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Wild rice (Zizania latifolia) is an important genetic resource and it has important ecological

functions in aquatic ecosystems as well. Here, we used landscape genetics to investigate

how the landscape features, including rivers, mountains and habitat fragmentation,

affect the genetic connectivity or create dispersal barriers for Z. latifolia. In this report,

seventeen populations from the Sanjiang Plain and its surrounding areas were genotyped

by ten microsatellite markers. A high genetic differentiation and genetic discontinuity

were found among populations within each river investigated, suggesting that the rivers

be not acting as corridors for dispersal. Meanwhile, genetic discontinuity was detected

from different sides of the Lesser Khingan and its branch, the Qinghei Mountains,

demonstrating that gene flow was blocked by the complex topography of mountains.

The results that historical gene flow was much higher than the contemporary gene flow

might infer that recent habitat fragmentation resulted in decreased gene flow. For all

sampled Z. latifolia populations, the result of low level of genetic variation (na = 2.3,

HE = 0.328) and high genetic divergence (FST = 0.405, Dest = 0.414 and Øpt = 0.424)

was consistent with the decreased gene flow, an inbreeding system and repeated genetic

bottlenecks. A conservation strategy for protecting as many populations as possible

to maximize genomic representation of the species is proposed. In addition, dredging

the watercourses should be carried out to improve habitat stability and to facilitate

connectivity among populations.

Keywords: landscape genetic structure, habitat fragmentation, genetic barriers, gene flow, corridor function,

Zizania latifolia

INTRODUCTION

Dispersal is a key process to determine the fate of populations and species, and it becomes more
and more important due to pressures from habitat fragmentation, land-use change and climate
change (Aavik et al., 2013; Sondermann et al., 2015; Wubs et al., 2016). Likewise, species’ genetic
diversity can significantly contribute to their adaptability to ever-changing environments (Hughes
et al., 2008). Therefore, a good understanding of gene flow patterns and genetic diversity could help
effective protection of endangered species and quality management of economically or ecologically
important species (Yan et al., 2016).
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With the advanced molecular tools, some investigators
developed a landscape genetic approach to study the effects of
landscape composition, configuration andmatrix quality on gene
flow and spatial genetic variation (Manel et al., 2003). One of the
major topics of landscape genetics is to identify potential barriers
or corridors for dispersal (Guillot et al., 2005; Storfer et al., 2007).
For example, rivers, which facilitate movement of individuals and
genes across the landscape, are generally recognized as corridors
for riparian or aquatic plants (Chen et al., 2012a,b; Yan et al.,
2016). On the other hand, mountain ridges as geographical
barriers may hinder gene flow and cause genetic differentiation
in plants (Tsuda et al., 2010). Fragmentations in habitats may
disrupt or reduce gene flow and erode the genetic variation of
plants (Werth et al., 2014). In a riparian-mountain landscape,
rivers or streams in mountainous areas are usually located at the
bottom of valleys, and the distribution patterns of streamside
or riparian plants are generally fragmented by natural (e.g.,
highlands) and man-made (e.g., dams and reclamation) barriers.
In this situation, it is difficult to predict the genetic structure of
riparian species when the competing factors (rivers, mountains
and fragmentation) might work together on historical or current
dispersal of seeds or vegetative propagules. The consequences
of fragmentation in riparian-mountain habitats are less well
understood, though previous researches are available for a few
streamside tree species (Hu et al., 2010; Wei et al., 2013). In the
example of the streamside tree, Euptelea pleiospermum Hook.
f. et Thoms, mountain ridges were genetic barriers; whereas
river valleys provided important corridors for dispersal (Wei
et al., 2013). If growth and dispersal were considered, riparian
or aquatic plants may be more dependent upon rivers. Based on
current available data, there raise some questions: Can we make
the same conclusion as for the tree species? Or is the corridor
function of rivers reduced by fragmentations?

The Sanjiang Plain is the largest area of freshwater marsh in
China. The alluvial plain is drained by the Heilong River and its
main tributaries (the Songhua River and Wusuli River), and it is
surrounded by mountains (the Wanda Mountains and Qinghei
Mountains). However, the plain has suffered from intensive
reclamation over the past 50 years (1954–2005) as shown by
the facts that more than 75% of its wetlands have disappeared
(Wang et al., 2011). The range of geographical and anthropogenic
factors in the plain provided excellent opportunities to study
the genetic consequences of human-induced fragmentation in
riparian-mountain habitats. Identifying the genetic structure of
riparian and aquatic plants across threatened aquatic systems is a
pre-requisite for managing their ecosystem services (James et al.,
2013).

Zizania latifolia Turcz., known as Manchurian wild rice, is
a perennial, aquatic or paludal, monoecious grass that grows
along the littoral of freshwater marshes and streams and it is
native to East Asia (Chen S. et al., 2006). Z. latifolia is widely
distributed in wetlands of the Sanjiang Plain. It is wind-pollinated
to reproduce sexually by seeds or asexually by rhizomes. Z.
latifolia is a pioneer weed species for dyke consolidation because
of its high clonal reproduction; it also has a high nutrient
uptake capacity which is used to purify wastewater. Its seeds or
young shoots are popular foods or vegetables in China (Guo

et al., 2007). Moreover, some eminent traits in Z. latifolia are
used for rice breeding owing to its close relationship to rice
(Oryza sativa L.) (Chen Y. et al., 2006). And the release of
genome sequences of Z. latifolia would greatly accelerate the
progress of molecular breeding related to the species (Guo
et al., 2015). Therefore, wild Z. latifolia populations not only
have important ecological functions in aquatic ecosystems, but
also are important genetic resources. Understanding genetic
diversity of the valuable species would help effectively implement
conservation practices for the species and rationally utilize the
genetic resources (Yan et al., 2016). Abundant genetic variations
with weak population structure were previously reported using
ten nuclear microsatellites markers in Z. latifolia from lakes of
the Middle-lower Yangtze Plain, a potamo-lacustrine system in
central China (Chen et al., 2012a). In another report, nine Z.
latifolia populations from the Sanjiang Plain in northeastern
China were shown a low level of genetic diversity with evident
population structure based on SRAP markers (Fan et al., 2016),
and the results inferred that mountains and fragmentation might
contribute greatly to the genetic patterns of Z. latifolia in the
Sanjiang Plain. However, the effects of rivers, mountains and
fragmentation on gene flow were not cautiously verified (Fan
et al., 2016).

