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Geographic Information Systems (GIS) are becoming increasingly popular in the context

of molecular ecology and conservation biology thanks to their display options efficiency,

flexibility and management of geodata. Indeed, spatial data for wildlife and livestock

species is becoming a trend with many researchers publishing genomic data that is

specifically suitable for landscape studies. GIS uniquely reveal the possibility to overlay

genetic information with environmental data and, as such, allow us to locate and analyze

genetic boundaries of various plant and animal species or to study gene-environment

associations (GEA). This means that, using GIS, we can potentially identify the genetic

bases of species adaptation to particular geographic conditions or to climate change.

However, many biologists are not familiar with the use of GIS and underlying concepts

and thus experience difficulties in finding relevant information and instructions on how to

use them. In this paper, we illustrate the power of free and open source GIS approaches

and provide essential information for their successful application in molecular ecology.

First, we introduce key concepts related to GIS that are too often overlooked in the

literature, for example coordinate systems, GPS accuracy and scale. We then provide an

overview of the most employed open-source GIS-related software, file formats and refer

to major environmental databases. We also reconsider sampling strategies as high costs

of Next Generation Sequencing (NGS) data currently diminish the number of samples

that can be sequenced per location. Thereafter, we detail methods of data exploration

and spatial statistics suited for the analysis of large genetic datasets. Finally, we provide

suggestions to properly edit maps and to make them as comprehensive as possible,

either manually or trough programming languages.

Keywords: Geographic Information Systems, spatial analysis, landscape genetics, gene-environment

associations, open-source software, geographic map

INTRODUCTION

Geographic Information Systems (GIS) are powerful tools to be used in the context of
evolutionary studies. They are designed to store, handle, display, and analyze any kind of data
representing objects (individuals, populations, areas, etc.) characterized by geographic coordinates
(X = longitude and Y = latitude). With the help of GIS, geographic information can be
combined with for example phenotype, genotype, or environmental data to display the spatial
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distribution of genetic variants and to visualize factors
influencing spatial evolutionary processes. The main advantage
of GIS in evolutionary biology is to easily explore and display
genetic information (neutral and adaptive genetic variation, gene
flow) at multiple scales, and to overlay this information with
physical barriers, land cover or topographic maps in order to
generate subsequent analyses regarding the location and causes
of genetic boundaries (Epperson, 2003; Manel and Holderegger,
2013). GIS have also proven useful in adaptive landscape
genomics or gene-environment associations (GEA) studies, in
the context of which they enable the retrieval of environmental
variables at sampling locations. The integration of GIS with
approaches from landscape ecology and population genetics,
defined as landscape genetics by Manel et al. (2003), also has
important implications for conservation biology (Petren, 2013).

However, we faced a paradigm change a few years ago with
the advent of Next Generation Sequencing (NGS) data, whose
use requires rethinking study pipelines. First, NGS currently
presents an economic constraint as it is costly compared with
genetic markers produced so far (e.g., microsatellites and AFLP).
Consequently, we are unable to fully sequence several hundreds
of individuals, requiring a careful selection of the samples to
analyze. Appropriate sampling is thus key to achieve a precise
and continuous evaluation of environment-driven selection on
the genome (see Box 1; Manel et al., 2012; Hand et al., 2015;
Rellstab et al., 2015). In addition, NGS datasets are large and
must be treated differently to be efficient and to avoid computer
memory overload. Finally, NGS data require new tools to display
and analyze spatial patterns that are more computationally
demanding.

The successful application of GIS tools is not intuitive for
many biologists who are not familiar with the concepts relating
GIS and the use of GIS software. Indeed, a large diversity
of GIS tools is available and the difficulty of finding relevant
information and instructions is an obstacle for non-expert
users. To date, few scientific articles have defined the role of
GIS in molecular ecology. For instance, Kozak et al. (2008)
review the fast development of GIS-based environmental data
and advocate for their usage as an alternative to unprecise
proxies such as latitude of distance between populations. Another
review by Joost et al. (2010) provided guidelines for GIS use in
livestock genetics and enumerate the advantages of integrating
data in a GIS environment. More recently, Rogers and Staub
(2013) outlined spatial analyses and GIS methods in honey bees
research. Their review is not specific to bees but instead aim to
intensify the exploration of the spatial component of studies in
ecology and related disciplines. Lastly, Balkenhol et al. (2015)
published a book detailing the concepts and analytical steps
of landscape genetics studies, such as sampling design, spatial
analysis and environmental datasets. Also, GIS are exploited in
many unrelated domains and it is thus difficult to find resources
specifically targeted at biologists. The bases of GIS practices are
readily found in freely available Massive Open Online Courses
(MOOCs), such as the Coursera platform (Coursera, 2012)
currently offering six courses on GIS. Yet, these reviews do not
tackle the challenges brought by large genetic and environmental
datasets, and fail to review the recurrent caveats related to spatial

