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Simulations of crop yields under climate change are subject to uncertainties whose

quantification is important for effective use of projected results for adaptation and

mitigation strategies. In the US Pacific Northwest (PNW), studies based on single crop

models and weather projections downscaled from a few general circulation models

(GCM) have indicated mostly beneficial effects of climate change on winter wheat

production for most of the twenty-first century. In this study we evaluated the uncertainty

in the projection of winter wheat yields at seven sites in the PNW using five crop

growth simulation models (CropSyst, APSIM, DSSAT, STICS, and EPIC) and daily

weather data downscaled from 14 GCMs for 2 representative concentration pathways

(RCP) of atmospheric CO2 (RCP4.5 and 8.5). All crop models were calibrated for high,

medium, and low precipitation dryland sites and one irrigated site using 1979–2010

as the baseline period. All five models were run from years 2000 to 2100 to evaluate

the effect of future conditions (precipitation, temperature and atmospheric CO2) on

winter wheat grain yield. Simulations of future climatic conditions and impacts were

organized into three 31-year periods centered around the years 2030, 2050, and 2070.

All models predicted a decrease of the growing season length and crop transpiration,

and increase in transpiration-use efficiency, biomass production, and yields, but with

substantial variation that increased from the 2030s to 2070s. Most of the uncertainty

(up to 85%) associated with predictions of yield was due to variation among the crop

models. Maximum uncertainty due to GCMs was 15%which was less than the maximum

uncertainty associated with the interaction between the crop model effect and GCM

effect (25%). Large uncertainty associated with the interaction between crop models and

GCMs indicated that the effect of GCM on yield varied among the five models. The mean

of the ensemble of all crop models and GCMs provided a robust indication of positive

effects of future environmental conditions on winter wheat yield during this century at all

sites studied, with greater beneficial effect under water stressed conditions than under

well-watered conditions, and under RCP8.5 than RCP4.5.

Keywords: climate change, CO2 fertilization, crop-climate models, multimodel ensemble, uncertainty, winter

wheat
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INTRODUCTION

Climate change is a major concern for crop productivity. The
chief elements of climate change include rising temperature,
modified frequency, and severity of extreme events, and elevated
atmospheric concentration of CO2 (Rosenzweig and Tubiello,
2007). Concentrations of CO2 are now significantly higher than
in earlier years and they have been increasing continuously
and rapidly (Siegenthaler et al., 2005). Agriculture is one of
the sensitive sectors to climate variability and change (Slingo
et al., 2005; Osborne et al., 2013). Climate change has affected
crop growth, development and yield over the past few decades
across the globe directly or indirectly (Nicholls, 1997; Lobell
and Asner, 2003; Challinor and Wheeler, 2008a; Teixeira et al.,
2013). Direct effects are due to increased CO2 fertilization which
leads to higher photosynthetic rate and water use efficiency
(Challinor and Wheeler, 2008b). Indirect effects include crop
responses to variability in temperature and precipitation. Higher

TABLE 1 | Modeling approaches of five models used for a study of climate change effects on crop performance in the Pacific Northwest.

Model characteristic Crop model

CropSyst APSIM DSSAT EPIC STICS

Crop phenologya f (TPV) f (TPVW) f (TPV) f (TPV) f (TPVO)

Leaf area development and Light interceptionb S D D S D

Light utilization/Biomass productionc TE /RUE RUE/TE RUE RUE RUE

Biomass partitioningd None PCD PCD None PCD

Yield formatione B, HI Prt, B, Gn, LHI B, Gn, HI B, HI B, Gn, HI

Root distribution over depthf LIN EXPO EXPO EXPO SIG

Stressesg WNH WAH WN WNO WNH

Water stress typeh E S E E S

Heat stress typei VR V – V VR

Water dynamicsj C C C C C

Water relationk S D D S D

Plant N budgetl S D D S D

Evapotranspirationm PM PT PM PM PT

Soil CN modeln CNP(1) CNP(3)B CNP(4)B CNP(5) CNP(3)B

CO2 effects◦ RUE/TE/T RUE/TE RUE/TE RUE/TE RUE

Model relativep CRS C C C C

Model typeq P P P PG P

aCrop phenology is a function (f) of: T, temperature; P, photoperiod; V, vernalization; W, water stress; O, other water stress or nutrient stress.
bLeaf area development and Light Interception: S, simple; D, detailed approach.
cLight Utilization/Biomass Production: RUE, radiation use efficiency; TE, transpiration-use efficiency.
dBiomass partitioning: PCD, detailed partitioning coefficients and more organs.
eYield Formation: B, total above ground biomass; HI, fixed harvest index; Prt, partitioning during reproductive stages; LHI, linear increase in harvest index; Gn, grain number.
fRoot distribution over depth: LIN, linear; EXPO, exponential; SIG, sigmoidal.
gStresses: W, water; N, nitrogen; H, heat; A, air (Oxygen); O, others (e.g. EPIC model considers stresses for both above ground (water, temperature, nitrogen, phosphorus and potassium