Simple sequence repeat (SSR, or microsatellite) markers are
ideal for genetic studies of population structures due to their
codominance and high reproducibility. Here, we used population
genetic analyses of microsatellite markers to investigate the
roles of mountains, rivers and fragmentation on dispersal
/population structure of Z. latifolia from the Sanjiang Plain and
its surrounding area. The questions we would like to address are:
(i) within one river, has the direction of water flow dominated
the level of gene flow: water flow or habitat fragmentation? (ii)
have the mountains blocked the gene exchange and where is
the geographical location of the genetic discontinuities? (iii) has
the fragmentation resulted in the decrease of gene flow, and
what are the levels of historical and contemporary gene flows
among populations? Additionally, high level of genetic diversity
in Z. latifolia is expected in this study due to the nature of
hyper-variability of the SSR markers. Our study would give more
insights into the genetic structure and gene flow of the aquatic
plant Z. latifolia from critically fragmented habitats, and should
be beneficial for developing appropriate restoration strategies for
the threatened aquatic systems.

MATERIALS AND METHODS

Investigation Area and Sample Collection
The Sanjiang Plain is a river basin illuviated by the Heilong River,
Songhua River and Wusuli River, and it is located in Northeast
China. Seventeen Z. latifolia populations (named ZL1 to ZL17)
were collected from the Sanjiang Plain and its neighboring
areas (Table 1; Figure 1; Appendix 1 in SupplementaryMaterial).
Populations ZL1-4 were from the Nenjiang River basin, the
largest tributary of Songhua River. Populations ZL5-9, ZL10-
13, and ZL14-17 were along the Heilong River, Wusuli River
and Songhua River, respectively. For each population, 20-24
individuals were sampled separately at intervals of at least 10m
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TABLE 1 | Location, habitats and summary measures of clonal diversity and genetic variation for each population of Zizania latifolia.

Population Habitats Affiliation to rivers N G D na ne HO HE FIS

ZL1 Reservoir Nenjiang River 24 11 0.844 1.8 1.4 0.282 0.242 −0.119NS

ZL2 Pond Nenjiang River 22 11 0.896 1.8 1.6 0.227 0.256 0.160*

ZL3 Pond Nenjiang River 24 18 0.942 2.3 1.6 0.211 0.277 0.263***

ZL4 Marsh Nenjiang River 21 21 1.000 2.5 1.4 0.248 0.251 0.039NS

ZL5 Pond Heilong River 15 15 1.000 2.3 1.7 0.340 0.348 0.059NS

ZL6 Pond Heilong River 24 17 0.964 2.1 1.5 0.235 0.300 0.244**

ZL7 Marsh Heilong River 23 20 0.988 2.1 1.6 0.270 0.309 0.150*

ZL8 Marsh Heilong River 24 24 1.000 2.4 1.6 0.208 0.326 0.378***

ZL9 Stream Heilong River 24 24 1.000 2.8 1.9 0.413 0.397 −0.018NS

ZL10 Pond Wusuli River 24 17 0.967 2.3 2.0 0.347 0.401 0.164*

ZL11 Pond Wusuli River 22 21 0.996 2.4 1.7 0.338 0.347 0.050NS

ZL12 Pond Wusuli River 12 8 0.848 1.6 1.4 0.275 0.203 −0.294*

ZL13 Marsh Wusuli River 22 22 1.000 2.4 2.0 0.350 0.406 0.161**

ZL14 Stream Songhua River 20 7 0.642 2.1 1.6 0.486 0.310 −0.511***

ZL15 Pond Songhua River 24 24 1.000 2.4 1.6 0.329 0.315 −0.023NS

ZL16 Stream Songhua River 24 23 0.996 2.5 1.8 0.339 0.425 0.222***

ZL17 Marsh Songhua River 24 23 0.996 3.1 2.2 0.535 0.471 −0.114*

Mean 21.9 18.0 0.946 2.3 1.7 0.320 0.328 0.048

N, number of individual plants; G, the number of genotypes; D, Simpson’s diversity index; na, observed alleles number; ne, effective allele number; HO, observed heterozygosity;

HE , expected heterozygosity; FIS, inbreeding coefficient.

*P < 0.05; **P < 0.01; ***P < 0.001; NSnot significant.

FIGURE 1 | Location of the 17 populations of Zizania latifolia and affiliation to genetic clusters as determined by admixture analysis in STRUCTURE

2.3.4.
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to reduce the chance of collecting samples from the same clone.
In populations ZL5 and ZL12, only 15 and 12 individuals were
sampled because of the small population area. All in all, young
leaves from 373 individuals were collected and immediately dried
in silica gel.