research. In this paper, we highlight the usefulness of GIS in
population and landscape genomics and provide key information
for their successful application to these fields.

GEOGRAPHIC COORDINATES

Geographic coordinates of samples constitute an invaluable
source of information, ranging from the display of their
spatial distribution to the retrieval of environmental variables.
Whenever doing fieldwork, using a GPS is the best way to record
the coordinates of samples. As such, we strongly recommend
recording the location of each sample, instead of the location
of the centroid of a population for instance. Firstly, it allows
for a more precise retrieval of environmental values. Secondly,
attributing the same location to several samples invokes pseudo-
replication, a statistical bias that must be addressed in further
analysis. Thirdly, coordinates of nearby individuals allow for a
proper measurement of dispersal, using for example pairwise
genetic relationship with distance. Regarding GPS devices,
standard GPS, and to a lesser extent smartphones, are accurate
enough in most cases. However, more precise devices, such
as DGPS (differential GPS), are recommended for local scale
studies in which samples are located less than a couple of meters
apart: the precision of the location has to stay within the spatial
resolution of the grain.

When GPS coordinates are not recorded, it is still possible to
approximate sample locations with the help of satellite images
or by encoding the address of the location (georeferencing
or geocoding), although with a lower accuracy. In the former
case, creating a new vector layer overlaid on a satellite image
or an online map (see next Section) allows the recovering of
samples coordinates from an approximately known location (e.g.,
a crossroad, a tree, a river; Docs.QGIS, 2014). For the latter case,
plugins have been developed to read text delimited file containing
addresses (e.g., your own house address) that you want to locate
(for example the MMQGIS plugin in QGIS, Mangomap, 2012;
MMQGIS Plugin, 2012). It must be noted that each line must
contain the address, city, state and country.

Another essential consideration is choosing the relevant
coordinate reference system. Indeed, GPS devices display the
coordinates of a point in latitude and longitude values, usually in
the World Geodetic System (WGS84). This is a global reference
system in which the Earth is represented by an ellipsoid, and
every position on the surface is defined by two angles at the center
of the Earth: the latitude and longitude. However, projected
systems for which a geographical location is converted from
the ellipsoid (distances expressed in degrees) to a corresponding
location on a two-dimensional surface (x and y expressed in
meters) are preferred for analyses. It is important to note
that, although global systems covering the whole planet exist,
each country or region has its own coordinate system that is
locally more accurate than the global system. Where no national
projected system exists, it is still possible to use the Universal
Transverse Mercator (UTM) coordinate system, a projected
coordinate system covering the entire globe and dividing it into
sixty 6◦-wide longitudinal zones (Dmap, 1993). Even though
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GIS software usually deal with different projection systems, the
manual reprojection of all layers into the same local projection
system is recommended to avoid potential incompatibilities (see
next section). However, different GIS may not exactly use the
same name for a coordinate system. Therefore, to facilitate
the identification of coordinate systems across the diversity of
GIS software, the EPSG (European Petroleum Survey Group)
database (EPSG, 1985) is a widely used database referencing all
projected coordinate systems, implemented in every GIS and
providing themwith a unique ID (Maling, 1992), e.g., EPSG: 4326
correspond to the WGS84 reference system.

SOFTWARE

There are many GIS software, with different functions and aimed
at various audiences. Universal GIS software do not exist and,
therefore, the choice is difficult for a beginner. Today, one of
the most user-friendly GIS is QGIS (QGIS Development Team,
2015). It is ideal to explore geodata, able to read and convert
a wide variety of input formats and suitable to produce high-
quality maps. Note that QGIS, and all other GIS mentioned
in this paper, is free and open source. Open source GIS can
indeed perform the same tasks as their commercial counterparts,
and include the opportunity to understand and improve GIS
algorithms or enable a better collaboration as there is no problem
related to license access (Ertz et al., 2014). In addition, a large
community exists to support development efforts of open source
GIS, and regularly creates extensions to add functions and
improvements to the software. Forums and tutorial websites are
also flourishing for newcomers (http://gis.stackexchange.com/,
http://www.qgistutorials.com/, Sutton et al., 2009).

