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Human Mobility Network during a
Simulated Disease Outbreak
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Applied Math, Institute for Disease Modeling, Intellectual Ventures, Bellevue, WA, USA

Mobility networks facilitate the growth of populations, the success of invasive species,

and the spread of communicable diseases among social animals, including humans.

Disease control and elimination efforts, especially during an outbreak, can be optimized

by numerical modeling of disease dynamics on transport networks. This is especially

true when incidence data from an emerging epidemic is sparse and unreliable. However,

mobility networks can be complex, challenging to characterize, and expensive to simulate

with agent-basedmodels. We therefore studied a parsimoniousmodel for spatiotemporal

disease dynamics based on a fractional diffusion equation. We implemented new

stochastic simulations of a prototypical influenza-like infection spreading through the

United States’ highly-connected air travel network. We found that the national-averaged

infected fraction during an outbreak is accurately reproduced by a space-fractional

diffusion equation consistent with the connectivity of airports. Fractional diffusion

therefore seems to be a better model of network outbreak dynamics than a diffusive

model. Our fractional reaction-diffusion method and the result could be extended to other

mobility networks in a variety of applications for population dynamics.

Keywords: fractional diffusion, disease modeling, transport networks, Levy flights, power law phenomena

1. INTRODUCTION

Characterization of the spatiotemporal dynamics of infection during disease outbreaks is an
essential problem for disease control and elimination (Oro, 2013). The fundamental process
is broadly analogous to the invasion of an ecosystem by a non-native species (Lurgi et al.,
2014) or the changing spatial distribution of a expanding population (Phillips et al., 2010).
Epidemiological models that incorporate spatial dispersion have been used for numerous diseases
such as measles (Grenfell et al., 2001; Bharti et al., 2011), dengue (Cummings et al., 2004;
Chao et al., 2012; Perkins et al., 2013), seasonal influenza (Viboud et al., 2006), and pandemic
flu (Ferguson et al., 2005; Van Kerkhove et al., 2010; Merler et al., 2011). Effective communication
and collaboration between mathematical modelers and field ecologists will lead to faster progress.
A recent review of the topic (Riley et al., 2015) identified five opportunities for including spatial
effects in epidemic models, including the issue of long-distance transport.

Transport models are fundamental to many problems in population dynamics. The underlying
spatial process for many models of dispersion and disease spreading is often assumed to be
classical diffusion, gravity-like migration, or radiation flux (Simini et al., 2012). However, these
are not necessarily valid for mobility networks with long-range movements, as was shown for the
circulation of US bank notes by Brockmann et al. (2006). Thus, it seems that solutions to spatial
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ecology problems with long-range movements should consider
alternatives to classical diffusion, as described in detail in a recent
monograph (Mendez et al., 2014).

The bank note tracking study used ambivalent fractional
diffusion as a generalized model of a transport process with
power-law statistics, which explained ensemble trajectories of US
bank notes measured through crowd-sourcing. The concept of
fractional calculus was first conceived by Leibniz in 1695 (Ross,
1977) and has now realized applications across fields from
ecology (Humphries et al., 2010; Jacobs and Sluckin, 2015; Meyer
and Held, 2014) to plasma physics (Gustafson and Ricci, 2012;
Bovet et al., 2014). A related transport model, space-fractional
diffusion, can be derived from a generalization of the diffusive
random walk when the distribution of step sizes in the walk is
described by a power law, x−(1+α) with α ≤ 2, instead of a normal
distribution.

The spread of a disease through a population distributed
across a spatial landscape can be distilled into the dual processes
of local transmission and long-range movement of infected
individuals. While most human movements tend to be short
distances, it is the longer-distance movements that are often most
problematic for disease control if they introduce the disease to a
new location beyond the spatial focus of existing control efforts.
The tail of the probability distribution of movements thus can
have substantial effects on the global dynamics of a disease, and
a heavy-tailed process may be fundamentally different from a
process with thin tails.While it may be advantageous and realistic
to utilize a heavy-tailed human movement process such as the
Lévy flight, its use is often limited by the combined challenges of
parameterizing the Lévy flight process from data and efficiently
and simply implementing it computationally (Ajelli et al., 2010).
These two challenges are addressed in the present manuscript
using a combination of data from a long-range human transport
network and a compartmental modeling framework.

