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The ecological impact of artificial light at night (ALAN) is an increasingly recognized

process that accompanies expanding urbanization. Yet, we have limited knowledge on

the impact of ALAN on wild species, and on the potential to mitigate any negative effects

by using different light sources and colors. In birds, effects of ALAN on activity levels

are reported for several species and, hence, their daily energy expenditure (DEE) may

be affected. DEE is a potent mediator of life-history trade-offs and fitness and thus an

important aspect to consider when examining the potential long-term ecological effects

of ALAN. Previous work has suggested that birds exposed to ALAN show higher levels

of provisioning and nocturnal activity, suggesting that white ALAN increases DEE. Other

factors regulating DEE, such as provisioning behavior and food availability, might also

respond to ALAN and thus indirectly affect DEE. We tested the hypothesis that ALAN

increases DEE using an experimental setup where four previously unlit transects were

illuminated with either white, green, or red LED light, or left dark as a control treatment.

This setup was replicated in eight locations across the Netherlands. Wemeasured DEE of

our focal species, the great tit (Parusmajor), using a novel doubly labeled water technique

that uses breath rather than blood samples. Contrary to our expectations, birds feeding

their offspring under white and green ALAN showed lower DEE compared to birds in the

control dark treatment. Differences in chick provisioning activity did not explain this result,

as neither visit rates nor daily activity timing was affected by light treatment. However,

food availability under white and green light was much higher compared to red light and

the dark control. This difference strongly suggests that the lower DEE under white and

green ALAN sites is a consequence of higher food availability in these treatments. This

result shows that there can be positive, indirect effects of ALAN for breeding song birds

which may balance against the negative direct effects shown in previous studies.

Keywords: ALAN, light pollution, doubly labeled water, energy expenditure, Parus major

INTRODUCTION

The alteration of natural light levels in the outdoor environment due to artificial light sources,
defined as light pollution (Cinzano et al., 2000), is a globally expanding phenomenon with an
estimated increase of 6% per annum (Hölker et al., 2010). It has been recently estimated that at
mid-high latitudes more than 23% of land surfaces are exposed to artificial light at night (ALAN)
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(Falchi et al., 2016). In very urbanized areas like Europe, this
number goes up to 88% (Falchi et al., 2016). ALAN is caused by a
wide variety of light sources, such as public lighting of streets and
buildings, vehicle lights, and light from advertising. Importantly,
ALAN is one of the first signs of expanding urbanization, and
rural land is also widely exposed to street lighting, especially
in developed countries. Over the last decades, light sources,
especially those of street lamps, have been undergoing a general
change from narrow to broad spectrum light. A recent example
is the widespread shift to LED lights (Gaston et al., 2012;
Bennie et al., 2014). However, despite a recent body of studies
that examined the ecological consequences of ALAN (Rich and
Longcore, 2006; Migaud et al., 2007; Davies et al., 2013; Spoelstra
et al., 2015), little is known about how different light spectra
might affect the behavioral and physiological responses of wild
species. Since LEDs color is easilymodifiable, it is important to fill
this research gap in order to inform policy-makers and improve
future lighting strategies.

ALAN can affect several behaviors of wild animals, from
orientation and navigation during dispersal and migration (Rich
and Longcore, 2006; Poot et al., 2008), to daily and seasonal
rhythms in behavior (Gaston et al., 2013; Robert et al., 2015;
Dominoni et al., 2016), to more subtle physiological effects on
stress levels, body mass and immune responses (Bedrosian et al.,
2011; Ouyang et al., 2015; Raap et al., 2016a). Effects on circadian
rhythms of behavior and physiology are particularly evident in a
range of species, from insects to mammals (Swaddle et al., 2015).
For instance, great tits (Parus major) provision their offspring
at higher rates when exposed to experimental white ALAN
directly at the nest box (Titulaer et al., 2012), and also show
more activity at night in the lab (de Jong et al., 2016b), possibly
incurring in energetic costs. In nocturnal species, such as mice
and bats, ALAN is usually associated with avoidance behavior
and lower activity levels at night (Stone et al., 2009; Rotics
et al., 2011; Spoelstra et al., 2015). Timing of singing and sleep
are also strongly affected by light pollution (Kempenaers et al.,
2010; Da Silva et al., 2014; Raap et al., 2015), and such changes
are suggested to have physiological consequences (Dominoni
et al., 2016). For instance, sleep loss in response to ALAN is
associated with reduced body mass and altered concentration
of nitric oxide and haptoglobin (Raap et al., 2016b). Such
physiological responses to ALANmight differ between urban and
rural animals, and suggest the possibility that at least some species
might adapt to and thus tolerate the presence of artificial lights.
Indeed, bright nights can also offer opportunities, for example
extending foraging time found for a number of diurnal species
(Santos et al., 2010; Dwyer et al., 2013; Russ et al., 2015; Dominoni
et al., 2016), thereby likely providing fitness benefits.