On the other hand, most analysis in GIS are not easily
replicable and, therefore, programming languages such as R
can be more efficient. R has been successfully used as a GIS
for a long time and several packages and reviews have been
published (Rodriguez-Sanchez, 2013; Brunsdon and Comber,
2015). Among them, we can mention rgdal for the importation of
geodata (Bivand et al., 2016),GISTools for general GIS operations
(Brunsdon and Chen, 2014), rasters for their display (Hijmans
and van Etten, 2015), spdep, and spatstat for spatial statistics and
analysis (Baddeley and Turner, 2005; Bivand and Piras, 2015).
While these packages are relatively efficient to import, display
large rasters and vectors, customization options are more limited
than in dedicated GIS.

MAIN DATASET

The first step in a GIS project is usually to import a vector
file containing samples coordinates. QGIS has a plugin to easily
import GPS coordinates, either directly from a GPS device or
through vector files, such as .kml or .gpx (Docs.QGIS, 2013).
These formats are usually converted to shapefiles (.shp) due to
the easier management of their attributes and projection system
associated with vector units. Delimited text files (e.g., tabulator—
tab—or space delimited) can be easily opened in QGIS as well
and then be transformed into shapefiles. When opening a text

file using “Add delimited text layer,” QGIS should recognize
automatically the delimiter used and the columns of coordinates
(X Y, Latitude Longitude) (QGIStutorials, 2014). However, such
delimited text files cannot be transformed to polygons or lines.
In this case, one should already have a shapefile incorporating
lines or polygons to which the text table can be joined. To do
so, the shapefile and the text table should have the same column
of unique IDs. When clicking on the properties of the shapefile,
an option is proposed to join additional tables of attributes
(QGIStutorial, 2014). As mentioned in the previous section, it
is recommended to project all layers in the same coordinate
system. In QGIS, this is done by right-clicking on the layer and by
changing the coordinate system in the “save as” option. The newly
projected layer will then be automatically loaded to the project.
See Rogers and Staub (2013) for a more extensive review of the
basic tasks in QGIS.

BACKGROUND DATASET

The second step is to add one or more background layer(s) to
constitute the geographic context, either from raster data (see
next section) or from an online map (Google, Bing, Open Street
Map). The OpenLayer plugin in QGIS allows the addition of a
background base-map to the QGIS interface (QGIS workshop,
2013). When using raster layers such as Elevation data or climatic
variables, adding a semi-transparent shaded relief will enhance
the contrast and reveal the topography. To this end, QGIS has
a Terrain analysis module in which a hill-shade layer can be
computed from a Digital Elevation Model (DEM, i.e., a matrix
of elevation data). Then, the transparency of the layer can be
adjusted in its properties. In addition, it is advisable to cut rasters
and vectors to the size of the study area using the clipper tool to
facilitate their display and reduce computation time. Note that
the succession of layers in the main frame depends on the order
of layers shown on the left panel of the application.

ENVIRONMENTAL AND LANDSCAPE
VARIABLES

Environmental datasets have considerably evolved and represent
new opportunities for the identification of environmental drivers
of adaptation. One of the main applications of GIS software
in landscape genomics is to extract values of environmental
variables at the exact location where samples have been collected,
or from the surrounding area by means of polygons representing
a buffer, a forest, or a specific land cover class for instance. As
databases containing georeferenced environmental variables are
numerous, we propose a list of the 10 most important publicly
accessible databases in Table 1 (A more extensive list is proposed
in Appendix 1, Supplementary Material). Raster environmental
data are often delivered in geotiff (.tif) or Band Interleaved by
Line (.bil) formats, similar to satellite images but containing
only one layer of information (i.e., Temperature, Precipitation
etc.). Regarding climate datasets, many studies rely on variables
interpolated at large geographical scales on the basis of data
provided by weather stations and distributed across territories,
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TABLE 1 | Ten main public sources of environmental data (URLs: consulted on June 10, 2016).