Step-size distributions from human displacements can be
measured on many scales through channels ranging from
walking, driving, and flying (Tatem et al., 2006). The relative
importance of these channels for spatial epidemic models
depends on the density and territorial extent of a connected
population (Colizza et al., 2006, 2007). We decided to focus
on data from the scheduled air traffic network that determines
long-range transport in developed countries with large land area,
such as the United States, China or India. Since the US air
traffic network is dense and connected across long distances, we
focused on the U. S. as a touchstone for validating our fractional
superdiffusion model.

We accessed a flight schedule database to determine passenger
transport rates between areas serviced by commercial flights.
We limited our mobility model to air travel since we were
interested in highlighting long-range travel that is relatively
insensitive to local commuting (Balcan et al., 2009a; Strano et al.,
2015). Others (Brockmann and Helbing, 2013) have already
performed stochastic simulations of a realistic pandemic using
global mobility data and examined a variety of network structures
for disease dynamics (Keeling, 2005; Leventhal et al., 2015).
Additionally, we extended the stochastic fractional-diffusion
work presented in Bayati (2013) with a more accurate, spatially

second-order fractional-diffusion method. Our method is related
to fractional reaction-diffusion equations previously explored
analytically and numerically (del Castillo-Negrete et al., 2003;
Stollenwerk and Pedro Boto, 2009; Hanert et al., 2011; Hanert,
2012).

This report is organized as follows. First we show our
analysis of commercial air traffic on several countries’ national
flight networks before focusing on the USA. We extracted a
superdiffusive transport exponent from the distribution of step
sizes in the network data. We then describe our version of
a stochastic susceptible-infected-susceptible (SIS) simulation to
model seasonal influenza, using USA air traffic data to form a
weighted adjacency matrix connecting populated areas exposed
to the disease. We found these results to be in agreement with
known seasonal SIS behaviors, validating our new simulations.
Next, focusing on a non-seasonal saturating SIS outbreak, we
propose a one-dimensional, space-fractional-diffusion equation
as a macroscale substitute for simulating the United States’
commercial air traffic mixing network. We found that this space-
fractional approximation reproduces the national-average SIS
infection curve best when the fractional exponent is similar to
the superdiffusive exponent measured from the national flight
network. We found this result to be insensitive to the value
of R0. In cases such as the one studied here, where long-
range displacements form an important component of mobility,
fractional diffusion is a promising macroscale approximation for
transport dynamics of disease outbreaks.

2. METHODS

In this work we used two approaches to investigate a real
world meta-population model of an SIS outbreak with transport
of susceptible and infected individuals between nodes. First
we built a direct simulation of air traffic transport using data
from real-world flight networks. Second we adapted a stochastic
fractional-diffusion-reaction equation with parameters measured
from the tails of the distribution of air passenger flight data.
Both methods use the same stochastic algorithm for infection
dynamics separately at each node of the transport network. All
simulations were coded in Matlab and made publicly available
here: github.com/kgustafIDM/fractair. Each simulation for 482
network nodes in the USA required no more than 48 h of serial
calculations on a Dell Latitude E7450 laptop with 4 GB RAM
and Intel Core i7 processor. Computational time scaled linearly
with the number of nodes as each metapopulation required a
stochastic simulation of the SIS dynamics.

2.1. Air Travel Network Simulation
Air travel was specified by a matrix of transfer rates from node
to node using flight schedules taken from the OAG airline
database (www.oag.com), which includes flight data from over
900 airlines Figure 1A. Similar datasets are available from other
sources (Balcan et al., 2009b). Other authors have conducted
more detailed analyses of air travel networks (Grosche et al.,
2007), but our focus was on reproducing large-scale epidemic
dynamics. The OAG database was the source for all national
flight networks used to build the transfer matrices. For each
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FIGURE 1 | (A) The probability of a flight/step of a certain number of miles within a week-long time interval for displacements on the air travel networks in the USA,

China, Brazil and India. Considering the power law scaling −(1+ α) of this data for flight distances between 400 and 2,500 miles, black lines are fit for α = 0.3,

α = 0.6, α = 0.9. (B) Distribution of connectivity for these four countries’ flight networks. (C) Google Flu Trends for the USA average and for two states with noticeably

different histories.

flight itinerary, the database includes origin and destination
airport codes (IATA), number of seats, and frequency of flight
per week. We computed displacements of passengers summed
over a week, assuming that all seats in the airplane are occupied.
This approximation should be sufficient for tracking infections
for diseases with incubation times lasting several days. We do not
explicitly model infections occurring inside the aircraft.