DNA Extraction and Genotyping Using
Microsatellite Markers
Total genomic DNA was isolated from 0.3 to 0.5 g dried leaves
using a modified 2% CTAB protocol (Doyle and Doyle, 1987).
Twenty-two SSR markers, including 16 markers developed for Z.
latifolia (Quan et al., 2009) and six for Z. texanaHitchc. (Richards
et al., 2007), were screened in PCR amplification on 20 random
individuals. Ten markers which produced polymorphism and
clear banding patterns were selected for further analysis.
Microsatellite genotyping was performed at loci ZM4, ZM5,
ZM13, ZM16, ZM24, ZM25, ZM26, ZM36, ZM40, and ZM44
(Quan et al., 2009). The PCR amplifications were performed in
a final volume of 10 µL containing 10 mM Tris–HCl (pH 8.4), 50
mM (NH4)2SO4, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 µM each
primer, 1 unit Taq polymerase (Fermentas, Vilnius, Lithuania),
and 20 ng of genomic DNA. The amplification procedure was
performed as described by Quan et al. (2009). Amplified products
were separated on a 6% denatured polyacrylamide gel. A 25bp
DNA ladder (Promega, Madison, WI, USA) was used to identify
alleles. The fragments were visualized by silver staining. All
samples were amplified twice, except those samples with different
profiles which were run a third time.

Data Analysis
Clonal Diversity and Genetic Variations in Populations
We used GenoType/GenoDive (Meirmans and van Tienderen,
2004) to identify the clonal structure, and samples were assigned
to the same multilocus genotypes and were considered to
be clonemates if their SSR profiles were identical (threshold
0). With the software, the clonal diversity within populations
was calculated, including (1) the number of genotypes G;
(2) Simpson’s diversity index D. Repeating genotypes within
populations were excluded from all further genetic analyses.

For each population, genetic diversity was estimated across all
loci using the observed number of alleles (na), effective number
of alleles (ne), the expected and observed heterozygosity (HE

and HO) using GenAlEx 6.2 (Peakall and Smouse, 2006). With
the same software, genetic polymorphism for each microsatellite
locus was assessed by calculating the total number of alleles
(A, allelic diversity), HE and HO. FSTAT 2.9.3 (Goudet, 2001)
was used to calculate the fixation index (FIS) and genetic
differentiation among populations (FST; Weir and Cockerham,
1984). Populations with heterozygote deficiency were further
analyzed with INEst 2.0 (Chybicki and Burczyk, 2009) utilizing a
Bayesian approach for estimating both null alleles and inbreeding
simultaneously (Campagne et al., 2012). Two parameters were
used for the model comparison (n: null alleles; f: inbreeding).
Three models (n, f, and nf) were run with 50,000 burn-
in and 500,000 cycles for each population. The model with
the lowest Deviance Information Criterion (DIC) outperforms
the other model and was selected as the best fit for this

population. The deviation was also tested from the Hardy-
Weinberg equilibrium and linkage disequilibrium (LD) using
FSTAT 2.9.3. The significant values for LD were corrected for
multiple comparisons by Bonferroni correction (Rice, 1989).

The program Bottleneck 1.2.02 was used to test for deviation
frommutation-drift equilibrium which is expected if populations
have experienced a recent demographic decline (Cornuet and
Luikart, 1996; Piry et al., 1999). This test is provided for three
mutational models: the infinite alleles model (IAM); the stepwise
mutationmodel (SMM); and a combination of those two extreme
hypotheses, the two phase model (TPM). In the TPM, the
proportion of IAM and SMM was set with default values (70%
of the mutations were assumed to occur under IAM and 30%
under SMM). For each mutational model, 5,000 replicates were
performed using Wilcoxon signed-rank test.

Genetic Differentiation, Isolation by Distance and

Tests for Accumulation Effect
The population genetic divergence was measured by the standard
method of the estimation of FST (Weir and Cockerham, 1984).
Pairwise F-statistics (Weir and Cockerham, 1984) between
populations were calculated using FSTAT 2.9.3 with 1,000
permutations for their significance. Because FST is dependent
upon within-population diversity, an alternative measure of
genetic differentiation Dest was calculated using SMOGD (Jost,
2008; Crawford, 2010). Genetic variation within and among
populations was further partitioned by analysis of molecular
variance (AMOVA) using Arlequlin3.5 (Excoffier and Lischer,
2010).

The isolation by distance was tested (IBD; Wright, 1943) by
plotting pairwise estimates of genetic distance ([FST/(1−FST)];
[Dest/(1−Dest)]) against the corresponding geographical distance
(km) between populations. A Mantel test (Mantel, 1967) with
5,000 matrix randomizations was used to assess the significance
of correlations between genetic distances and geographical
distances using the software TFPGA (Miller, 1997).

In order to examine whether the water flow dominated the
gene flow of populations along rivers, the accumulation of genetic
diversity was tested in downstream populations. The SPSS 16.0
(SPSS, 2008) was used to calculate the associations between
genetic parameter (HE) and the positions of populations along
Heilong River, Songhua River and Wusuli River, respectively
(expressed in kilometers from the furthest upstream population).

Population Cluster and Genetic Discontinuity among

Populations
To illustrate the genetic relationships among populations, we
performed principal coordinate analysis (PCoA) based on
Nei’s genetic distance (Nei et al., 1983) in GenAlEx 6.2.
Nonhierarchical Bayesian clustering was performed to explore
the genetic groups within the samples, using the program
STRUCTURE 2.3.4 (Pritchard et al., 2000). The program was
used with a burn-in of 100,000 replicates, followed by 500,000
replicates of theMarkov chainMonte Carlo (MCMC) simulation,
with the admixture model and the assumption of correlated allele
frequencies among populations. Ten iterations were performed
for each value of K from 1 to 19. The output was interpreted
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with Structure Harvester (Earl and vonHoldt, 2012) using
the methods of Pritchard et al. (2000) and Evanno et al.
(2005) and visualized by DISTRUCT v. 1.1 (Rosenberg, 2004).
Using Arlequlin 3.5 (Excoffier and Lischer, 2010), AMOVA was
conducted to calculate variation within and among clusters
identified by STRUCTURE.