Name URL Format Observation

USGS Earth Explorer http://earthexplorer.usgs.gov/ Raster Remote sensing data (Aerial images, DEMs, infrared images)

WorldClim http://www.worldclim.org/ Raster Climate data (past, current and future)

Diva GIS http://www.diva-gis.org/Data Raster, Vector Global climate data, biodiversity and crop collection data

Sentinel Satellite Data https://scihub.copernicus.eu/dhus Raster 10-m resolution satellite data Sentinel 2 data with 11 spectral bands,

Synthetic aperture radar

Open Street Map https://www.openstreetmap.org Vector Crowd sourced vector data. (Road network, land use, buildings etc.)

Global Biodiversity

Information Facility

http://www.gbif.org/ Vector Information on biodiversity of 1.6 million species, collected over three

centuries

Map of Life http://mol.org/ Vector Species range map

UNEP http://geodata.grid.unep.ch/ Vector Data on environment, climate, emissions

FAO http://www.fao.org/geonetwork/srv/en/main.home Vector Database containing inter-disciplinary information about biodiversity

Worldwide Global

Forest Change

https://earthenginepartners.appspot.com/science-

2013-global-forest

Raster Time-series analysis of Landsat images characterizing forest extent

and change

FIGURE 1 | Example of spatial statistic measurement in GeoDa. Results from global and local spatial autocorrelation (SA) were computed on Annual

Precipitation at sampling locations of Ugandan cattle (Stucki, 2014). Annual Precipitation was extracted from the WorldClim dataset. In GeoDa, a weight file was

created using the 10 nearest neighbors before computing spatial autocorrelation. Nine hundred ninety-nine permutations were performed to assess the significance of

both SA measurements. The scatter plot of Global SA (A), measured by the slope of the regression (0.57) displays the standardized precipitation values of each point

on the X axis and standardized mean precipitation values of their 10 nearest neighbors on the Y axis. The scatterplot shows a positive correlation between most

individuals and their neighbors. In other words, when precipitation is high (low) at a given location, close surrounding locations are more likely to experience high (low)

precipitation as well. This positive correlation between neighboring locations is the translation of a clustering of values. On the other hand, significant local SA

coefficients (B) are categorized (C) according to the 4 quadrants of the Moran’s I plot (A). In contrary to global SA, local SA indicates the location of positive SA or

clustering (High-High–A2, Low-Low–A3), and negative SA or spatial outliers (High-Low–A1, Low-High–A4). Non-significant local SA coefficients are displayed in white.

such as the WorldClim dataset (Hijmans et al., 2005). These
data are often delivered as continuous grids and their spatial
resolution (i.e., area covered by a pixel) typically varies between
1 and 10 km2. For more local or regional databases, however,
national agencies are the most valuable sources (Box 1).

Alternatively or additionally, environmental variables can be
computed from DEMs, and used as proxies to relevant ecological
features (Kozak et al., 2008; Manel et al., 2010; Leempoel et al.,
2015). DEMs are available on Earth Explorer (Earth Explorer,
2016) and come in formats such as geotiff or SAGA Grids
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BOX 1 | Sampling design and scale.

Sampling design must be carefully chosen depending on the ecological scale of study, i.e., the spatial resolution and the extent of the area under study, and economic

constraints. One important way of evaluating sampling strategies is to design them in a GIS environment to guarantee spatial randomness, representativeness or a

constrained stratification of the sampling along environmental gradients among others.

Various optimized sampling strategies have been proposed and reviewed in the literature (Schwartz et al., 2009; Manel et al., 2012; Balkenhol et al., 2015; Rellstab

et al., 2015). However, and regardless of the design chosen, one must consider sampling density and decide how many individuals will be sampled and then

sequenced per location (or population). Indeed, the recent availability of NGS data implies to consider sub-sampling strategies for economic reasons. For example,

a sub-sampling procedure using a hierarchical clustering can be applied in order to ensure a regular cover of both environmental and physical spaces (Stucki, 2014).