We treated each airport as a service area with a meta-
population acting as a proxy for the actual population in the
service area. Rather than attempting to measure the relative
size of each population served by an airport, we scaled the
populations by the relative connectivity of each airport service
center Figure 1B. Connectivity, Cn, for a given node is the
number of other nodes with a connecting flight to that node.
A minimum node population size was fixed at Nmin = 1, 000
proxy individuals, and the total number of population units at
a node, Ntot = Nmin + BnCn. Here both Nmin and Bn were
chosen by scanning across several values to enable stochastic
fluctuations in the populations. If the populations are too large,
this compartmental susceptible-infection approximation does
not capture stochastic fluctuations. The population units in the
simulation should be re-calibrated for other applications.

The rates of transport on the flight network were renormalized
to give realistic transport rates. In particular, the transfer rate of
proxy individuals was the sum

∑

i SiAi, where Si is the number
of seats for flight i between the two nodes and Ai is the number
of days per week that the connection is serviced. Therefore,
the transfer operator was applied on a weekly basis, which
sets the time-scale for the simulations. The transfer matrix was
also symmetrized to eliminate small errors in the database and
ensure conservation of total network population. Moreover, the
database-derived transfer operator was reduced, through Bn, to
prevent small proxy populations from being quickly depleted.
Thus, our simulations on the air traffic network should be
considered as an approximation that preserved the relative size
of each population center and the relative transport of proxy
individuals between them. Applying the transfer operator on
a weekly basis assumed that the infected proportion of the
population does not change significantly on the weekly timescale.

2.2. Fractional Diffusion Simulation
An infectious disease model such as the one used in this work can
be constructed with a reaction-diffusion process. Mathematically,
a reaction-diffusion process can be described by a so-called
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master equation, which is a differential equation (Kampen, 2007).
The master equation describes the time course of a probability
density vector, where each element of the vector denotes a state
of the system. In population modeling, these states are the
number of individuals in particular categories, such as infected-
with or susceptible-to a disease. Thus a reaction-diffusion model
can help to understand and predict time series data for an
epidemic. We will omit some details of the numerical method
used in this work, which the reader can find in Bayati (2013),
but will include enough here for a degree of completeness. The
diffusion equation, from Brownianmotion, is a special case of the
fractional-diffusion equation. Both can be solved from the master
equation approach (Mendez et al., 2014).

As discussed in Jahnke and Altintan (2010) and Bayati (2013)
the master equation can be solved analytically in some instances,
and therefore it is useful to partition the master equation and use
analytical solutions when possible. Mathematically, this means
we can combine an exactly solvable model with a stochastic
numerical simulation to arrive at a probabilistic result. The
reactions were simulated with a numerical method, which we
discuss below, since analytical solutions are generally unavailable.
The fractional diffusion portion was both solved analytically
and applied numerically using a sample from a multinomial
distribution (Bayati, 2013), a generalization of the usual binomial
probability distribution. In other words, the diffusion process was
applied over a time-step1t and the system was updated, then the
reactions were simulated with another time-step 1t. These two
steps constitute a single iteration in the numerical method.

The air traffic transport process consists of transitions that are
not necessarily limited to adjacent nodes. Fittingly, the space-
fractional diffusion operator is non-local and naturally accounts
for the long tails in step-size distributions observed in some
air traffic networks and other mobility networks. In previous
work (Bayati, 2013) a first-order method was used to simulate
the diffusion process. Here, we have followed (Ortigueira, 2006)
and used amore accurate, second-ordermethod for the fractional
diffusion process. The method we used for this work is the
same as in Bayati (2013) except we used the following fractional-
diffusion kernel:

G
(λ′)
λ′

(1t) = 1−
D1t

hα

Ŵ(α + 1)

Ŵ
(

α
2 + 1

)2
(1)

G
(λ′)
λ′±j(1t) =

D1t

hα

(−1)j+1Ŵ(α + 1)

Ŵ
(

α
2 − j+ 1

)