In order to visualize spatial patterns of population structure
and to locate discontinuities among populations, we used
GENELAND (Guillot et al., 2005) and BARRIER (Manni
et al., 2004). GENELAND analysis was run with 10 replicates
setting the number of groups K between 1 and 19. MCMC
resampling was set at 100,000 repetitions, 100 thinning and
200 burn-in period. The best result was chosen based on the
highest average posterior probability. The analysis was performed
under uncorrelated frequency models. Monmonier’s maximum
difference algorithm with BARRIER 2.2 was used to determine
the main genetic discontinuities among populations (Manni
et al., 2004) based on the matrix of FST (Weir and Cockerham,
1984) for each of the 10 loci separately. Only barriers supported
by at least half of the loci (i.e.,≥5 loci) were allowed as “consensus
barriers” (Yan et al., 2016), namely main barriers.

Historical and Contemporary Gene Flows and

Migration-Drift Equilibrium
The historical (Mhis) and contemporary (Mcon) gene flows
were estimated using MIGRATE (Beerli, 2008) and BAYESASS
(Wilson and Rannala, 2003), respectively. MIGRATE uses
coalescent theory to estimate asymmetric gene flow M (m/µ)
between populations over a long period of time (within the past
4Ne generations), where Ne is the effective population size, µ

is the mutation rate and m is the migration rate (Beerli and
Felsenstein, 2001). Here we used the Bayesian method with the
Brownian motion mutation model for the microsatellite loci.
The default settings of MIGRATE were used except uniform
prior distributions (θ : minimum = 0, maximum = 10, delta =

1; M: minimum = 0, maximum = 400, delta = 40). Because
MIGRATE needs great amount of calculation, 17 populations is
beyond the computational capabilities of computers. To perform
the software smoothly, the 17 populations were divided into
groups based on their genetic clusters identified by STRUCTURE.
BAYESASS uses assignment tests in a Bayesian framework
and MCMC sampling to estimate the migration rates among
populations over the last several generations (Wilson and
Rannala, 2003). Each MCMC run was performed with 1 ×

106 iterations after a burn-in of 1 × 105 and with a sampling
frequency of 1,000. In order to make the accepted number of
changes equal 30–40% of the total number of iterations (Rannala,
2011), the delta values were adjusted and set (−m = 0.15, −a
= 0.50, −f = 0.75). Ten runs were performed with a different
initial seed, and the one with the lowest deviance used for further
analysis (Faubet et al., 2007).

GENECLASS2.0 (Piry et al., 2004) was used to perform
the assignment test with the Bayesian method (Rannala and
Mountain, 1997) and to detect the first-generation migrants
among populations with the frequency-based method (Paetkau
et al., 1995). The assignment test was used to assign or exclude
the possible origins of individuals in reference populations, with

1,000,000 simulations and an alpha level of 0.01. The first-
generation migrants among populations were conducted with
Monte Carlo resampling of 1,000 individuals and a threshold of
0.01, which identified the immigrant individuals that were not
born in the population.

We tested the relative likelihood of migration-drift
equilibrium (gene flow vs. drift model) using the program
2MOD (Ciofi et al., 1999). A simulation with 1 × 105 iterations
was carried out, and the first 10% of the output was discarded to
avoid bias resulting from the starting values.

RESULTS

Defining Genotypes and Estimating
Genetic Diversity
From the 373 genotyped individuals, 306 multilocus genotypes
were identified, and no genotype was shared among populations.
In six populations, ZL4, ZL5, ZL8, ZL9, ZL13, and ZL15, every
individual was of a unique genotype. For the other populations,
the Simpson’s clonal diversity index (D) ranged from 0.642
(ZL14) to 0.996 (ZL11, ZL16, and ZL17) (Table 1). A total
of 50 alleles were identified, ranging from 2 (ZM24) to 10
(ZM40 and ZM44), with an average of 5.0 alleles per locus
(Table S1). The observed allele number within populations
ranged from 1.6 (ZL12) to 3.1 (ZL17) (Table 1). The mean
observed heterozygosity (HO) and expected heterozygosity (HE)
per population were 0.320 and 0.328, respectively (Table 1). The
smallest and the highestHE values were observed in the ZL12 and
ZL17 populations, which were growing along the Wusuli River
and Songhua River, respectively. The average value of the fixation
index varied greatly among populations (range: −0.511 to 0.378;
mean: 0.048; Table 1), suggesting that Z. latifolia had a mixed
breeding systems, including both inbreeding and outbreeding.

Of 340 locus-population combinations, 41, 19, and 9
combinations (12.1, 5.6, and 2.6%) showed significant deviation
from Hardy-Weinberg equilibrium at P = 0.05, 0.01, and
0.001 respectively. Although 56 of 765 locus pairs (7.3%)
were significantly out of genotypic disequilibrium at the P
= 0.05 level, none of the locus pairs was in significant
genotypic disequilibrium after the Bonferroni-type correction,
which showed that loci were physically unlinked and statistically
independent. Eleven populations showed a positive fixation
index, of which eight were significant. Further analysis with
INEst showed that the heterozygote deficiency in the five
populations (ZL2, ZL3, ZL6, ZL7, and ZL8) was caused by
inbreeding, whereas the heterozygote deficiency in the three
other populations (ZL10, ZL13, and ZL16) was caused by the null
allele model (Table S2).