stresses) and below ground growth [Bulk density, aluminum tolerance (Soil acidity), salinity, temperature and soil aeration)].
hWater stress type: E, Eta/Etp; S, soil available water in root zone.
iHeat stress type: V, vegetative (source); R, reproductive (sink).
jWater Dynamics: C, Tipping bucket capacity approach.
kWater relation: S, simple approach includes linear increase in root depth; D, detailed approach includes root growth and water absorption.
lPlant N budget: S, simple from nitrogen dilution curve; D, detailed concentration curves for different organs over growth period.
mEvapotranspiration: PM, Penman-Monteith; PT, Priestley-Taylor.
nSoil CN model: N, nitrogen mode; P(x), x number of organic matter pools; B, microbial biomass pool.
oCO2 effects: RUE, radiation use efficiency; TE, transpiration efficiency; T, stomatal conductance.
pModel relative: CRS, CropSyst; C, CERES.
qModel type: P, point model (site specific); G, global or regional model.

seasonal temperature increases the risk of water stress, limits
photosynthesis, and reduces light interception by accelerating
crop phenological development (Tubiello et al., 2007).

Wheat is the third largest crop globally, which has shown

particular sensitivity to climate change (Porter and Semenov,

2005), yet increased wheat yield has also been reported for some

regions of the world because of increased growth rates and a shift

of the grain filling period to a wetter part of the season (Xiao et al.,

2010).
Mechanistic process-based crop models are common tools

for assessing the impact of climate change on crop productivity,

incorporating physiological responses of crop growth and

development to environmental and management variables.

Different crop models have been used to study climate change

impact on crop production across the globe but with mixed

results (Lobell and Burke, 2010). The assessment of climate

change impacts on agriculture often has been conducted using
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a combination of weather downloaded from general circulation
models (GCM) and crop responses evaluated with cropping
systems models (CSM), often one crop model and a few GCM
projections. This approach has been applied to the US Pacific
Northwest (PNW) with projections suggesting mostly beneficial
effects of climate change on wheat production, especially winter
varieties (Thomson et al., 2002; Stöckle et al., 2010). However,
recent studies (e.g., Asseng et al., 2013; Martre et al., 2015;
Ruane et al., 2016) have shown large variation in both GCM and
CSM projections, which can introduce significant uncertainty in
assessments of climate change impact on agriculture.

Based on results of a 27-wheat model comparison study,
Asseng et al. (2013) reported that crop models were able to
produce acceptable yield estimates compared to observations
from single-year experiments for four diverse sites when
properly calibrated. However, when changes in precipitation
combined with increases in temperature and atmospheric CO2

concentration were imposed on the same sites, a large variation
in yield projections was obtained. Thus, Asseng et al. (2013)
recommended the use of crop model ensembles, particularly
when limited information about the crops and cropping systems
involved is available, suggesting that at least five models should
be used for reliable assessment of yield impacts for temperature
increases up to 3◦C and 540 ppm of CO2, with fewer models
needed for lower temperature increases and vice versa. Similar
results have been reported for maize models (Bassu et al.,
2014) and rice models (Li et al., 2015), where model ensembles
appeared to perform better than individual models when
compared with observations. Martre et al. (2015) concluded that
there was no additional advantage of a model ensemble including
more than 10 models. Bassu et al. (2014), in a study involving
23 maize models, concluded that a single model may not be
able to simulate well absolute yields while an ensemble of 8–
10 models is more likely to perform better if a small amount of
information is available for calibration. Li et al. (2015) evaluated

13 rice models against experimental information and found that
individual models were not consistent in reproducing observed
yields, but an ensemble of five models properly calibrated was
able to approximate measured yields within the uncertainty of
well-controlled experiments.

Studies such as those of Asseng et al. (2013), Bassu et al. (2014),
and Li et al. (2015) that include a large number of crop models
for a given crop species are possible by the direct involvement of
modelers and user groups. The customary use of large cropmodel
ensembles as a standard practice in climate change assessments
would be time consuming and costly (at least for now), and
will require significant cooperation. In the meantime, securing
adequate information on some key crop characteristics such as
crop phenology, canopy cover [e.g., maximum leaf area index
(LAI)], and rooting depth along with the use of a few models,
well-documented and tested under a large range of conditions
around the world, appears to be a reasonable approach.

With the interest of corroborating or disputing previous
findings regarding climate change impacts on wheat production
in the PNW, USA, in this study we evaluated the uncertainties in
yield projections related to crop-climate models using 5 CSMs
and 14 GCMs. Our primary focus was on the usefulness of
applying a multimodel ensemble in the examination of future
climate change in the IPNW. Toward this end, we excluded
consideration of rotational effects and other effects related to
farm management decisions.