Ŵ
(

α
2 + j+ 1

) , |j| ≥ 1 (2)

where Ŵ(·) denotes the Ŵ function, D denotes the diffusion

coefficient, G
(λ′)
j denotes the jth component of the vector G

(λ′),

h the size of the compartment, α the value of the fractional
derivative, and

∑

j Gj(t) = 1 provided that the following time-

step criterion is satisfied:

1t ≤
hα

D

Ŵ
(

α
2 + 1

)2

Ŵ(α + 1)
. (3)

In practice, the time step should be chosen an order of magnitude
less than the right-hand side of Equation (3). We chose a spatial

boundary condition that fixes the value of the population at zero
at the edges of the domain. A kernel is a mathematical expression
that can be used to evolve a model forward in time and through
space.

If U = U(x, t) denotes the concentration of people at position
x ∈ R at time t, then the expected value of the method with
the kernel above converges to the symmetric, space-fractional
diffusion equation (Mainardi et al., 1997; Gorenflo andMainardi,
1998; Gorenflo et al., 2002a,b; Bayati et al., 2011):

∂U

∂t
= D

∂α
U

∂|x|α
, (4)

where α ∈ (0, 2]. This equation is analogous to the usual diffusion
equation when the step-size distribution is similar to a normal
distribution. In this case, α = 2.

2.3. Simulating Disease Dynamics
For our simulations of transport due to either fractional diffusion
or air traffic, each node had a finite population subject to
a susceptible-infectious-susceptible (SIS) disease process. The
infection dynamics were applied independently to the nodes.
Since we are generally interested in accounting for stochastic
effects, such as fade-out and bursting, we used the τ -Leaping
stochastic simulation algorithm (Gillespie, 2001). In the standard
SIS system, the infection contact rate may vary with time and
correspond to the following discrete reactions:

S+ I
β(t)
−−→ 2I (5)

I
γ
−→ S (6)

where S is the susceptible species and I is the infected species.
This discrete model corresponds to the following differential
equations when the population is large:

dS

dt
= −β(t)SI/N + γ I (7)

dI

dt
= β(t)SI/N − γ I (8)

where N = S + I is the total population, S0 is the initial number
of susceptible individuals and β(t) and γ are parameters that
determine the reproduction number R0 =

β
γ
S0
N . When β(t) is

allowed to oscillate in time, β = < β(t) >t is the time averaged
value across one oscillation (typically a season).

The β and γ parameters affect both the rate at which
the infection grows and the steady-state infected fraction. The
variation in infection rate can be modeled with a simple
sinusoidal function, or as we implemented for the first part of
the results, with a time-course explicitly fit to the Google Flu
Trends (GFT) database (Ginsberg et al., 2009). We set β(t) =

β0(t), where (t) is the national averaged oscillation in seasonal
flu from GFT, normalized to the average value. The GFT data
gives an estimate of the occurrence of influenza-like illness (ILI)
according to internet searches. While the predictive power of
GFT data has recently been challenged (Lazer et al., 2014), the
qualitative pattern of the GFT data is descriptive of influenza
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occurrence. In some of our simulations of the USA flight
network, we used the historical GFT time course for individual
states, shown in Figure 1C.

We scanned through γ and β to determine whether it
was possible to use the fractional-reaction diffusion equation
to minimally model the epidemic on the air traffic network.
We note that R0 in pandemics such as the 1918 flu has been
estimated to be in the range of range 1.4–2.8 (Coburn et al., 2009).
Simulations with values of R0 closer to unity exhibit greater
stochastic effects (Bayati and Eckhoff, 2012). In our results, values
of R0 = 4 or R0 = 2 were used as reference scenarios.

3. RESULTS

3.1. Determining Superdiffusion
Parameters for Air Traffic
When aggregating the full set of flight data for several countries’
air travel networks, a power law distribution of displacements was
readily observed. Countries with large land areas and a dense
airport network tend to have a heavy-tailed distribution of air
travel step sizes, as shown in Figure 1A. Relative to those from the
USA andChina, displacement distributions fromBrazil and India
had a flat tail with a shorter flight range due to the geographic area
and distribution of population centers in these countries. The
USA network step-size distribution had a superdiffusive power-
law exponent 1 + α ∼ 1.55 ± 0.15 for a significant fraction of
displacements in the main part of the tail of the distribution.
We fit this power law within the range shown by the black lines
using the Nelder-Meadmethod through the openMatlab toolbox
Ezyfit. This power law is truncated sharply for steps larger than
1,500 miles for the USA. We note that the superdiffusive scaling
in US travel displacements with α = 0.6 was also inferred from
the dispersion of US bank notes (Brockmann et al., 2006). India,
China and the USA show similarities in the shape of the step-size
distribution to the upper bound.