Genetic Differentiation, Isolation by
Distance and Tests for Accumulation Effect
The genetic differentiation across all populations, estimated by
FST and Dest, were 0.405 and 0.414, respectively (Table S1). The
matrix of the pairwise population differentiation estimated by
FST and Dest was shown in Table S3. All of the 136 pairwise
comparisons of FST were significant (P < 0.05) for genetic
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differentiation between populations after correction for multiple
tests. For all the values of pairwiseDest, the lower 95% confidence
interval estimated by bootstrapping did not go below zero
for any of pairwise statistics, indicating significant population
differentiation. Levels of pairwise population differentiation were
high, ranging between 0.137 and 0.626 (mean FST ± SEM: 0.418
± 0.107). Consistent with these results, values of Jost’s Dest

were comparable (0.025–0.592) among all populations (mean
Dest ± SEM: 0.231 ± 0.111). The AMOVA showed high overall
population differentiation (Øpt = 0.424, P = 0.000). Of the total
genetic variations partitioned in the 17 Z. latifolia populations,
42% were attributed to the differences among populations (df =
16, P < 0.0001), whereas 58% were attributed to the differences
among individuals (df= 595, P < 0.0001) (Table 2).

Although only a small proportion of the genetic variance was
explained by geography, small but significant positive correlation
was detected between genetic differentiation and geographical
distances among the 17 populations (Mantel test for FST: r

2

= 0.038, P = 0.012; Dest: r2 = 0.022, P = 0.043) (Figure
S1). No significant positive association was found between the
genetic diversity indices (HE) and the distance of the downstream
populations from the population furthest upstream for the three
rivers (for the Heilong River, r= 0.595, P= 0.290; for theWusuli
River, r = 0.092, P = 0.908; for the Songhua River, r = −0.968,
P = 0.032).

TABLE 2 | Analysis of molecular variance (AMOVA) for 306 individuals.

Source

of variation

df Sum of

squares

Variance

components

Percentage

of variation

Øpt p

AMONG AND WITHIN THE 17 POPULATIONS

Among populations 16 767.783 1.292 42%

Within populations 595 1,045.562 1.757 58% 0.424 0.000

AMONG AND WITHIN THE THREE CLUSTERS (K = 3)

Among clusters 2 260.662 0.647 20%

Within clusters 609 1,552.683 2.550 80% 0.202 0.000

Øpt, genetic differentiation; populations are grouped according to their genetic clusters

as determined by STRUCTURE.

Population Cluster and Genetic
Discontinuity among Populations
The Bayesian clustering implemented in STRUCTURE revealed
an optimum 1K at K = 3 (Figure 1; Figures S2A,B). The three
clusters of individuals clearly separated these collecting locations
into stable gene pools (Figure S2C): populations ZL1-8, ZL9-
13, and ZL14-17. The proportion of membership of the pre-
defined populations in each of the three clusters ranged from
0.658 to 0.986 (Table S4). The AMOVA showed that 20% of
the total molecular variations were attributed to inter-cluster
differentiation (Table 2). When considering genetic structure
based on the PCoA performed on allelic frequencies, a similar
cluster pattern was found except for populations ZL6 and ZL7
(Figure 2). PCoA explained 71.63% of the total gene variations,
on the basis of the first (35.10%), the second (21.09%) and the
third dimension (15.43%).

GENELAND identified 13 genetic clusters (Figure S3). Each
cluster corresponded to a sampling site with the exception
of the three clusters (ZL1-3, ZL12-13, and ZL14-15). The
results indicated that genetic discontinuities existed between any
adjacent populations except for within the three clusters. The
main genetic discontinuities were further identified using Barrier
2.2 based on pairwise FST values (Figure 3). Five main barriers,
including barriers between ZL2 and ZL17, ZL2 and ZL16, ZL6
and ZL16, ZL7 and ZL16, and ZL7 and ZL15, integrated to
form one continuous break, located in the east section of Lesser
Khingan and its branch Qinghei Mountains. Additionally, three
main breaks were exhibited among populations along the three
rivers, i.e., between ZL6 and ZL7 along the Heilong River,
between ZL15 and ZL16 along the Songhua River, and between
ZL11 and ZL12 along the Wusuli River.

Gene Flow and Genetic Bottlenecks
MIGRATE revealed high level of historical gene flow among the
Z. latifolia populations (Table 3).Mhis ranged from 2.340 to 8.443
for cluster ZL1-8, from 1.568 to 11.231 for cluster ZL9-13, and
from 1.206 to 10.165 from the Songhua River, respectively. On
the contrary, multiple runs of BAYESASS yielded relatively low
contemporary gene flow among the populations. The values of

FIGURE 2 | Nonmetric multidimensional scaling ordination based on Nei’s genetic distance (Nei et al., 1983). (A) The first two principal coordinates account

for 35.10 and 21.09% of the genetic variation, respectively; (B) the first and third principal coordinates account for 35.10 and 15.43% of the genetic variation,

respectively. See Table 1 for explanations of population abbreviations.
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FIGURE 3 | Discontinuities in gene flow suggested by BARRIER using consensus barriers. Barriers to gene flow are indicated by solid red lines, and the

number of loci supported barriers is in green. The blue lines represent hypothetical population boundaries.

TABLE 3 | Likelihood estimates of MIGRATE of long-term and BAYESASS of recent gene flow among 17 populations of Zizania latifolia.