MATERIALS AND METHODS

The impacts on winter wheat productivity at six dryland and
one irrigated sites were evaluated using five well-established CSM
(CropSyst, APSIM-Wheat, DSSAT CERES Wheat, EPIC, and
STIC) and downscaled weather projections from 14 GCMs and
2 RCPs (RCP4.5 and 8.5).

TABLE 2 | General circulation models used to study dryland crop response to future climate change in the Inland Pacific Northwest.

General Circulation Model Source References

BCC-CSM1.1 Beijing Climate Center Wu et al., 2014

BNU-ESM Beijing Normal University Earth System Model Ji et al., 2014

CanESM2 Canadian Centre for Climate Modeling and Analysis Chylek et al., 2011.

CNRM-CM5 Centre National de Recherches Me’te’orologiques—Groupe d’e’tudes de l’Atmosphe‘re Me’te’orologique

and Centre Europe’en de Recherche et de Formation Avance’e

Voldoire et al., 2013

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation and Queensland Climate Change Centre of

Excellence

Jeffrey et al., 2013

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth System Models Dunne et al., 2013

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth System Models Delworth et al., 2006

HadGEM2-CC Hadley Global Environment Model 2—Carbon Cycle Martin et al., 2011

HadGEM2-ES Hadley Global Environment Model 2—Earth System Martin et al., 2011

INMCM4 Institute for Numerical Mathematics, Moscow, Russia Voldin et al., 2010

MIROC5 Model for Interdisciplinary Research on Climate Watanabe et al., 2010

MIROC-ESM Model for Interdisciplinary Research on Climate, Earth System Model Watanabe et al., 2011

MIROC-ESM-CHEM Model for Interdisciplinary Research on Climate, Earth System Model Watanabe et al., 2011

MRI-CGCM3 Meteorologcical Research Institute Yukimoto et al., 2012
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TABLE 4 | Target results for a series of five cropping system models used in a study of climate change effects on crop performance at several locations

in the Pacific Northwest.

Study site Crop trait Predicted

Target range APSIM CropSyst DSSAT EPIC STICS

Pullman Emergence (DOY)† 295 295 295 295 295 295

Anthesis time (DOY) 162 160 162 162 – 160

Maturity time (DOY) 215 214 216 215 215 214

LAI†max 4.5–6.0 4.5–6.9 2.2–6.3 3.5–6.5 4.8–5.4 4.5–6.2

Biomass at harvest (t ha−1) 11.2–16.0 10.0–16.3 6.3–17.6 8.8–16.3 12.9–15.0 9.4–15.9

Grain yield (t ha−1) 4.5–7.2 3.5–7.8 2.6–7.8 3.1–7.5 5.4–6.2 5.0–7.5

HI† 0.40–0.45 0.35–0.45 0.41–0.44 0.36–0.45 0.40–0.42 0.35–0.46

Wilke Emergence (DOY) 260 260 260 260 260 260

Anthesis time (DOY) 150 149 150 150 – 150

Maturity time (DOY) 200 199 200 200 200 200

LAImax 3.5–5.0 2.1–5.0 3.0–5.7 2.5–6.0 3.3–4.2 3.2–5.4

Biomass at harvest (t ha−1) 9.0–12.0 8.0–15.2 5.4–14.3 8.1–15.5 5.3–13.8 8.5–12.5

Grain yield (t ha−1) 3.3–5.00 2.69–7.2 2.2–6.2 2.5–7.2 2.1–5.8 3.5–7.0

HI 0.38–0.43 0.30–0.49 0.41–0.44 0.30–0.46 0.40–0.42 0.39–0.44

Lind Emergence (DOY) 251 251 250 251 251 251

Anthesis time (DOY) 143 143 143 143 143 143

Maturity time (DOY) 191 191 191 191 191 191

LAImax 2.5–3.5 1.6–3.4 2.5–3.5 2.5–3.0 2.5–3.8 2.5–3.3

Biomass at harvest (t ha−1) 2.6–8.0 1.7–9.5 2.1–9.0 2.1–8.5 2.4–11.9 2.7–8.9

Grain yield (t ha−1) 1.0–3.5 0.7–4.0 1.0–4.0 0.8–3.6 0.9–5.0 1.1–4.0

HI 0.38–0.43 0.38–0.46 0.40–0.43 0.39–0.42 0.38–0.42 0.38–0.44

Moses Lake Emergence (DOY) 251 251 251 251 251 251

Anthesis time (DOY) 143 143 143 143 – 143

Maturity time (DOY) 191 191 191 191 191 192

LAImax 6.0–7.0 4.5–6.5 4.9–7.0 5.5–6.5 4.6–5.3 5.9–7.0

Biomass at harvest (t ha−1) 16.5–20.0 14.4–22.2 14.5–21.7 12.3–21.9 14.2–21.0 16.0–20.6

Grain yield (t ha−1) 7.5–9.5 6.0–9.0 6.5–11.4 5.0–10.6 6.0–8.9 7.1–8.2

HI 0.45–0.48 0.35–0.45 0.44–0.45 0.38–0.48 0.41–0.42 0.37–0.49

†
DOY, day of year; LAImax , maximum leaf area index; HI, harvest index.