Because of the reported strong changes in activity levels
associated with ALAN, we hypothesized that daily energy
expenditure (DEE)might also be affected. This measure of energy
metabolism is an important aspect to consider when examining
the potential long-term effects of light pollution, as changes in
energy metabolism are widely recognized as mediators of life-
history traits and fitness (Wiersma et al., 2007; Hudson et al.,
2013; Careau et al., 2015). Indeed, as the energy available to an
individual is usually limited, it needs to be traded off between

different various behavioral and physiological processes, such
as feeding (Daan et al., 1996), thermoregulation (Kersten and
Piersma, 2002), incubation (Cresswell et al., 2004) and territorial
defense (Vehrencamp et al., 1989). The factors influencing DEE
have been studied extensively in wild birds (Williams, 2012).
Body mass explains most of the variation in DEE between
and within species (Ricklefs et al., 1996; Nagy, 2005). Yet,
environmental variables are also important regulators of energy
metabolism, as temperature is usually negatively correlated with
DEE (Tinbergen and Dietz, 1994; Te Marvelde et al., 2011;
Regular et al., 2014) and environmental stressors are suggested to
increase energy expenditure (Weimerskirch et al., 2002; Welcker
et al., 2009). Food availability is also a key mediator of energy
expenditure. On one hand, energy expenditure might be forced
upward by lower food availability, as animals will need to work
more and for longer to find food (Tinbergen and Dietz, 1994;
Welcker et al., 2009). On the other hand, when resources are
plentiful animals might afford to work harder and, for instance,
provide more food to their offspring (Tinbergen and Verhulst,
2000; Welcker et al., 2009) or invest more energy and time in
territorial defense (Vehrencamp et al., 1989), thereby increasing
their DEE. In addition, a potential cost of high DEE at the
cellular level is the production of reactive oxygen species, which
may lead to oxidative stress (Speakman et al., 2002; Selman
et al., 2008; Fletcher et al., 2013; but see also Speakman and
Selman, 2011). However, higher food availability can also increase
the capacity of organisms to acquire and use anti-oxidants and
thus limit oxidative stress (Giordano et al., 2015). Overall, the
environmental conditions in which DEE is measured need to be
carefully assessed.

We tested our hypothesis using a setup in which previously
unlit forest habitats were experimentally illuminated, which
we extensively described in previous manuscripts (de Jong
et al., 2015; Spoelstra et al., 2015). In this setup, we study
the physiological and behavioral responses of rural great tits
to three different spectral compositions of LED lighting (green,
red and white), while using also a dark control treatment. This
setup is repeated across eight different forest locations in the
Netherlands. The choice of such light colors was made to cover
both short (green) and long wavelengths (red), as well as the
broad-spectrum white light. Because sensitivity to light in birds’
photoreceptors peaks at mid-short wavelengths (Peirson et al.,
2009; Hunt et al., 2014; Dominoni, 2015), we expected white
and green light to be associated with stronger responses than red
light and the dark treatment. Specifically, we predicted that white
ALAN would increase DEE in great tits, because in previous
studies we have found that white ALAN was associated with
increased provisioning rate during the day (Titulaer et al., 2012),
as well as with higher activity levels at night (Ouyang et al.,
in press), but they never directly measured energy expenditure.
In addition, birds breeding under white ALAN showed higher
baseline corticosterone levels compared to birds breeding in
dark control areas (Ouyang et al., 2015), and this reinforced
the prediction that DEE should be higher under such lighting
conditions. Importantly, by measuring complementary variables
we aimed at providing explanations for potential differences in
DEE associated with ALAN.We collected data on the timing and
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amount of activity using transponders attached to each bird, as
well as data on the abundance of caterpillars, which we define
as food availability as this is the main food source of great tits
nestlings (Perrins, 1991). Food availability has not beenmeasured
before in field studies that have tested the effect of artificial lights
on songbirds.