(a) Estimates of long-term (left) and recent (right) gene flow among the eight populations ZL1-ZL8

ZL1 ZL2 ZL3 ZL4 ZL5 ZL6 ZL7 ZL8 ZL1 ZL2 ZL3 ZL4 ZL5 ZL6 ZL7 ZL8

ZL1 8.443 3.110 2.569 2.950 3.129 2.866 2.965 ZL1 0.251 0.236 0.239 0.221 0.224 0.240 0.286

ZL2 3.336 3.046 2.340 3.017 2.580 2.366 3.347 ZL2 0.287 1.924 0.246 0.276 0.226 0.238 0.348

ZL3 3.861 7.022 2.854 3.918 2.575 2.400 3.444 ZL3 0.199 0.215 0.777 0.233 0.228 0.238 0.257

ZL4 2.554 6.489 3.000 3.965 3.345 3.270 2.678 ZL4 0.191 0.194 0.230 0.224 0.224 0.236 0.252

ZL5 4.071 4.077 2.781 2.771 2.777 2.578 2.987 ZL5 0.196 0.199 0.257 0.256 0.226 0.238 0.264

ZL6 3.988 7.659 2.596 3.640 5.828 2.718 3.098 ZL6 0.194 0.198 0.227 0.242 0.219 0.238 0.250

ZL7 3.744 6.093 2.833 3.247 2.968 3.342 2.392 ZL7 0.193 0.193 0.230 0.237 0.228 0.228 0.250

ZL8 6.344 8.338 3.131 2.528 4.391 2.481 3.395 ZL8 0.222 0.251 0.230 0.246 0.230 0.228 0.242

(b) Estimates of long-term (left) and recent (right) gene flow among the five populations ZL9-ZL13

ZL9 ZL10 ZL11 ZL12 ZL13 ZL9 ZL10 ZL11 ZL12 ZL13

ZL9 6.897 4.104 5.421 4.999 ZL9 1.931 0.307 0.206 0.293

ZL10 3.418 3.953 5.047 3.654 ZL10 0.350 0.288 0.208 0.288

ZL11 3.306 3.582 2.497 2.745 ZL11 0.370 0.260 0.209 0.306

ZL12 1.688 3.065 1.568 2.202 ZL12 0.372 0.262 0.380 0.409

ZL13 2.227 3.120 2.043 11.231 ZL13 0.317 0.264 0.382 0.258

(c) Estimates of long-term (left) and recent (right) gene flow among four populations along the Songhua River

ZL14 ZL15 ZL16 ZL17 ZL14 ZL15 ZL16 ZL17

ZL14 10.165 5.865 5.181 ZL14 1.469 0.688 0.679

ZL15 2.120 5.155 4.312 ZL15 0.121 0.276 0.276

ZL16 4.534 1.206 4.798 ZL16 0.087 0.298 0.396

ZL17 2.108 4.766 4.342 ZL17 0.104 0.322 0.336

(Populations in rows are giving migrants to populations in columns; populations are grouped according to their genetic clusters as determined by STRUCTURE).
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Mcon were 1.924 from ZL3 to ZL2, 1.931 from ZL10 to ZL9 and
1.469 from ZL15 to ZL14, but the others ranged from 0.087 from
ZL14 to ZL16 to 0.777 from ZL4 to ZL3, suggesting that gene
flow was greatly reduced during recent habitat fragmentation. Bi-
directional gene flows were found in all data sets. The Mhis is
predominantly downstream along the Songhua River except the
pairwise between ZL15 and ZL17.

An assignment test calculated by GENECLASS showed that
individuals from their population of origin were 27.6% or higher
in all the populations, and 18.4% or fewer of the individuals were
assigned to their nearest origin population. Additionally, 1.3% or
fewer of the individuals was assigned to the other populations.
Some 47.7% or more of the individuals were not assigned to any
of the populations sampled (Figure S4). Seven first-generation
immigrants were detected, of which two had migrated up from
the downstream populations and four had migrated down from
upstream populations (Table S5).

Due to the low number of genotypes of some populations,
tests for signatures of recent bottlenecks were only conducted on
15 of the 17 populations. Nine populations deviated significantly
from mutation-drift equilibrium under the infinite allele model,
and five populations displayed significant deviation under the
two phase model (Table 4). The microsatellites used in Z.
latifolia are either of dinucleotide perfect repeats or of imperfect
repeats, both of which may tend toward the IAM (Cornuet and
Luikart, 1996). So the results under IAM give more accurate
estimates, suggesting most populations (nine of 15 populations)
have experienced recent bottlenecks. In the 2MOD analysis, the
likelihoods of the gene flow model and pure drift models were
0 and 1, respectively, i.e., none of the simulations supported the
gene flow model.

DISCUSSION

Clonal Diversity and Genetic Variation
Clonal diversity for Z. latifolia was remarkably high (D = 0.946)
compared with the mean values (D = 0.62) summarized by
Ellstrand and Roose (1987), which may be partly attributed
to the large sampling interval within populations (at least 10
m). Additionally, all populations comprised multiple genotypes,
indicating that seeds or sexual reproduction largely contributed
to the population construction of Z. latifolia. No multilocus
genotype was shared among populations, suggesting that a clonal
strategy mainly occur in the same population and clonal ramets
cannot disperse among populations over the large geographic
scale studied here.