Crop Models
CropSyst
CropSyst is a multi-year, multi-crop, daily time-step cropping
system model developed as an analytical tool to study the
effect of climate, soil, and management on the productivity and
environmental impact of cropping systems (Stöckle et al., 2003).
The model can simulate crop development, growth and yield
in response to weather, atmospheric CO2 concentration, and
management (crop rotations, fertilization, irrigation, tillage), and
soil processes such as soil water dynamics, nitrogen budgets, soil
erosion by water, and salinity. Details on the use, parametrization
and execution of CropSyst are given on the website (http://
modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html).

APSIM
The APSIM (Agricultural Production Systems Simulator) is a
modeling framework developed by the Agricultural Production
Systems Research Unit (APSRU) in Australia (Keating et al.,
2003). APSIM was developed to simulate biophysical processes

in farming systems, in particular where there is interest in
the economic and ecological outcomes of management practice
in the face of climatic risk (Keating et al., 2003). It was
constructed on a modular modeling framework based on
biophysical processes in farming systems with many plant, soil
and management modules for a diverse range of crops, pastures
and trees, soil processes including water balance, nitrogen and
phosphorus transformations, soil pH, erosion, and a full range of
management controls. Details of the model are included on the
APSIM web site (https://www.apsim.info/Documentation.aspx).
The APSIM-Wheat model version 6.1 (Wang et al., 2002; Keating
et al., 2003) was used in this study.

DSSAT_CERES_Wheat
The CERES wheat model included in the DSSAT (Decision
Support System for Agrotechnology Transfer) family of models
is a complex model used to integrate knowledge about crops,
soil, climate, and management for making appropriate decisions
under a wide range of climatic conditions. It can be used to design
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TABLE 5 | Performance of five crop models under historical weather conditions (1979–2010) in simulating mean maximum leaf area index (LAImax),

above-ground biomass, grain yield and harvest index (HI) with standard deviation and coefficient of variation at three sites not used for model calibration

in the Pacific Northwest.

Study site Crop trait APSIM CropSyst DSSAT EPIC STICS

Mean SD CV Mean SD CV Mean SD CV Mean SD CV Mean SD CV

Kambitsch LAImax (m2 m−2) 5.8 0.4 0.1 6.0 0.3 0.1 5.5 2.3 0.4 5.8 1.1 0.2 5.5 1.2 0.2

Biomass (t ha−1) 13.9 2.5 0.2 16.4 2.1 0.1 13.6 3.2 0.2 14.0 2.7 0.2 14.6 2.1 0.2

Yield (t ha−1) 5.8 1.2 0.2 7.2 1.0 0.1 6.0 1.2 0.2 5.7 1.1 0.2 6.6 1.0 0.2

HI 0.42 0.04 0.10 0.44 0.01 0.02 0.45 0.05 0.11 0.40 0.01 0.02 0.46 0.06 0.13

Moro LAImax (m2 m−2) 2.9 0.4 0.2 3.5 1.5 0.4 2.7 2.4 0.9 3.2 0.4 0.1 3.3 1.4 0.4

Biomass (t ha−1) 6.5 1.6 0.3 6.2 2.6 0.4 6.7 3.3 0.5 6.7 2.6 0.4 6.3 2.6 0.4

Yield (t ha−1) 2.7 0.7 0.3 2.6 1.1 0.4 2.8 1.5 0.5 2.8 1.1 0.4 2.9 1.6 0.6

HI 0.42 0.02 0.04 0.42 0.01 0.02 0.42 0.05 0.12 0.42 0.05 0.11 0.47 0.19 0.40

St. John LAImax (m2 m−2) 5.0 0.9 0.2 4.9 1.0 0.2 4.5 1.3 0.3 4.6 0.7 0.2 4.7 0.8 0.2

Biomass (t ha−1) 15.2 1.4 0.1 11.0 2.7 0.3 12.0 2.6 0.2 10.4 2.3 0.2 11.7 1.4 0.1

Yield (t ha−1) 6.2 1.1 0.2 4.7 1.2 0.3 5.3 1.3 0.2 4.3 1.0 0.2 4.7 0.8 0.2

HI 0.41 0.04 0.10 0.43 0.01 0.03 0.45 0.08 0.18 0.41 0.01 0.02 0.40 0.04 0.10

optimum crop management practices, precision agriculture, and
pest management. Similarly, it can be used to quantify responses
to climate change and variability impacts on crop yield and
to study long term sustainability, environmental pollution and
genomics (Hoogenboom et al., 2012; http://dssat.net/).