METHODS

Experimental Set-Up
We illuminated previously dark natural areas with street lamps
from sunset until sunrise, at eight forest sites across The
Netherlands (Spoelstra et al., 2015). Lights are turned on at night
at all sites since spring 2012, except for one site (Voorstonden)
which had lights on since the end of April 2013. Within each
site, four different transects were randomly assigned to one of
four light treatments. These consists of five lampposts with white,
green, or red light (Fortimo white, ClearSky green and ClearField
red light, Philips, Amsterdam, The Netherlands), or wooden
poles with no lamps—dark control. All three lamp types emit
full spectrum light, but green lamps have an increased blue and
reduced red, and red lamps have an increased red and reduced
blue emission (for details on the spectral power of the light, see
(Spoelstra et al., 2015). As these spectra are eventually intended
for civil use, we normalized light levels to lux (intensity 7.6 ±

1.2 lux, measured directly under the lamp at ground level). We
placed nine nest-boxes in each transect, at different distances
from the closest lamppost (median ± SD = 25 ± 21 m, range
1–94 m).

Daily Energy Expenditure
We measured DEE using the doubly labeled water (DLW)
technique on breath samples of adult great tits, through a cavity-
ringed laser spectrometer (L2120-i, Picarro Inc., CA, USA). This
technique has been recently validated using blood samples in bird
species of similar size of great tits (Mitchell et al., 2015). We
caught adult great tits in nest boxes using spring traps during
daytime on day 10 of chick rearing. We fitted birds with an
individual aluminum ring as well as with an individual radio
frequency identification (RFID) transponder, and weighed them
to the nearest 0.01 g. Within 15 min of capture, we used a 29-
gauge 0.3-cm3 syringe to inject birds intraperitoneally with 200
µl of doubly labeled water (36.72 g of 98.7% H18

2 O and 18.34 g
of 99.9% D2O). The needle was kept parallel to the surface of
the bird’s belly, and then gently pushed under the skin. After the
injection, we placed the birds in a cotton bag for 1 h to allow
for equilibration of isotopes in body fluids. After this hour, we
removed the bird from the bag and applied a custom-made mask
to the bird’s head (Figure S1). Themask has two small holes where
plastic tubes were inserted. The first of these tubes was used to
pump dry air (<500 ppm H2O) into the mask at a standard rate
of 2 l per minute, starting 5 min prior to breath measurements
to ensure the spectrometer’s cavity was full with dry air. The
second tube was used to collect the air flowing out of the mask
(consisting of dry air and bird’s breath), which was then diverted
into the spectrometer. The spectrometer recorded measurements
of δ2H (‰) and δ18O (‰) approximately every 2 s, as well as

2- and 5-min running averages. All breath samples lasted 5 min,
and we used the 2 min running average measured 30 s after
the termination of the breath sample (Mitchell et al., 2015) in
subsequent analyses of CO2 production. We recaptured birds
after approximately 24 h (mean± s.d.= 23 h 49 min± 94 min),
and conducted a second breath measurement. In addition to this
procedure, we obtained background isotope measurements prior
to DLW injection in 25 birds, and used the averaged of such
measurements for the remaining individuals. The spectrometer
is prone to memory effects, that is, the isotope values obtain
in one measurement can be influenced by the previous one. To
reduce such effect we followed the procedure used in (Mitchell
et al., 2015) and performed measurements at least 20 min apart
from one another. In addition, we flushed the spectrometer cavity
with ambient air in betweenmeasurements, because this has been
shown to further limit memory effects (Mitchell et al., 2015).

We calculated CO2 production according to the single-pool
model as in Speakman (1997). We used a respiratory quotient
of 0.75 and an energy equivalence of 27.89 kJ/l CO2following
Speakman (1997). The water content of individuals was assumed
to be 66% of body mass (Mertens, 1987).

Activity Measurements: Visit Rates and
Activity Timing
On day 10, when we captured birds for the first DLW
measurement, we equipped the nest box with a transponder
reader (Trovan, Dorset Group BV, Aalten, The Netherlands)
around the entrance hole. The reader recorded each visit that a
bird made to the nest. We used recordings collected on day 11,
from the first to the last visit of this day.