In the present study, Z. latifolia from the Sanjiang Plain
appeared to possess low intra-population microsatellite variation
(na = 2.3, HE = 0.328) compared to Z. texana from Texas in
America (na = 11.7, HE = 0.662, Richards et al., 2007; na = 4.4–
6.3, HE = 0.53–0.65, Wilson et al., 2017) and Z. latifolia from
the Yangtze River in central China (na = 5.0, HE = 0.610; Chen
et al., 2012a). A lower level of genetic variation (HE = 0.156 based
on SRAP markers) was found in nine Z. latifolia populations
in the same area (Fan et al., 2016). The present low genetic
variation may result from the genetic bottlenecks experienced
by the populations. The test for mutation-drift equilibrium

TABLE 4 | Test for mutation-drift equilibrium in Zizania latifolia.

Population Mutation-drift test

IAM TPM SMM

ZL1 0.191 0.320 0.527

ZL2 0.039* 0.039* 0.055

ZL3 0.273 0.371 0.527

ZL4 0.752 0.875 0.918

ZL5 0.019* 0.082 0.248

ZL6 0.125 0.248 0.410

ZL7 0.004** 0.012* 0.055

ZL8 0.102 0.326 0.545

ZL9 0.007** 0.082 0.285

ZL10 0.002** 0.002** 0.002**

ZL11 0.024* 0.248 0.455

ZL12 – – –

ZL13 0.004** 0.004** 0.008**

ZL14 – – –

ZL15 0.246 0.423 0.722

ZL16 0.005** 0.016* 0.097

ZL17 0.012* 0.097 0.348

Probabilities fromWilcoxon signed-rank tests for heterozygosity excess using the program

Bottleneck.

*P < 0.05; **P < 0.01. IAM, infinite allele model; SMM, stepwise mutation model;

TPM, two phases model.

under IAM suggested that most Z. latifolia populations (nine
of 15 populations) have experienced recent bottlenecks. Z.
latifolia is shallow-rooted and has recalcitrant seeds (Berjak and
Pammenter, 2008), and these specific traits may make the species
poor at handling drought. Therefore, the ephemeral habitats
combined with drastic anthropogenic activities can easily cause
genetic bottlenecks in Z. latifolia populations.

Furthermore, inbreeding systems partly explain the low
genetic variation in some populations. The Bayesian analysis
of INEST suggested that inbreeding, rather than null alleles,
resulted in heterozygote deficiency in five populations (ZL2, ZL3,
ZL6, ZL7, and ZL8). We inferred that the fragmented habitats
increased the biparental inbreeding behavior (mating among
relatives) within Z. latifolia populations. Contrastingly, a high
degree of inbreeding in the reproductive system (FIS = 0.793)
was reported in the Z. latifolia populations from the Sanjiang
Plain based on SRAP markers (Fan et al., 2016). Given that the
two marker systems (SSRs and SRAPs) produce different genetic
profiles, the results from the two markers may not be strictly
comparable. But this study and Fan et al. (2016) both showed
that Z. latifolia in the plain has exhibited inbreeding. On the
contrary, Z. latifolia populations from the Yangtze River showed
predominant outcrossing reproductive system (FIS = −0.200–
0.019; Chen et al., 2012a). The different results could be ascribed
to the habitat types: most Z. latifolia populations in the Sanjiang
Plain occur in the sides of ponds and streams, which easily lead
to mating events among close relatives or intra-clones; while Z.
latifolia from the Yangtze River grows along the littorals of lakes
and forms large populations (Chen et al., 2012a), and this makes
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the populations stand a good chance to receive more migrant
pollen and act as outcrossing.

Roles of Rivers, Mountains and
Fragmentation
Both aquatic and riparian plant communities are strongly
influenced by water-mediated dispersal (Merritt et al., 2010;
Nilsson et al., 2010; Fraaije et al., 2015), and river habitats
are long-recognized corridors for riparian or aquatic plants
(Tero et al., 2003; Fér and Hroudova, 2008; Wei et al., 2013).
However, this was not the case in the present study. A high
genetic differentiation was observed among populations within
each river. The GENELAND analysis detected that genetic
discontinuities existed between most adjacent populations. The
barrier analysis further confirmed the main genetic break within
each river, i.e., ZL6 vs. ZL7, ZL11 vs. ZL12, and ZL15 vs.
ZL16 along the Heilong River, Wusuli River and Songhua
River, respectively. The scenarios suggested that there was little
exchange among the corresponding populations, which showed
that the rivers were not acting as corridors. Additionally, the
downstream accumulation of genetic diversity caused by water-
mediated dispersal was not found along the three rivers, which
might be explained by a number of factors. Firstly, upstream
dispersal of seeds and plant fragments: both historical and
contemporary gene flow for Z. latifoliawere bi-directional within
in the three rivers detected by MIGRATE and BAYESASS.
Secondly, various degrees genetic bottlenecks experienced by
populations within rivers: the genetic bottlenecks in most Z.
latifolia populations would eliminate the accumulation trends in
downstreamwhen downstream populations sufferedmore severe
bottlenecks than those of upstream populations. Thirdly, the
influence of unsampled populations: the assignment test using
GENECLASS showed that about 50% of the individuals were not
assigned to any of the populations sampled. So the influence of
unsampled (or disappeared) populations needs to be considered.
In order to detect dispersal events among populations efficiently,
more populations along rivers should be sampled, as suggested
by Wubs et al. (2016).