EPIC
The EPIC (Environmental Policy Integrated Climate) model is
a field scale soil and crop model originally designed to quantify
the effects of erosion on soil productivity (Williams et al., 1984).
It is a complete agroecosystem model that can simulate crop
growth under different rotations while simulating detailed soil
management operations. EPIC version 0810 was used in this
study. Additional information on the EPIC model can be found
at http://epicapex.tamu.edu/epic/.

STICS
The STICS crop growth model was developed by INRA, France
(Brisson et al., 2003). The model can simulate carbon, water
and nitrogen dynamics as well as a number of different
environmental and agricultural variables in response to weather,
soil, crop, and management practices. STICS is a generic model
that can simulate various kinds of crops and environmental
conditions. Options for plant parameters associated with detailed
ecophysiological characteristics are adjusted to define a specific
crop. Additional parameters are used to simulate physical and
biological processes occurring in the soil-crop system and
define soils, crop management and climate. In this work,
we used STICS version v8.4. The detailed description of all
parameters used in the model is available in the document freely
downloadable with the model from http://www6.paca.inra.fr/
stics_eng/.

A general description of the approaches used by each of the
five crop models is presented in Table 1.

General Circulation Models (GCMs)
Many GCMs have been evaluated for use in climate change
studies (Randall et al., 2007; Flato et al., 2013). The fourteen
GCMs listed in Table 2 were used in this study due to their
suitability for use in North America (Rupp et al., 2013; Sheffield
et al., 2013). The methodology used for generation of the
weather data for these GCMs is found in Abatzoglou (2013)
and Abatzoglou and Brown (2012). Specific datasets are available
at http://thredds.northwestknowledge.net:8080/thredds/reacch_
climate_MET_catalog.html.

Emission Scenarios
Representative concentration pathways (RCP) are climate change
research scenarios that contain trajectories of emissions, GHG
concentrations and land-use patterns based on alternative
responses of future socio-economic, technological, energy use,
and emissions patterns (Van Vuuren et al., 2011). Four RCPs
have been developed that provide distinct trajectories of radiative
forcing and GHG concentrations (Moss et al., 2010). For this
research, we used RCP4.5 which stabilizes at a radiative forcing
of 4.5 W m−2 and 650 ppm CO2-equiv in the year 2100, and
RCP8.5 which develops a radiative forcing of 8.5 W m−2 and
1,370 ppm CO2-equiv at 2100 (Moss et al., 2010). RCP4.5 is
characterized by policies that, among other things, reduce energy
use, reduce fossil fuel use, increase renewable and nuclear energy,
employ CO2 capture and storage, expand forests, and reduce
beef consumption by a world population of 8.7 billion in 2100
(Thomson et al., 2011). RCP8.5 is characterized by minimal
climate change policies, global population of 12 billion in 2100,
slow income growth, high energy demandmostly from fossil fuels
and declines in forested area (Riahi et al., 2011).

Study Sites
Seven diverse agro-ecological sites were selected for CSM and
GCM models ensemble study. These sites are in the main
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FIGURE 1 | Cumulative probability distribution for simulated winter wheat yield changes during three 31 year time periods, centered on 2030, 2050,

and 2070, relative to the baseline period (1979–2010) under two representative concentration pathways (RCP4.5 and 8.5) and five crop models with

ensembles of crop models at high rainfall site Pullman. Symbols on curves are at the curve’s inflection point and represent the most probable yield change.

winter wheat production region in the IPNW. Average annual
precipitation ranges from 125 to 700 mm on moving from west
to east (Schillinger et al., 2010). Basic features of the study sites
are summarized in Table 3.

Model Simulation Targets
To establish reasonable historical baselines for all five CSMs,
four study sites were selected: Pullman (high precipitation),
Wilke (intermediate precipitation), Lind (low precipitation), and
Moses Lake (irrigated). Baseline simulations (1979–2010) were
conducted for all models to meet targets for crop phenology
(emergence, anthesis, and maturity dates), maximum LAI,

biomass at maturity, and yield derived from literature and
extension reports focused on winter wheat in the study region
(Papendick, 1996; Schillinger et al., 2006; Schillinger, personal
communication; WSU Extension variety trials). The model
parameters used were as suggested for winter wheat by the
respective models, with adjustments to phenology, and minor
adjustments to leaf area development and biomass production
parameters within the range provided by each model so as to
conform to the targets, with the same set of parameters (except
for phenology) used in all sites.

Although, winter wheat in the region is rotated with
other cereals and legumes, to avoid adding complexity to
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FIGURE 2 | Cumulative probability distribution for simulated winter wheat yield changes during three 31-year time periods, centered on 2030, 2050,

and 2070, relative to the baseline period (1979–2010) under two representative concentration pathways (RCP4.5 and 8.5) and five crop models with

ensembles of crop models at low rainfall site Lind. Symbols on curves are at the curve’s inflection point and represent the most probable yield change.

the comparison of models and to focus on the simulated
responses of wheat to climate variation and atmospheric CO2,
continuous winter wheat was simulated. The profile soil water
content was reset to a set low value at the end of the
summer each year, so that cumulative effects were not a
factor. To focus our concern only on CSM and GCM, we
removed the confounding effects of crop rotation and carryover.
Table 4 shows targets and baseline results after parameter
adjustments.