There are two parameters necessary to specify the
approximate power law fit indicated in Figure 1A: α and D
for the slope and intercept of the line in log-log scale. These
parameters appear in qα , a large step-size (|x| → ∞) limiting
solution of a space-fractional diffusion equation (for constant t):

qα(D, x, t) ∼
1

π
Ŵ(α + 1) sin(α

π

2
)(Dt)1+

1
α |x|−(α+1). (9)

Here Ŵ is the extension of the factorial function, π is the
transcendental number, and t = 1 since our random walk
statistics are time-invariant. This formula (Mainardi et al., 2007)
allowed us to estimate the order of magnitude of D, which we
found to beD ∼ 1 when α ∼ 0.4 andD ∼ 10 when α ∼ 0.7. This
well-grounded, if inexact, calculation of D was supported by our
parameter scan later in the results section.

The distributions of airport connectivity for the same four
countries are given in Figure 1B, where connectivity for a given
node is simply the number of other nodes with a connecting
flight to that node. This plot makes clear that the United States’
network is roughly ten times denser than the next example,
China, though the shapes of the curves are similar. With 482
nodes, the US air travel network is significantly denser than

any other single nation examined. This network was therefore
the focus of our study to find a plausible fractional diffusion
approximation for a humanmobility network superimposed with
disease dynamics.

3.2. Visualizing Seasonality of Outbreaks
on an Air Travel Network
We used the susceptible-infected-susceptible (SIS) differential
equations (see Section 2). Since we considered an outbreak at
a single location, the fraction S0/N for the entire network is
effectively unity. Since the flu virus evolves seasonally to reinfect
populations, we treated the dynamics as effectively SIS. Our
air travel network simulations produced node-by-node seasonal
SIS disease dynamics initiated by an outbreak of infection at a
single airport. Examples are shown in Figure 2 for outbreaks
at a highly connected node (ATL) and a poorly connected
node (COS). Due to the seasonal reduction of infectivity β(t)
and subsequent stochastic fadeout of infections, the epidemic
disappeared within 3 years for this combination of < β(t) >t

= 12 and γ = 3, or < R0(t) >t = 4. Short movies showing
the evolution of these outbreaks are provided as Supplementary
Material.

A highly-connected ATL-seeded outbreak shows a faster
disease dispersion compared to the poorly-connected COS-based
outbreak. We chose a 50% initial infected fraction to ignore the
possibility of a long latency between the initial node outbreak
and a network-wide epidemic. The magnitude of the initial
infected fraction does not change themain results here, as a larger
infected fraction will only decrease the delay to network-wide
infection. However, in the stochastic simulations, a very small
initial infected fraction will lead to disease fadeout before it can
move onto the network.

The faster growth rate after Atlanta seeding was due to the
number of flight connections and the higher peak amplitude of
infection is due to the larger population of the Atlanta airport
service area, which led to a larger number of infected people
traveling. The Atlanta seeded infection quickly moved to the
other hubs in the network and concentrated infections in the
South. The expected contrast for a Colorado Springs-seeded
outbreak is seen in the right-hand panels (Figures 2B,D). This
outbreak, at a less-connected node, entered the network at the
hubs (such as Denver) and traveled more uniformly throughout
the country, with amuch lower intensity (note difference in scales
for I(t)).

3.3. Fractional Reaction-Diffusion With an
SIS Outbreak
Next, we removed seasonality from the simulations and
examined the SIS fractional diffusion model. According to the
SIS model, the epidemic saturates at I∞(β , γ ). However, while
the saturated state is determined by the SIS parameters, the shape
of I(t) during the expanding phase of the outbreak is influenced
by the the calibrated fractional diffusion parameters, which act as
a proxy for the air traffic network.