Non-independent RFID readings caused by birds residing in
the nest box entrance were excluded by removing readings with
an interval shorter than 17 s. This “cutoff point” was identified
by a peak in the frequency histogram of consecutive recording
intervals.We validated this method using nest box visit data from
pied flycatchers (Ficedula hypoleuca) breeding in the same region.
After excluding these data, we calculated the total number of
visits per hour per bird and used this variable in all our models.
We excluded the first and last hour of recording for each day
as these were usually truncated and therefore the calculation of
hourly means would have been biased. As the amount of data
used per bird per day is clearly affected by lengthening of days
during the spring progression, we corrected for this potential bias
by including Julian date as explanatory variable in all our models
(see below).

We also used the transponder data to calculate the time
of onset and offset of activity, by locating the earliest and
latest visit time of the adults within a day. We expressed these
times relative to the objective (natural) sunrise, sunset and day
length time, which we obtained from the US Geological Survey
website (http://aa.usno.navy.mil/data/docs/RS_OneYear.php).
We calculated the duration of the activity phase as the difference
between the offset and onset.

Caterpillar Availability
We assessed caterpillar availability using frass nets, where the
biomass of caterpillar above the net can be calculated from
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the droppings (“frass”) of the caterpillars (Tinbergen and Dietz,
1994), in 3 consecutive years, from 2014 to 2016. Frass nets (0.5
× 0.5m) were placed at 1m distance from the trunk of the oak
closest to the lamppost (Visser et al., 2006). We placed one net in
each of the four transects of the site with the highest caterpillar
abundance, Voorstonden, as this is the only site consisting of
primarily deciduous trees (Spoelstra et al., 2015), while the other
sites harbor mostly evergreen species (spruce and pines). In 2016,
we also placed nets in all other seven sites under birch trees
when these were available, and otherwise under pine trees. Since
the total frass collected in these additional sites was extremely
low (most samples contained no frass, Figure S2), we decided
to use caterpillar biomass data exclusively from Voorstonden for
statistical analyses.

Over the breeding period (2014: March 24 to May 22; 2015:
April 4 to June 8; 2016: April 18 to June 12), frass nets were
emptied on average every 4 days (range 2–14 days) with more
regular sampling in the middle of the breeding season (every
2–5 days). Any large debris was removed before collecting.
On average, 70 samples were collected over the course of the
breeding season each year (range 52–84), with an equal number
of measurements for each of the transects (mean = 17 samples
per transect per year). In 2015 and 2016, samples were dried
at 60◦C for 24 h, sorted and weighed following (Visser et al.,
2006). In 2014, sorting was performed manually with the use
of a microscope. From the dry weights, caterpillar biomass was
estimated using the formula by Tinbergen and Dietz (1994), to
obtain caterpillar biomass in grams per day per square meter.

Statistical Analyses
We ran all statistical analyses using the software R (R
Development Core Team, 2015). Our basic approach was to use
linear mixed models (LMMs) with a Gaussian error structure for
all our analyses, using the lme4 package (Bates et al., 2015). We
always included site as a random factor, as well as nest box, the
latter to correct for non-independent measurements conducted
on paired adults that bred in the same box. We also included ID
as random factor when repeatedmeasures were conducted on the
same animal (for the RFID data). We checked the model fit by
inspecting graphs of residuals.

We conducted model selection based on likelihood ratio
tests using procedures implemented in the R package lmerTest
(Kuznetsova et al., 2016). We started with the most complex
model with all biologically relevant fixed effects and then
sequentially removed non-significant effects until the best
model was found. When treatment had a significant effect
on the response variable, we tested for differences between
light colors with a Tukey post-hoc test implemented in the R
package multcomp (Hothorn et al., 2008). When the interaction
treatment∗distance was significant, we conducted independent
LMMs for each of the four treatments separately.

We ran five main models with the following as response
variables: (1) DEE, (2) Visit rates per hour (RFID data), (3) Time
of first morning visit activity, (4) Time of last evening visit, (5)
Active day length (difference between first and last visits, all from
RFID data). In addition, we ran two LMMs to relate individual
DEE values (response variable) to visit rates. In all these models

we included treatment, distance to closest lamppost, sex, mass,
Julian date and the interaction between treatment and distance
as fixed effects. In the models for DEE and visit rates, we also
included brood size as a fixed effect.

To analyze caterpillar abundance data, we extracted peak
height (maximum estimated caterpillar biomass in grams per
day) and peak date (date at which maximum was measured) for
each tree sampled (Visser et al., 2006). We used these two as
response variables in two linear models with treatment and year
as fixed effects, as well as their interaction. We log-transformed
peak height to meet normality assumptions. We then performed
Tukey post-hoc tests (see above) to test for significant differences
between years and treatments.