Simulations and Analysis
In total, 140 simulations were generated for each study site (14
GCMs × 5 crop models × 2 RCPs), with outputs separated into
three time periods (2030s, 2015–2045; 2050s, 2035–2065; and
2070s, 2055–2085). PROC ANOVA in SAS, Version 9.2 (SAS
Institute Inc., 2010), was used to obtain the sums of squares for
targeted effects, and an Uncertainty Index (UI) was calculated
by dividing the treatment sums of squares by the total sums of
squares (Holzkämper et al., 2015). The resulting UI is a measure
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FIGURE 3 | Cumulative probability distribution for simulated winter wheat yield changes during three 31-year time periods, centered on 2030, 2050,

and 2070, relative to the baseline period (1979–2010) under two representative concentration pathways (RCP4.5 and 8.5) and five crop models with

ensembles of crop models at an irrigated site, Moses Lake, WA. Symbols on curves are at the curve’s inflection point and represent the most probable yield

change.

of the proportion of the total variation explained by the effect of
interest.

The cumulative probability distributions (CPDs) for yield
changes (see Section Results) were generated using a multi-step
process. First the average yield was calculated for the historic
period within location for each CSM. Then the average yield
over all GCMs was calculated within location, CSM and year.
The percentage change between this average projected yield
(within location, CSM, and year) and its respective baseline

yield was calculated, [percent change = ((future yield/baseline
yield)−1) × 100]. This last calculation resulted in 41 percentage
yield changes, one for each year within a given time period,
location and CSM. The mean and standard deviation of these
41 values were used to generate the normal density distribution
for the values and the CPD by applying the NORMDIST
function in Microsoft Excel. The maximum value on the
normal density distribution thus represents the percentage
yield change with the highest probability of occurrence and
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TABLE 6 | Percent changes with respect to baseline (1979–2009) values of selected process components contributing to changes in winter wheat yield

during the 2070 period (2055–2085) and representative concentration pathway 8.5.

Study site Response variable Crop model

CropSyst DSSAT APSIM STICS EPIC

(Percentage change from baseline)

Lind Length of growing season −34.8 −16.9 −20.6 −30.9 −33.6

LAI
†

max 1.8 44.0 6.9 21.7 5.9

Transpiration −7.2 −2.3 −6.8 −2.2 −8.6

Biomass 34.4 49.2 44.1 52.2 53.4

Transpiration-use efficiency 41.8 46.8 39.8 33.0 36.3

Pullman Length of growing season −21.0 −15.7 −13.6 −20.2 −17.5

LAI
†

max 2.8 11.6 5.6 16.9 9.9

Transpiration −2.1 −5.3 −4.6 −5.7 −0.4

Biomass 20.0 24.1 4.2 32.1 21.2

Transpiration-use efficiency 25.0 25.6 20.9 23.0 18.3

Moses Lake Length of growing season −6.6 −12.6 −21.8 −12.7 −5.5

LAI
†

max 13.1 9.8 11.1 4.8 3.5

Transpiration −7.5 −10.8 −8.9 −2.1 −7.2

Biomass 15.7 23.8 17.8 6.5 19.2

Transpiration-use efficiency 18.4 22.8 16.5 10.8 16.6

†
LAImax , maximum leaf area index.

corresponds to the inflection point on the CPD. Rather
than present both the normal and cumulative curves, we
present only the cumulative curve with its inflection point
identified.

RESULTS AND DISCUSSION

Baseline Period (1979–2010)
Three sites, Kambitsch, Moro and St. John, were not used for
parameter adjustments/calibration. The relative performance of
the five crop models using historical weather at these three
sites is shown in Table 5. The results showed that the simulated
LAI fluctuated within a relatively narrow range, while biomass
and grain yields showed more variation among the models,
except at the driest site, Moro, where better agreement existed.
Nevertheless, most models were still within a narrow range of
biomass and yield values at Kambitsch and St. John.

Probability Distribution of Crop-Climate
Model Projections
The CPD of future winter wheat yield changes projected by the
14 GCMs for the five CSMs and three sites (Pullman, Lind, and
Moses Lake) are presented in Figures 1–3, where the thicker line
is the mean of the CSMs ensemble. All CSMs projected a positive
impact of climate change and atmospheric CO2 concentration
on future winter wheat yields, but with significant variation.
This variation was larger for RCP8.5 (more warming and higher
atmospheric CO2) than RCP4.5, and increased significantly with
increasing time periods. The most probable yield change for the

CSMs in Pullman (Figure 1), identified by the inflection point
on the curves, ranged from 19 to 26% (RCP4.5) and from 17
to 28% (RCP8.5) for the 2030s, with the range increasing to
28 to 39% (RCP4.5) and 27 to 49% (RCP8.5) for the 2070s.
The range of yield increases spanned by the CPD curves tended
to increase from the 2030s to the 2070s, indicating increasing
spread among GCM projections later in the century. The
most probable yield change of the ensemble of all CSMs and
CGMs indicated a 23% (2030s), 30% (2050s), and 41% (2070s)
increase in projected vs. baseline yields for RCP8.5 (Figure 1).
A similar pattern of increasing yield gains was obtained for
RCP4.5.