For the former, stratified sampling techniques should be used over a range of climatic variables, previously filtered using a PCA. For the latter, a clustering index is

minimized to ensure spatial spread. To ensure the representativeness of the entire area, the sampling can also be achieved using grid cells (see Figure 2). On the

other hand, it is important to understand that landscape and population genomic sampling designs are difficult to reconcile (Joost et al., 2013). Indeed, sampling a

small number of populations does not necessarily allow estimating changes in frequency along an environmental gradient. Conversely, sampling regularly along an

environmental gradient may turn the assignment of individuals to populations more difficult. However, as pointed out by De Mita et al. (2013), for population genetics

studies it is preferable to sample a high number of populations with few samples rather than a small number of populations with many samples. In addition, it is better

to concentrate the sampling in a smaller area in order to obtain a greater density and higher statistical power (Joost et al., 2010).

Defining a scale of study also raises important questions regarding the relevance of environmental variables used. Indeed, when integrating different datasets (e.g.,

environmental, topographic, genetic), one must be aware that the spatial resolution of the raster data has to match the sampling density, and this is often not the

case. Recently developed satellite imagery or DEMs show a fine resolution and a high accuracy, but the advantage of using high resolution data compared to data

at coarser resolution remains under-studied (Levin, 1992; Marceau and Hay, 1999; Wilson and Gallant, 2000; Cavazzi et al., 2013). For example, while intuitively a

fine resolution may be ideal, it may hold an excess of details and generate too much noise. Contrastingly, a too coarse resolution only shows generalized properties

of the landscape and can have little explanatory power (Cavazzi et al., 2013). On the other hand, when the spatial resolution of the variable is too coarse, nearby

samples will retrieve their environmental values from the same pixels (i.e., pseudo-replicates), thus inflating autocorrelation. One solution to this problem is to compute

variables at multiple resolutions (Pradervand et al., 2014; Leempoel et al., 2015).

(.sgrd). We recommend not using text formats for grids (such as
.asc or .xyz) since DEMs resolution has dramatically increased
over the years, making these formats slow and heavy. The
most common use of DEMs in ecology consists in retrieving
altitude or computing primary terrain attributes (i.e., slope,
orientation and curvature; Guisan and Zimmermann, 2000;
Wilson and Gallant, 2000; Kozak et al., 2008; Manel et al., 2010).
However, we recommend going beyond the traditional use of
DEMs as a diversity of variables can be computed, like e.g.,
solar radiation, morphometric indices or hydrological variables
(Leempoel et al., 2015). The treatment of DEMs and the
production of topographic variables can be processed in software
like SAGA GIS (SAGA GIS, 2004; Conrad et al., 2015) or GRASS
GIS, now included in QGIS. SAGA GIS is the most DEM-
oriented GIS to date and can compute a large panel of derived
variables. It is also easily scriptable both using the command line
or the R package RSAGA (Brenning, 2008), although the former
is faster.

Satellite images covering the whole surface of the globe are also
available through Earth Explorer and can be used e.g., to produce
land cover maps. Most satellite sensors provide images with more
than the 3 visible “colors,” or bands, and it is thus the choice of the
user to decide which bands to attribute to color channels (Red,
Green and Blue). For example, by assigning the infrared band
to the red channel and green and blue bands to their respective
channels, one can easily identify trees or forests against water,
fields or naked soils because plants reflect infrared wavelengths
more than other land cover types. This process, the supervised
classification of remote sensing data (satellite and aerial images,
radar, etc.), can be operated in Opticks (Opticks, 2001) or in
SAGA GIS.

Finally, vector databases, such as Openstreetmap (OSM)
(OpenStreetMap, 2004), are precious to recover road networks,
rivers, watershed boundaries, or landuse. OSM data can also

be easily accessed through GeoFabrik (GeoFabrik, 2011) where
cities or countries are already extracted. Note however that OSM
data and most tiled web-maps are provided in Pseudo-Mercator
projection (EPSG: 3857).

It is worth mentioning that in GEA studies, using a wide range
of environmental variables often implies redundancy between
these variables. However, statistical analyses require independent
variables and, for this reason, it is important to perform multi-
collinearity analysis (e.g.,) on the set of environmental variables,
to understand which variables are highly correlated (Dobson
and Barnett, 2008; Fischer et al., 2013). Such collinearity can be
detected by performing a PCA, by using Variance Inflation Factor
(VIF) or calculating pairwise correlation coefficients between
pairs of variables, and then removing randomly one of the two
variables from a pair that shows high correlation. See Rellstab
et al. (2015) for a review of these methods. However, bear in
mind that environmental variables, in particular DEM-derived
ones, may not have a normal distribution. Variables should thus
be transformed or non-parametric tests should be used to test
for correlations (for example Spearman ranks instead of Pearson
correlation coefficients).