RESULTS

Daily Energy Expenditure
We obtained DEE measurements from 55 birds (N = 34 females
and 21 males; N dark = 18, green = 13, red = 14, white =

10). DEE levels were significantly affected by the light treatment
(χ2

= 10.53, P = 0.015). Post-hoc tests (treatment-specific linear
regressions) showed that the birds in the dark treatment had
significantly higher DEE levels compared to birds in both the
white and green treatment (z = −2.73, P = 0.032, and z =

−2.03, P = 0.018, respectively, Figure 1 and Table S1). All other
pairwise comparisons between different light treatments were not
significant (P > 0.4 in all cases). In addition, brood size had a
marginally non-significant and positive effect onDEE (χ2

= 5.34,
P = 0.060): that is, parents spent more energy when they had
to feed a higher number of nestlings. No other variables were
significantly associated with DEE (Table S1).

FIGURE 1 | Light at night affects daily energy expenditure (DEE) in

free-living adult great tits. Horizontal, black line in boxplots represents

median DEE (N dark = 18, green = 13, red = 14, white = 10). Birds were

captured at their nest box on day 10 of the chick-rearing period, and injected

with doubly labeled water (DLW). We then waited for 1 h to allow equilibration

of DLW in body fluids, and subsequently measured isotope concentrations in

breath during a 5 min period using a custom-made mask attached to a

cavity-ringed laser spectrometer. Birds were released and after approximately

24 h they were recaptured to obtain a new breath measurement. DEE was

calculated after (Speakman, 1997). Birds breeding under white and green light

at night spent significantly less energy compared to the birds in the dark

treatment.
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Activity Measurements: Visit Rates and
Activity Timing
We obtained RFID data from 70 individuals (N = 37 females and
33males) from 43 nests (dark= 14, green= 10, red= 11, white=
8). Our final model showed a significant effect of the interaction
between treatment and distance to the closest lamppost on the
number of visits per hour (χ2

= 11.54, P = 0.009, Figure 2 and
Table S2). Post-hoc tests showed that in the green treatment there
was a negative relationship between the distance to the closest
lamppost and the number of visits to the nest (t = −2.39, P =

0.037). Conversely, such a relationship was absent in all other
treatments (P > 0.28 in all cases, Figure 2). In addition, the full
model showed highly significant, negative effects of both Julian
date (χ2

= 15.84, P < 0.001) and time of day on the number

FIGURE 2 | Relationship between the distance to the closest lamppost

and visit rates of parent great tits. We found a significant interaction

between treatment and distance to the closest lamppost on visit rates, with

the birds in the green treatment visiting their nest box more when breeding

closer to the light source. X-axis depicts distance of a single nest box (dots) to

the closest lamppost. Y-axis depicts the average number of visits per hour that

one individual bird made to its nest box. The measurements were conducted

during the chick rearing period, when chicks were 10–11 days old, using RFID

transponders attached to each individual bird (N dark = 22, green = 15, red =

18, white = 15).

of visits per hour (χ2
= 101.29, P < 0.001), meaning that birds

visited the nest less often both late in the season as well as late
in the day. In addition, there was a positive although weak effect
of brood size on visit rate (χ2

= 4.34, P = 0.043). There was no
significant difference in visit rates between males and females (χ2

= 0.60, P= 0.44).
First and last visit to the nest box, as well as the duration of the

active day, were not affected by light treatment (χ2
= 2.29, P =

0.514; χ2
= 4.30, P = 0.231; χ2

= 1.38, P = 0.711 respectively,
Figure 3 and Table S3). The duration of the active day was higher
in females than males (females: mean ± sd = 15 h 2 min ± 24
min; males: 14 h 26 min ± 48 min; χ

2
= 13.75, P < 0.001).

This was due to a sex difference in both the time of the last visit
(females: mean ± sd = 25 min ± 30 min before sunset; males:
53 min ± 31 min before sunset; χ2

= 15.19, P < 0.001) and first
visit to the nest box (females mean ± s.d = −1.32 min ± 30 min
before sunrise vs. males 6.58 ± 35 min after sunrise; χ2

= 7.96,
P= 0.005).