We implemented the SIS reaction system with this space-
fractional reaction-diffusion model using both deterministic and
stochastic solvers for the transport. These results are shown in
Figure 3 for constant β = 12 and γ = 3, giving R0 = 4.
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FIGURE 2 | (A,B) Outbreak of a stochastic seasonal SIS influenza-like infection on the USA flight network, with origins either in Atlanta (ATL) (A) or Colorado Springs

(COS) (B). The seasonal force of infection is scaled using the Google Flu Trends timeseries for infectivity β(t), where the baseline β0 = 12 and γ = 3. After some time

(top to bottom), the disease propagates throughout the network and tends to fade out due to stochastic fluctuations and dilution. The colorbar shows the number of

infected population units for each node, I(t). (C,D) Time course of SIS outbreaks for the networks in the above panels, showing the average infected for the seven

most connected hubs, the average infected for all other nodes, and the specific nodes ATL and COS.
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We chose two reference values of α to highlight the differences
between a very superdiffusive α = 0.3 and a less superdiffusive
α = 1.3. The scaling exponent η of dispersion with time, σ 2 =

Dtη, is more superdiffusive for smaller values of α: η = 2/α. The
smaller value of α = 0.3 clearly leads to faster spreading of the
disease compared to α = 1.3.

For the deterministic case, Figures 3A,C, we used the analytic
solution of the fractional diffusion operator in Equations (1)
and (2). We introduced stochastic effects into the fractional-
reaction-diffusion system using multinomial sampling, resulting
in Figures 3B,D. We used 482 nodes along a line as shown,
seeded at node i = 241, with 1,000 population units per node.
The outbreak was seeded with all population units infected at the
center node in order to magnify the amplitude and shorten the
timescale for analysis. While a smaller infected fraction changes
the time delay to epidemic steady-state, we verified that the initial
magnitude does not affect the relative shape of the epidemic curve
for different values of α.

Figure 3A shows the time-dependence of Ii for three nodes
taken from the symmetric solution shown in Figure 3C. The
number of infected population units decreased for the central
outbreak node and rose for other nodes, as expected. One of
the distal nodes is further from the outbreak, a difference that
determined the delay in the arrival of the outbreak, separating the
curves in Figures 3A,B. All nodes eventually reached the same

steady state with Ii(t∞) ≡ I∞ =
N(β−γ )

β
= 750 in the absence

of seasonal forcing. Moving the observation point away from the

FIGURE 3 | One dimensionalgridded SIS simulations with R0 = 4 using

fractional diffusion. One thousand population units are simulated at each

node. Blue denotes a very superdiffusive transport α = 0.3 and red denotes a

less superdiffusive α = 1.3 in all panels. (A) Time dependence of the number

of infected Ii (t), for three nodes on the grid for two different values of α. Solid

lines show number of infected at the node where the infection was seeded.

The dashed lines show data from two other nodes for each value of α, where

the outbreak arrives later. (B) Same as previous except with stochastic

fluctuations. (C) Spatial dependence, at grid point i, of the infection for three

time-points, denoted by t1, t2, t3 for both values of α without stochastic

effects. Several curves are shown to demonstrate that, as time progresses, the

infection rises at distal nodes. (D) Same as (C) except with stochastic

dynamics, showing left/right asymmetry and long range fluctuations.

center node delayed the arrival, as expected, of the outbreak wave.
The shape of the propagating front of the infection in Figure 3C

was determined partly by the fixed boundary condition, Ibnd(t) =
0, but this is irrelevant due to the small fraction of population in
the distal nodes as I(t) → I∞.

Stochastic behavior was apparent in Figures 3B,D compared
to the temporal and spatial dependence of the deterministic SIS
model for the same values of α in Figures 3A,C. We saw that
stochasticity can affect the time of saturation for Ii for nodes far
from the center of the outbreak, though the steady-state mean
fraction of infected is the same. The spatial dependence of Ii
on the grid position also shows the importance of stochastic
reactions for amplifying infection at distal nodes, as well as the
appearance of asymmetry due to fluctuations. Without stochastic
fluctuations, the time delay to infection saturation is proportional
to the distance from the outbreak node. We noted that stochastic
fluctuations delay the saturation time for the outbreak source
node, especially in the less superdiffusive (α = 1.3) case. We
chose to plot Figure 3C in log-log to highlight the shape of
the propagating front, but chose linear-log for Figure 3D

to highlight the heterogeneity introduced by stochastic
effects.