SPATIAL ANALYSIS

Numerous spatial analysis techniques have been developed to
address issues related to spatial data (Fortin and Dale, 2005).
Here, we focus on exploratory spatial data analysis (ESDA) and
spatial statistics given their central role in molecular ecology. For
other spatial analysis methods, we suggest to have a look at the
Geospatial analysis guide (Smith et al., 2005) and at the spatial
analysis guide for ecologists (Fortin and Dale, 2005).

Evolutionary biology can benefit from ESDA (Joost, 2006), an
interactive approach allowing the user to explore and analyze
a dataset dynamically and in real-time through a combination
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of various tools for data representation (Anselin, 1994). For
example, maps can be used to display the position of samples,
histograms and boxplots to evaluate the distribution of attribute
values and Moran’s scatter plot or conditional plots to analyze
the relationship between the various variables. ESDA can also be
useful for example to localize samples in areas showing extreme
climatic conditions (outliers), to highlight regions where samples
are highly correlated (clusters), or pinpoint populations with a
low genetic diversity. A powerful ESDA tool is the open-source
software GeoDa (GeoDa, 2005) that allows the exploration and
spatial analysis of vector data (Anselin et al., 2006). GeoDa
notably offers the possibility to create various maps (quantile,
equal intervals, etc.) and to simultaneously analyze attributes
with the help of other graphs.

Spatial autocorrelation (i.e., the degree of dependence among
observations in a geographic space; SA) is often overlooked
in ecological and evolutionary studies despite the fact that
many environmental or biological characteristics show spatial
dependence among observations, due to intrinsic process of
dispersal and mating (Anselin, 1998; Hall and Beissinger, 2014).
It is measured by comparing individual values of a defined
variable with themean of that variable in a defined neighborhood.
By doing so for each sample, SA measures the degree of values
similarities with location similarity. It is thus essential to measure
SA in studies involving spatial data, not only because it is a
natural phenomenon but also because it violates the assumption
of independence required by standard statistical tests, such as
student tests or regressions (Legendre, 1993; Wagner and Fortin,
2005). For example, Moran’s I, a classic spatial autocorrelation
statistic, can be used to estimate the scale/distance of gene
flow in the landscape (Hall and Beissinger, 2014). In addition,
Local Indicators of Spatial Association (LISA; Anselin, 1995)
allows to identify and localize spatial autocorrelation patterns
and study the spatial relationship between genetic markers and
environmental features (Colli et al., 2014; Stucki, 2014). See
Figure 1 for an example. While GeoDa is better to visualize the
SA of one variable, it cannot be automated to calculate it for
many. For a fast computation of both global and local SA on
genetic data, Sambada is handful (Stucki et al., 2016). It can be
easily programmed to compute SA onmillions of genetic markers
and so with different neighborhood sizes and weighting schemes.
The decrease of SA with distance can thus be measured using
different lags and comparisons can be made between neutral and
selected loci. The R package spdep can perform similar analyses
(Bivand and Piras, 2015).

SPATIAL DATA REPRESENTATION

Maps illustrating the results of an analysis are often more
powerful than tables to transmit a result or an idea. However,
the creation of efficient maps requires a reflection phase about
the graphical representation of the results. Indeed, maps can be
too complex to read when too detailed or may be uninformative
when too simple. Creating a map first requires choosing
an appropriate display type. Traditional choropleth map, in
which the entities are colored according to a scale based on
the value of the attribute of interest, can be used in many
situations. For example, to represent the membership coefficient

of individuals to two populations distributed over a landscape
(e.g., as frequently done for population genetic analyses of
admixture), one can use a gradient passing through a neutral hue
to contrast the two parts of the distribution (i.e., the membership
of each individual to one or the other population) (Figure 2).
Although most GIS provide colored gradients, it can be useful
to understand how to obtain an appropriate color scheme using
Color Brewer (Color Brewer 2, 2001). Alternatively, if individuals
are grouped into more than two populations, bar charts can
be more appropriate. Proportional circles can also be used, for
example to indicate absolute numbers of individuals sampled in
each population.