We then correlated the RFID data to the DEE data, and found
a significant interaction between treatment and visit rates in
predicting DEE (χ2

= 12.49, P = 0.006, and Figure 4). Indeed,
independent LMMs run for each treatment showed that visit rates
significantly predicted DEE in the dark and red treatment (t =
2.2, P = 0.027 and t = 7.9, P < 0.001, respectively, Figure 4), but
not in the green and white treatment (t = 1.3, P = 0.194 and t =
1.4, P = 0.195, respectively, Figure 4).

Caterpillar Availability
Peak height in caterpillar abundance, expressed as the maximum
estimated caterpillar biomass in grams per day, was significantly
affected by treatment [F(3, 13) = 11.49, P = 0.001, Figure 5,
Table S5]. Post-hoc tests revealed that abundance was 7 times
higher in the green treatment and 6 times higher in white
treatment compared to the dark treatment (green-dark: back-
transformed estimate = 7.05, P = 0.002; white-dark: back-
transformed estimate = 6.11, P = 0.004). Moreover, both green
and white treatments differed from the red treatment, although
the differences were smaller, with a 3 times higher caterpillar
abundance peak in the green and the white compared to the
red (red-green: estimate = 0.30, P = 0.044; white-red: estimate
= 2.91, P = 0.079). There were no differences between years in

FIGURE 3 | Timing of daily activity was not affected by light at night. First (A) and last visit (B) of a bird to its nest box were recorded using RFID transponder

data (see Figure 2). The time that a bird was active during the day (“active day,” C), was calculated as the difference between the last and first visit of a day. All data

are expressed relative to the natural sunrise, sunset and day length, which are depicted in the graphs as dashed horizontal lines crossing zero (N dark = 22, green =

15, red = 18, white = 15).
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peak height [F(2, 12) = 2.6, P = 0.123, Figure 5, Table S5]. Light
treatment did not have an effect on peak date [F(3, 13) = 1.1, P
= 0.39, Figure 5, Table S5]. Although in 2015 and 2016 peak date
was 7 and 8 days later than in 2014, respectively, we only detected
a marginal, non-significant effect of year in our models [F(2, 12) =
3.1, P = 0.087, Table S5].

Given the strong differences in peak height of caterpillar
abundance between the green/white sites and the dark sites,
we suspected that these could be associated with the lower

FIGURE 4 | Relationship between DEE and average number of parental

visits per hour to the nest during the chick feeding period. Data were

collected for 1 day during the chick feeding period (day 10–11 of nestling

period). Each point represents one individual. The regression line is the slope

estimate of a LMM in which the interaction between treatment and number of

visits per hour was found to have a significant effect on DEE.

DEE found in the birds breeding under white and green light
compared to the dark control. To test this hypothesis, we created
two additional datasets for the DEE measurements with (1) only
data from the caterpillar-richest site, Voorstonden (see Spoelstra
et al., 2015) for details on this site), and (2) all sites excluding
Voorstonden. The effect of treatment on DEE was only present
in the dataset with only Voorstonden (N = 24, P = 0.026, F =

3.8). Post-hoc tests showed a significantly lower DEE in the green
compared to the dark treatment (t = −3.20, P = 0.021), and a
marginally non-significant lower DEE in the white compared to
the dark treatment (t =−2.50, P = 0.089). Conversely, there was
no treatment effect on DEE in the dataset with all sites except
Voorstonden (N = 31, P = 0.61, χ2

= 1.82).

DISCUSSION

Our study revealed an effect of artificial light at night (ALAN) on
the energy expenditure of breeding wild great tits. Birds exposed
to either green or white nocturnal light had lower DEE levels
compared to the control dark group. Previous studies suggested
that adult songbirds exposed to white ALAN showed higher
provisioning rates during the day (Titulaer et al., 2012), as well as
higher restlessness at night (Dominoni et al., 2013; de Jong et al.,
2016a; Ouyang et al., in press), although energy consumption was
never directly measured. Thus, we predicted DEE to be higher in
the white ALAN group compared to all other treatments. This
was clearly not the case. One option why restlessness at night does
not lead to a higher DEE is that it is not energetically costly, such
as foraging or flying, leaving DEE unaffected. Relative to this, it
is important to note that locomotor activity may not be the main

FIGURE 5 | Effect of light at night treatment on caterpillar abundance. Caterpillar biomass was much higher in both the green and white light treatment

compared to the dark one. Biomass (in g/m2 per day) was estimated from caterpillar frass, by placing one frass net in each light transect for only the richest caterpillar

biomass site, Voorstonden. Points represent mean values. In 2015 we sampled two trees per treatment, hence we use error bars (SEM). The white light treatment is

here depicted in yellow for visualization purposes.
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driver of day/night differences in DEE, as birds show a circadian
rhythm in energy metabolism that is independent of activity
(Pohl, 1977). In addition, higher nocturnal restlessness could
simply be attributed to the disruptive effect of white ALAN on
sleep (Raap et al., 2015), rather than to an increase in locomotor
activity. Some studies in humans and rodents have suggested
that sleep disruption may increase DEE (Markwald et al., 2013),
but others have found the opposite effect (Benedict et al., 2011).
We suggest that other mechanisms may play a far bigger role in
explaining our results.