A mountain ridge is the predominant factor causing genetic
barrier for mountain plants (Tsuda et al., 2010; Wei et al.,
2013). In the present study, the main genetic breaks detected
by BARRIER 2.2 were distributed in the places where the east
section of Lesser Khingan and its branch Qinghei Mountains
are located, suggesting that the mountains greatly hinder
the gene exchange among populations on both sides of the
mountains. It is interesting to note that no main genetic
discontinuity was found between the populations distributed
in the north (ZL2 and ZL4) and south (ZL5 and ZL6) sides
of the west section of the Lesser Khingan. This suggested
that, compared with the east section of the mountains, the
west section was of relatively weak blocking effects on gene
flow. This difference might be related to the topography and
terrain in the different section of the mountains. The east
section of Lesser Khingan and its branch Qinghei Mountains
are made up of rugged ridges, deep valleys and covered by
dense forests, which would efficiently block the gene exchange
on different sides of the mountains. On the other hand, the
west section of the Lesser Khingan has lower slopes, and

some places have been reclaimed into farmlands, including dry
lands and paddy fields. The irrigation ditches and extant ponds
embedded in the farmlands would provide a “transition” for
dispersal.

Fragmentation decreases habitat size and increases isolation
between habitats and populations. These physical changes are
generally expected to reduce gene flow and increase inter-
population genetic divergence of plant populations (Young
et al., 1996). However, some species can adapt to habitat
destruction, such as tropical tree Swietenia humilis Zuccarini.
which increases pollen flow to counteract fragmentation (White
et al., 2002). The wetlands in the Sanjiang Plain and its
surrounding areas have suffered from over reclamation for
decades and have been separated into small wetland mosaic
sandwiched between farmlands (Wang et al., 2011). Our results
suggest that the recent habitat fragmentation in the plain is
accompanied with a greatly decreased gene flow among Z.
latifolia populations. Two results lead to the conclusion: firstly,
a much higher historical gene flow was detected compared with
contemporary gene flow; secondly, only seven first-generation
immigrants were detected among populations. Although the
wind-pollinated distance for Z. latifolia is unavailable, it has
been reported to be limited to 6–9 km for the wild rice O.
rufipogon Griff. (Gao, 2004). The pollen-mediated dispersal for
Z. latifolia seems to be effective only at local scale with the
smallest distance of 26 km among populations (between ZL3
and ZL4). Therefore, the magnitude of genetic differentiation
among Z. latifolia populations is almost solely determined
by the ability to disperse seeds or propagules. However, the
fragmented nature of wetlands in this area has resulted in
the hydrological disconnectivity between ponds or marshes
and the arteries of rivers, which could have hindered the
dispersal via seeds or propagules of the plant. Although episodic
floods can result in temporary hydrological connectivity and
facilitate the gene exchange, as suggested in O. rufipogon
populations (Wang et al., 2008), high values of FST and Dest

among pairs of populations along the same river indicate that
episodic floods were not an effective path of dispersal for
Z. latifolia.

Genetic Structure
There was a high level of inter-population differentiation in
Z. latifolia populations (FST = 0.405, Dest = 0.414, Øpt =

0.424). This is comparable to the genetic differentiation that was
recently reported for nine populations of Z. latifolia (FST =

0.299 based on 344 SRAP markers) and eight populations of
Nymphaea tetragona Georgi (FST = 0.371 based on 289 ISSR
markers) in the same habitat and area (Fan et al., 2016; Chen
et al., in press). The high genetic divergence of Z. latifolia may
be explained by decreased gene flow, the inbreeding systems
in some populations and repeated genetic bottlenecks in the
critically fragmented habitats. Furthermore, when gene flow rate
is greatly limited, population genetic differentiation will increase
due to genetic drift (Slatkin, 1977; Hutchison and Templeton,
1999). In the present study, the 2MOD analysis suggested that
genetic drift may have an important impact on the present genetic
patterns. Additionally, the evident population differentiation
may be associated with different environmental adaptations of
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the populations (Hufford and Mazer, 2003; Iacolina et al., 2016),
and common-garden experiments should be carried out to test
this assumption.

Interestingly, although the high genetic differentiation and
genetic breaks among populations within each river allowed us
to reject the corridor function of rivers, the Bayesian clustering
using STRUCTURE revealed that most populations along the
three rivers clustered together according to their river system
origins, which was supported by the results of PCoA.

The AMOVA further showed that 20% of the total molecular
variation was attributed to the differences among the three
genetic clusters identified by STRUCTURE. At the same time, the
significant positive correlation between genetic and geographic
distances was detected in Z. latifolia, indicating that the
IBD pattern influenced population differentiation. Given the
populations from the same river are located close to each other,
the clustering results of STRUCTURE and PCoA were mainly
explained by the effects of IBD instead of hydraulic dispersal.

Implications for Management
Genetic variation is important for a species to maintain its
evolutionary potential to cope with ever-changing environments.
The genetic information obtained in this study can be used to
propose appropriate management strategies for the Z. latifolia
wild populations in the critically fragmented flood plain, the
Sanjiang Plain.

Currently, low genetic variation and reduced gene flow are
found in the Z. latifolia populations from the Sanjiang Plain and
its surrounding areas, indicating that the habitat fragmentation
has already negatively impacted the genetic diversity of the
plant. Genetic diversity needs many generations (at least 10,
but often >100 generations) of fragmentation to be severely
affected (Mona et al., 2014). Consequently, the adverse impact
of fragmentation on genetic diversity will probably become more
evident in the future given the long-lived life history of Z.
latifolia, which highlights the need for conservation efforts of the
species. The result that more than 40% of microsatellite variation

is partitioned among Z. latifolia populations is instructive for
adopting a plan to protect as many populations as possible. The
populations with a high level of genetic diversity, such as ZL9,
ZL14, and ZL17, should be given the top priority for both in situ
and ex situ conservation. In this study, genetic discontinuities
were found among most populations, even populations from the
same river, suggesting that the rivers be not acting as corridors
for dispersal. Therefore, dredging the watercourses between the
isolated habitats and the arteries of the rivers should be carried
out, which will improve the stability of wetlands habitats and
facilitate connectivity among populations.
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