In addition to the obvious effect due to the distance from the
outbreak node, the time to saturation was also influenced by the
fractional diffusion parameters α and D, such that larger (less
superdiffusive) values of α imply a longer delay to full network
saturation. Following this observation, we exploited the outbreak
curve’s dependence on the parameters of the fractional diffusion
model to find the remarkable comparison described in the next
section.

FIGURE 4 | Fraction of infected total population for a constant R0 = 4,

SIS influenza-like outbreak. The outbreak on the USA flight network (black

curve) is compared to discretized fractional diffusion in one-dimension (colored

curves). As the power law exponent α decreases, the transport becomes

more superdiffusive and the dashed line is closer to the USA network result.

The best-fit value of this exponent, α = 0.7 (blue dotted curve), is similar to the

one measured in Figure 1A with D = 10.

Frontiers in Ecology and Evolution | www.frontiersin.org 7 April 2017 | Volume 5 | Article 35

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Gustafson et al. Fractional Diffusion Simulations of Disease

3.4. Capturing Features of an Air
Traffic-driven Outbreak with Fractional
Diffusion
The power law tail for the probability of displacements on the
air travel network (Figure 1A) was calibrated to a non-local
space-fractional diffusion operator (see Section 2), suggesting
that normal diffusion is an inadequate approximation. For the
comparison between air traffic and superdiffusion for an SIS
disease, we excluded stochastic effects and seasonal forcing,
since our main conclusions here are not sensitive to these
features. Thus, the relative shape of the network-averaged
epidemic curve should be a good test of whether the data-
driven superdiffusion model can emulate the mobility due to air
travel.

We compared air traffic and fractional diffusion using the

cumulative difference, 2 =
∑t∞

0 | < If (t) > − < Ia(t) > |,
between < I(t) >/N curves for 0 < t < t∞. Here, < I(t) > is

the network-averaged number of infected and t∞ is the time

at which the I∞ value is reached. We let Ia(t) be the air traffic

result and If (t) be the fractional diffusion result. Figure 4 shows

the direct comparison for a single R0 = 4 over a range of
fractional derivative α values withD = 5. The difference between

the epidemic curve depended on the value of α, with α = 0.7
providing the best agreement. It is very clear that fractional
superdiffusion is qualitatively better than classical Brownian
diffusion for reproducing the air traffic network.

This result is further supported by the 2 surface for a two-

dimensional parameter scan of α andD in Figure 5. Independent

of R0, there is a unique minimum in the values of α and D,

consistent with the scaling in the long-tail limit of Equation (9).

When α is larger, D is forced by the form of qα to be larger with a

similar scaling as observed in the 2 surface. There is uncertainly

in measuring both α andD, but within the parameter scan shown

in Figure 5, a superdiffusive α is always preferred over a diffusive

model. The agreement shown in Figure 4 was from the most
plausible parameter pair that matches the data.

4. DISCUSSION

Devising a campaign strategy for the dynamic control and
elimination of an infectious disease in a population is a task
that can benefit from computational modeling and an ecological
perspective. We sought to encapsulate human mobility-driven
spatial spreading of an infectious disease with a fractional
reaction-diffusionmodel as an approximation to the full air travel
network. We explored the validity of using a one dimensional
fractional-diffusion model to approximate disease dynamics on
the full air traffic network. Such a comparison proved to be useful
for broadly interpreting the rate of increase in the fraction of
infected individuals in the entire national population of the USA.
We found good quantitative agreement, especially considering
that the air traffic mobility network can be characterized
only approximately by a power law tail. The connectivity of
a node was known to be significantly more important for
spatial disease propagation than physical distance, as previously
described (Brockmann and Helbing, 2013).

Given that a heavy-tailed long-distance distribution of
infected human movements will disproportionately affect the
spatial spread of a disease, it is very desirable to have a
simplemodeling implementation of a fractional-diffusion human
movement process. The present work implements an efficient
computational solution for a fractional-diffusion transport model
and demonstrates its parameterization to air-transport data for
a variety of countries. This data-driven computational approach
for human movement can be combined with a wide range
of models for the local transmission and progression of a
disease, facilitating spatially-explicit modeling of a wide array of
pathogens.

For other problems in population dynamics it may be helpful
to note the relevance of a fractional reaction-diffusion modeling
approach. At first, one can immediately apply this result to the
invasion of a non-native species as it “infects” the range of a
native species (Hui and Richardson, 2017). If the invader, or its
carriers, takes mobility step sizes characterized approximately

FIGURE 5 | Result of parameter scan through α and D displaying the absolute distance 2 between the growth curves for average number of infected.