Our data suggest that the increased food availability in the
white and green ALAN treatments could have partly mediated
the lower DEE levels found in these treatments. Food availability
has never been considered in light pollution studies on Parid
species. We have measured the abundance of caterpillars during
the last three springs, and in all years the green and white
ALAN treatments had a considerably higher peak in caterpillar
biomass compared to the dark and red treatments, although only
in the caterpillar-rich site, Voorstonden (see below for a more
thorough discussion on this point). It is therefore conceivable
that at this site birds breeding under green and white ALAN
had to work less to search and obtain caterpillars for their
offspring, thereby spending less energy than birds in dark areas.
Indeed, previous research shows a negative relationship between
caterpillar abundance and energy expenditure of wild great tits
(Tinbergen and Dietz, 1994). In addition, when brood size is
manipulated experimentally in great tits, DEE is lower in smaller
than larger broods, suggesting that when food availability is
relatively large (because parents have to feed less offspring than
they planned for), a decrease in DEE is observed. The higher
abundance of caterpillars under white and green light is not
surprising, as mid and short wavelengths are known to attract
more flying insects, and especially Lepidoptera species, than long
wavelengths such as red light (van Langevelde et al., 2011). This
is also true at our sites (Spoelstra et al in revision). Different
light spectra could thus alter the balance between costs and
benefits of light pollution for predator birds and their insect
preys, an hypothesis that has already been suggested for other
types of species interactions (Davies et al., 2013; Sanders et al.,
2015).

Obviously, without a direct manipulation of food availability
our conclusion that DEE is reduced due to an indirect effect of
ALAN on food availability is mostly speculative, but at least two
other results support it. First, DEE was lower in the birds in the
green and, marginally significant, white ALAN treatments in the
site with the highest amount of caterpillar biomass, Voorstonden.
This site has the highest concentration of native deciduous trees
(oaks and birches) which are known to be the preferred host
species of Lepidoptera larvae that Parid species feed on (Visser
et al., 2006; Tallamy and Shropshire, 2009; Burghardt et al.,
2010). Conversely, the other seven sites are mostly evergreen
forests and harbor very little caterpillar biomass, which does
not differ between light treatments (Figure S2). When we used
DEE data from these sites only, there was no longer a significant
difference in DEE between the four treatments. It would be
interesting to analyze the diet of great tits in these caterpillar-
poor sites, to test whether the lack of caterpillars is compensated

with other food sources, as well to sample more deciduous
sites in order to avoid pseudo-replication. It could also be
possible that the low caterpillar abundance at these evergreen
sites precluded accurate measurements of any treatment effect,
and/or the flora in some habitats is more responsive to the light
stimulation than in others. Second, the relationship between
the visit rates and the distance of a nest box to the closest
lamppost depended on light treatment. In the green treatment,
birds visited the nest box more often when breeding close
to the lamppost than further away, while the opposite was
found in the dark areas. Sampling caterpillar abundance with
increasing distance to the lampposts might help elucidating
whether caterpillar biomass varies as a function of the distance
to the lamppost.

Interestingly, the relationship between DEE and visit rates
depended on light color. While DEE was significantly related to
visit rates in the dark and red ALAN treatments, we found no
correlation between these two variables in the green and white
light. It is well known that visit rate of parent birds during the
chick-rearing period does not always relate to DEE, as many
other behavioral and physiological factors contribute to energy
expenditure aside from provisioning (Tinbergen and Dietz, 1994;
Verhulst and Tinbergen, 1997; Williams, 2012). Thus, our results
are not contradictory with the existing literature, yet they are
very intriguing. It appears that short (green) as well as broad
(white) spectrum illumination alters the relationship between
work rate and DEE. Thus, there is a striking fit between the
results for caterpillar frass, DEE and light treatments. This
strongly suggests that the higher food availability found under
white and green ALAN might alter foraging behavior and
ultimately explain the differences in DEE. Although absolute
provisioning rates do not vary between light treatments, birds
in the white and green light sites may have to work less
to find food for their offspring, disrupting the relationship
between DEE and visit rates found under natural dark nights.
It has been recently highlighted that environmental as well as
endogenous factors can alter the relationship between behavior
and physiology (Killen et al., 2013). Our results point in this
direction, as we show that DEE and provisioning behavior are
not always correlated, but this relationship depends on the
environment where birds breed, which in turn is affected by
the experimental light source via changes in food availability.
Such indirect effects of ALAN have rarely been taken into
consideration, but they are likely to be more widespread than
currently appreciated.