Figure 2 shows the CPDs for Lind, the site with the lowest
precipitation. Inflection points ranged from 25 to 34% yield
increase for RCP4.5 in the 2030s, and from 21 to 27% for RCP8.5
in the 2030s. By the 2070s, the range had increased to 45–62%
under RCP4.5 and 61–66% under RCP8.5. The tighter clustering
of models under RCP8.5 late in the century in Lind was probably
due to the dominant effect of water stress, and the high percent
yield increase was likely due to the direct effect of CO2 having
a higher relative impact under more limited water supply. The
crop-climate model ensemble at Lind projected increased yield
under both RCPs but the effect was greater under RCP8.5 than
RCP4.5 (Figure 2). The percentage yield increase under RCP8.5
was substantial, jumping from 23% in the 2030s to 64% in the
2070s (Figure 2).

At the wettest site, Moses Lake, the ensemble of all crop model
and GCMs projected a wheat yield increase for both RCP4.5 and
RCP8.5 (Figure 3) but the increase was not as large as at the
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TABLE 7 | Uncertainty Index (UI) for projected winter wheat yield at seven

sites in the Pacific Northwest modeled under 14 general circulation

models (GCMs) averaged over 2 representative concentrations pathways

in each of 5 cropping system models (CSMs).

Study site Source of variation Time period

2030 (UI) 2050 (UI) 2070 (UI)

Lind GCMs 0.091 0.063 0.050

CSMs 0.509 0.684 0.630

GCMs*CSMs 0.223 0.075 0.046

Moro GCMs 0.127 0.077 0.089

CSMs 0.549 0.510 0.351

GCMs*CSMs 0.175 0.161 0.183

Wilke GCMs 0.073 0.064 0.126

CSMs 0.530 0.652 0.564

GCMs*CSMs 0.302 0.194 0.165

St. John GCMs 0.034 0.067 0.107

CSMs 0.791 0.662 0.576

GCMs*CSMs 0.141 0.207 0.217

Pullman GCMs 0.011 0.021 0.048

CSMs 0.858 0.792 0.710

GCMs*CSMs 0.086 0.105 0.116

Kambitsch GCMs 0.029 0.053 0.101

CSMs 0.695 0.625 0.520

GCMs*CSMs 0.203 0.201 0.192

Moses Lake GCMs 0.050 0.130 0.155

CSMs 0.733 0.550 0.381

GCMs*CSMs 0.135 0.180 0.252

Results are presented for three 31-year time periods, centered on 2030, 2050, or 2070.

rainfed sites. The ensemble yield change under RCP8.5 went from
15% in the 2030s to 24% in the 2070s. This smaller increase was
due to a lower direct effect of CO2 when water was not a limiting
factor. The effect of the different CO2 responses among models
is perhaps evident in these responses under irrigation. Free-
Air CO2 Enrichment (FACE) experiments have demonstrated
well-watered wheat yield increases of 7–9% when CO2 was
elevated from 350 to 550 ppm (Tubiello et al., 1999), and ∼10%
when CO2 was elevated from 365 to 645 ppm (Manderscheid
and Weigel, 2007). Photosynthetic response to CO2 follows a
typical saturation response, and biomass gain of wheat shows a
similar response saturating (plateau response) at about 25% gain
(compared to 370 ppm) when CO2 exceeds 1,000 ppm (Reuveni
and Bugbee, 1997). For the conditions during the 2070s and
RCP8.5, atmospheric CO2 concentration fluctuated from 570 to
801 ppm, while baseline conditions were set at 360 ppm. Thus, it
is unlikely that yield gains greater than∼15% should be obtained
with these CO2 concentrations for the 2070s, particularly when
the effect of warming is considered. However, the 50% CPD of
mostmodels and the ensemble exceeded this figure, implying that

not only differences in temperature responses but also in CO2

responses contribute to the spread of projections among CSMs.
In all crop-climate model ensembles, the most probable