The two panels show the difference for constant values of (A) R0 = 2 and (B) R0 = 4. These scans show that there is an optimal value of α that nearly matches the air

travel model for both values of R0.
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by a power law, then the spreading process should be better
approximated by fractional diffusion than classical diffusion.
More broadly, we expect that the dissemination and expansion
of the results reported here will be useful to the wider ecological
modeling and data analysis communities. Such models cannot
be expected to account for all of the detailed properties of
dispersion in a mobility network, but we show here that they
provide a useful and efficient macroscale approximation for a
network with a power-law tail of displacements. Non-diffusive
networks exist in many ecological contexts and we suggest that
a fractional diffusion approach is a convenient but underutilized
approach for modeling the interaction between transport and
disease dynamics.

Several caveats apply to applications of the fractional
reaction-diffusion approach. As noted in the bank note
models (Brockmann et al., 2006), Lévy flights can be replaced
more accurately by a full space-time fractional diffusion equation.
Also, our attempt to translate an airport network into a
linear series of nodes does not preserve the topology of the
network. However, it does produce a compelling case for
fractional diffusion instead of normal diffusion. This work could
be advanced by considering other modes of transportation
such as private vehicles and foot traffic. It may also be
useful to consider a 2-D fractional-diffusion model, though
the numerical implementation of non-local effects in two
dimensions is a challenging area of current research (Hanert,
2012; Hanert and Piret, 2014). In practice, a natural process
can only be roughly approximated by a Lévy flight. In
some applications, a truncation of the Lévy flight or a
similar Lévy walk can be a good approximation (Fogleman
et al., 2001; Del-Castillo-Negrete, 2009; Gustafson and Ricci,
2012).

We conclude that a space-fractional diffusion model with
superdiffusive statistics can emulate the dynamics of a generic
disease on a densely connected, long-range transportation
network. This result is meant to guide the selection of transport
models in specific studies of disease and, more generally,
population dynamics. Our method, based on well-grounded
mathematical physics, can feasibly be applied by epidemiologists
and population biologists for other transport networks that have
heavy tails in the size of displacements between nodes (Miller,

2009; Draief and Ganesh, 2010). Along with other recent

modeling results based on transportation network data (Balcan
and Vespignani, 2011, 2012; Schumm et al., 2015), we aim to
inform future large-scale experimental studies of spatial ecology
and disease dynamics through these recently developed methods.

AUTHOR CONTRIBUTIONS

BB and PE conceived the project. BB derived and tested the
numerical method for solving fractional diffusion. KG analyzed
the flight data, wrote the numerical methods and ran the
simulations. BB and KG analyzed the results of the simulations.
BB, KG, and PE wrote the manuscript.

FUNDING

The authors thank Bill andMelinda Gates for their active support
of this work and their sponsorship through the Global Good
Fund.

ACKNOWLEDGMENTS

Thanks to Alexandre Bovet, Daniel Klein, Edward Wenger, and
Josh Proctor for helpful conversations.

SUPPLEMENTARY MATERIAL

Movie 1 | Outbreak of a seasonal, stochastic SIS infection in the Atlanta

International airport (ATL) service area. The colorbar represents the number

of infected population units at each node of the air travel network. Population

sizes are scaled relatively to the size of the service area. The infection spreads

quickly to hubs in the network and then fades out as the seasonal infectivity falls

and stochastic fluctuations eliminate infected units. The average number of

infected for this simulation is shown in Figure 3C. http://github.com/kgustafIDM/

fractair/blob/master/movies/air43_50pct_nodATL_gflu.gif

Movie 2 | Outbreak of a seasonal, stochastic SIS infection in the Colorado

Springs airport (COS) service area. The colorbar represents the number of

infected population units at each node of the air travel network. Population sizes

are scaled relatively to the size of the service area. The infection spreads quickly to

hubs in the network and then fades out as the seasonal infectivity falls and

stochastic fluctuations eliminate infected units. The average number of infected for

this simulation is shown in Figure 3D. http://github.com/kgustafIDM/fractair/blob/

master/movies/air43_50pct_nodeCOS_gflu.gif
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