Activity times of the birds did not differ between treatments.
Thus, it is unlikely that differences in active day length could
have explained the (observed) lower DEE levels in the green
and white treatments. Songbirds are known to extend their
activity into night when exposed to light pollution, both in
the evening but especially in the morning (Da Silva et al.,
2014; Dominoni et al., 2014; Russ et al., 2015; de Jong et al.,
2016a), which suggest that ALAN might increase DEE through
the lengthening of the active day. However, our results show
the opposite trend, with birds in the dark treatments visiting
their nest box on average earlier in the morning, and later
in the evening, compared to the birds in the light treatments.
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Females had a longer active day than males, and this is not
surprising as females usually stay in the nest box at night during
for most of the breeding period. Therefore, unless males visit
the nest box before the female awakes (which is unlikely at
least in our own experience studying this species), the female
will be the first bird to trigger the transponder reader in the
morning (and the last in the evening). In addition, a recent
study conducted at our sites showed that onset of dawn song in
male birds did not vary between the different light treatments
in several different species, including the great tit (Da Silva
et al., 2017). This result may be related to our use of relatively
low, realistic light intensities for countryside roads in addition
to the difference with non-experimental situations where light
is correlated with other disturbances (see Spoelstra and Visser,
2013). This might also hint to the fact that any behavioral or
physiological changes that we observed between our treatments
are unlikely to be a consequence of a direct effect of light
exposure, but rather of indirect effects such as changes in food
availability.

Although we used experimentally illuminated previously dark
habitats, a limitation of our study, and more in general of
our experimental set-up, is that we are unable to control for
non-random settlement patterns of birds in the different light
treatments. Birds with different metabolic rates, personality
traits, sensitivity to light, or additional physiological/behavioral
characteristics might have settled in the different areas. Thus, our
results might be a consequence of such non-random settlements
rather than an effect of light on DEE, either direct or indirect.
Although this explanation is unlikely (see additional discussion
in de Jong et al., 2015), these results have important consequences
for our understanding of the ecological impacts of ALAN.
They suggest that when artificial illumination is localized in
small rural and forest locations, its indirect effect of increased
insect availability may offset the negative direct effects on
stress and sleep disruption previously reported. However, in
more densely urbanized areas with pervasive presence of light
pollution and sparse, exotic vegetation, the positive effects of
light pollution on food availability that our study suggest might
not be present. Indeed, the quantity and quality of caterpillars
in urban areas is usually low (Isaksson and Andersson, 2007),
and in a previous study DEE was found to be higher in
urban compared to rural great tits, although no information
was provided on food availability nor on exposure to light
(Hinsley et al., 2008). In addition, urban-adapted animals
might have very well developed tolerance to the presence of
artificial lights (Dominoni et al., 2013). Future studies should
focus on experimentally testing the interaction between ALAN,
food availability and the behavioral as well as physiological
differences between urban and rural animals in response to light
pollution.

Taken together with previous research in this field, our results
suggest that white and green lights likely have the greatest
effect on great tits’ behavior and ecology, through both direct
and indirect effects. Conversely, longer wavelengths leaning
toward the red spectrum seem to induce similar behavioral

and physiological responses to living in darkness (but see
de Jong, 2016). Such results are comparable to observations
on mammals, in particular mice and bats (Spoelstra et al.,
2015), and point to red light being a useful opportunity to
minimize the impact of light pollution on wildlife. Such finding
is not surprising, as most photoreceptors in mammals and
birds have peak sensitivity around mid and short wavelengths
(Peirson et al., 2009; Hunt et al., 2014). However, more
research is needed, especially to understand how generalizable
these results are to other avian and mammalian species,
but also to other organisms that live in light polluted
environments.
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