yield increase was shifted rightward with time, indicating a
high probability of yield increase. Although results for only
the wettest (Moses Lake, Pullman), and the driest (Lind) sites
are presented here, all seven sites evaluated showed similar
responses, modulated mainly by the extent of water limitations.
Overall, the behavior of all CSMs was similar in terms of direction
of change in process components leading to yield estimations but
with variations in magnitude, as shown in Table 6 for the 2070s
period and RCP8.5 compared to baseline values. The growing
season was shorter during the 2070s at all sites as predicted by
all CSMs, with the percentage reduction being largest at Lind
and smallest under irrigation at Moses Lake. These differences
reflect the different magnitude of projected temperature changes
in these contrasting environments. All CSMs predicted increased
biomass at all sites late in the century under RCP8.5. This
increase was due in part to the CO2 fertilization effect and to
the warmer winter temperatures. Not surprisingly, with more
biomass, all CSMs predicted higher LAI at all locations (Table 6).
As expected under higher atmospheric CO2 concentrations
(Ainsworth and Rogers, 2007) and warmer temperatures (shorter
growing season), all CSMs projected a decrease in transpiration,
fluctuating from 0.4 to 11%. On the other hand, consistent with
increased biomass and decreased transpiration, transpiration use
efficiency increased at all locations and with all CSMs (Table 6),
being greatest in the driest location, Lind, and least in the wettest.

Partitioning of Projection Uncertainties
Substantial uncertainty/variation was found among GCM and
CSM projections. We present here results of the uncertainty
analysis for yield only (Table 7). The UI revealed that the
uncertainty attributable to CSMs was substantially larger than
that from GCMs at all study sites during all three time periods.
This is in agreement with previous finding by Asseng et al. (2013).
The maximum UI for CSM was over 0.85 during the 2030s at
Pullman whereas the maximum UI for GCM was 0.15 during
the 2070s at Moses Lake. At a majority of locations, the UI
associated with GCM tended to increase with time, but the UI for
CSM tended to decrease with time at most locations (Table 7).
Although the largest proportion of uncertainty was associated
with CSM, the relatively large UI associated with the interaction
of GCM and CSM indicated that the amount of uncertainty
associated with GCM depended on which of the five models was
under consideration.

Model (CSM and GCM) Ensemble
Projection of Winter Wheat Biomass
Production and Yield
An ensemble of all GCMs and CSMs showed a consistent trend
of beneficial effects of climate change on biomass production and
wheat yields in all sites studied under the two RCP scenarios
(Figure 4). The model ensemble depicted increasing trends for
biomass and grain yields under RCP4.5 at the seven study
sites, but the increasing trend was more prominent at low
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FIGURE 4 | Winter wheat biomass (t ha−1) and grain yield (t ha−1) trends by the crop climate model ensemble approach using two representative

concentration pathways (RCP4.5 and 8.5) at seven diverse agroecological sites in the Inland Pacific Northwest.

rainfall sites (Lind and Moro) than at the wetter sites, Pullman,
Kambitsch, and Moses Lake. A somewhat steeper increasing
trend was observed under RCP8.5 for all sites. Over the twenty-
first century, the benefit to yield of climate change appeared
to be positively correlated to water stress. The driest site,
Lind, saw a benefit of over 3 t ha−1 under RCP 8.5 whereas
the least water-stressed sites, Pullman, Kambitsch and Moses
Lake, experienced yield increases of at most about 2 t ha−1

(Figure 4). Also, there was a trend for biomass and yields to
plateau toward the end of the century, more so for wetter
sites.

There is certainly large uncertainty (Table 7) associated with

each trajectory in Figure 4, implying many possible pathways

toward future crop performance in the region. But the overall
beneficial trend resulting from the combination of climate change
and elevated CO2 appears strong and in agreement with previous
studies conducted in the region (Thomson et al., 2002; Stöckle
et al., 2010). Overall, positive effects have been also projected
for the northern Great Plains of the US (Izaurralde et al.,

2003). Similar findings indicating increased suitability for wheat
production under climate change of high northern Europe
latitudes have been reported (Eckersten et al., 2001; Richter
and Semenov, 2005; Balkovič et al., 2014). The winter wheat
producing region of China is also expected to move northward
(Sun et al., 2015).

Many additional factors will affect crop production in
the future. Weeds, insect pests and diseases (Rosenzweig
and Tubiello, 1996; Scott et al., 2014; Junk et al., 2016)
will all influence crops, and these influences will all
be impacted one way or another by climate change.
Additionally, management decisions made by farmers in
response to climate change will certainly affect future crop
production.

CONCLUSIONS

In this study we assessed climate change impacts on winter
wheat crop yield in the PNW using five CSMs and 14
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GCMs. It was found that the uncertainty due to the
variability of GCM and CSM projections can be substantial
with the uncertainty attributed to CSMs being larger than
that attributed to GCMs. Nevertheless, despite substantial
variations, all CSMs consistently projected decrease in
growing season length and transpiration and increase in
transpiration-use efficiency, biomass, and yields. Overall, the
mean of the ensemble of all CSMs and GCMs provided a
robust indication of positive effects of future environmental
conditions on winter wheat yield during this century at
all sites studied, with greater beneficial effect under water
stressed conditions than under well-watered, less stressed
conditions.
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