Background layers can then be added to provide more
information on the geographic context, such as an aerial image or
a DEM to situate the samples. This can potentially be combined
with contour lines to compare the elevation from one location to
another. One can also highlight the study area by darkening or
de-saturating the rest of the map. Regarding points representing
individuals or populations, simple shapes should be preferred.
Labels should be readable and discarded if not.

Each map must then be edited before being published. Some
elements must go along with a map: a legend (to identify the
geographical units, or the different statistical classes used) and
a scale. In the legend, the message should be simplified by
regrouping categories, reducing the number of decimal places
and removing unnecessary layers. Furthermore, a frame in
a corner of the map, representing the region at a broader
geographic scale (zoom out), is useful to situate the study area.
Maps should be exported preferentially in .pdf format to keep
the vector properties for potential future editions. We provide an
example in Figure 2.

Lastly, GIS software are not particularly easy to use when
it comes to producing maps iteratively. For example, creating
maps of genetic markers under selection used to be feasible
manually when the number of genetic markers tested was small.
On the contrary, most GEA studies today use hundreds to
millions of markers deriving from genomic analyses, and with
many of them showing signatures of selection. In such cases,
manually producing maps is neither smart nor informative.
Computing software such as R should thus be favored with
packages such as Rgdal and Rasters being very useful and
sufficient to import genetic and geodata and to produce
basic maps (Hijmans and van Etten, 2015; Bivand et al.,
2016).

PERSPECTIVE

GIS are powerful tools for molecular ecologists but remain
too often underexploited and misused, mainly because of the
multitude of GIS software and databases available. We have
presented in this paper useful guidelines making it possible
for any GIS beginner to appropriate basic functions, to find
specific learning resources for biologists, and we proposed a
brief state of the art for the use of GIS in biology. However,
it is intriguing that, in the big data era, geodatabases are not
more frequently used to store and access genetic datasets. They
would also speed up queries and reduce disk usage. There are
in fact few examples of transformation of NGS data in spatial
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FIGURE 2 | Coefficient of membership to a genetic group of Ugandan Cattles (Stucki, 2014). Using the software admixture (Alexander et al., 2009), the most

likely number of populations was found to be 2. In this case, it is possible to display the membership coefficient of each individual to one of the two populations. To do

so, a gradient obtained from http://colorbrewer2.org is passing through a neutral hue to contrast the two populations. The order of layers in the legend is the same as

in the map. In the background, a grid layer of probability of presence of a parasite is shown. A semi-transparent shaded relief is also displayed to reveal the

topography. Lakes and international boundaries are overlaid on these raster layers. Ugandan boundaries are highlighted by darkening surrounding countries.

databases because of the high technicality of such task (Holl and
Plum, 2009; Joost and Kalbermatten, 2010; Paila et al., 2013;
Nandal et al., 2016; Piry et al., 2016). So far, the most compelling
tool is the recently developed open source system TheSNPpit
(Groeneveld and Lichtenberg, 2016). It allows for an integration
of large genetic datasets in a PostgreSQL environment, which
is also the backend of most GIS databases. Interestingly, this
tool was mainly developed for breeding programs that already
deal with thousands of individuals and millions of SNPs. A
game changer that will most likely hit molecular biology in the
future.
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LIST OF TERMS

Raster: Regular grids of pixels that describe continuous
phenomena, retaining information such as color (for aerial
images), elevation, temperature.

Vector: Points, lines or polygons whose nodes are defined by
geographical coordinates and describe discrete phenomenon
such as borders, rivers, catchment areas. Vectors are usually
stored in Shapefiles (.shp and associated files).

Datum: The datum defines the 3-dimensional sphere used
to approximate the earth. It provides a frame of reference
to measure coordinates in both geographic and projected
coordinate systems.

Geographic Coordinate System: A GCS gives the coordinates
(i.e., latitude and longitude) of a point as measured from the
angles to the center of a defined sphere and meridian.

Projected Coordinate system: A PCS is a projection of the
sphere on a flat, two-dimensional surface. Its coordinates (X
and Y) are thus consistent and equally spaced.

DEM: Digital Elevation Models are grids of elevation data. Each
pixel of that grid is spaced at regular horizontal intervals and
contains one value of elevation.

Grain: The grain is the size of a pixel, the smallest unit on a grid.
A small grain corresponds to a high spatial resolution.

Extent: The extent is the size of the study area.
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