calls for a paradigm shift in
fisheries management. In particular, the fundamental premise
that fishery systems are governed by globally stable dynamics
leads to the possibility of sudden and unanticipated shifts in
resource and ecosystem status that hold profound ecological,
social, and economic consequences when these assumptions
are not met. Again, the difficulty lies not in the broader
conceptual framework of fisheries science, in which these
possibilities have been identified and explored, but rather in the
narrower frame of reference typically adopted in management
practices. In particular, the dominant management paradigm
centered on the concept of maximum equilibrium yield sets the
stage for unexpected surprises in population and/or ecosystem
status. Resource managers should instead be prepared for the
unexpected and act accordingly.
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GLOSSARY

Aperiodic. A non-repeating pattern in time.
Attractor. An equilibrium state or collection of states
to which a dynamic system converges. A chaotic
attractor is one demonstrating sensitivity to initial
conditions.
Basin of Attraction. All possible points in state space that can
evolve onto an attractor.
Bifurcation. An abrupt change in the form of an attractor or
equilibrium conditions as parameters are changed. A bifurcation
point is a critical parameter value at which at least two branches
of dynamical behavior emerges.
Chaos. Bounded fluctuations characterized by sensitivity to
initial conditions in deterministic nonlinear systems.
Dynamical System. A system that evolves over time.
Dynamic Complexity. The time-dependent dynamical
behavior of coupled systems governed by feedback
mechanisms.
Embedding. Creation of a pseudo-state space using a sequence of
lagged values of one or more variables. An embedding dimension
is the number of lags used to construct a pseudo-state space
representation of a dynamical system resulting in a “shadow”
attractor that maintains the essential features of the original
attractor.
Emergent Properties. The emergence of order in complex
systems over time.
Hysteresis. Time-delayed response to change in a control variable
in a nonlinear system.
Limit Cycle. Self-sustaining periodic motion in state space (a
periodic attractor).

Lyapunov Exponent. The mean exponential rate of converge
or divergence of adjacent trajectories in a state space starting
in arbitrarily close proximity. Trajectories that converge (are
characterized by negative slopes) stable. Positive slopes are
diagnostic of chaos.
Manifold. A smooth geometric object in state space including a
point, line, curve, or surface describing the fundamental space
occupied by an attractor.
Noise. Variability in a quantity over time due to random forcing,
measurement errors, or other factors.
Nonlinear dynamics. Trajectories over time that do not show a
proportional response to a forcing factor.
Quasiperiodicity. A dynamical state characterized by the
superposition or at least two periodic motions.
Red Noise (reddened spectrum). Autocorrelated random
variability.
Regime Shift. A large, abrupt, persistent changes in the structure
and function of a system.
State Space. An abstract space defined by the variables required
to specify the state of a dynamical system over time. State-space
reconstruction involves the use of a lagged coordinate system for
one or more variables to create a pseudo- state space.
Stochastic. A system governed by random properties. A non-
deterministic process.
Strange Attractor. A geometric object (manifold) generated by
chaotic dynamics.
Transient. Atypical behavior in a system attributable to initial
conditions or a perturbation that dies out over time.
Unstable dynamics. Dynamical behavior in which perturbations
or initial differences are amplified over time.
White Noise. Uncorrelated random variation.

Frontiers in Ecology and Evolution | www.frontiersin.org 20 June 2016 | Volume 4 | Article 68

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive

	Dynamic Complexity in Exploited Marine Ecosystems
	Introduction
	Patterns of Variability and Change in Exploited Marine Species
	Bifurcations, Catastrophes, and Chaos
	Catastrophes

	Box 1 | Variations on a theme by William Ricker.
	Variations on a theme by William Ricker.
	Deterministic Chaos
	Models in Discrete Time
	Models in Continuous Time


	Box 2 | Models in continuous time.
	Models in continuous time.
	Stochastic Resonance
	Autocorrelated Noise

	Box 3 | Quantifying Chaos using Lyapunov exponents.
	Quantifying Chaos using Lyapunov exponents.
	Analytical Tools for Nonlinear Dynamical Systems
	Box 4 | Time series methods for state space reconstruction.
	Time series methods for state space reconstruction.
	Box 4 | Continued
	Continued
	State-Dependence
	Causality

	Box 5 | Effects of exploitation on dynamical behavior.
	Effects of exploitation on dynamical behavior.
	Fisheries as Complex Systems
	Fishing and Dynamical Response
	Other Forms of Human Intervention

	Conclusions
	Author Contributions
	Acknowledgments
	References
	Glossary


