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In recent years important tools have been developed in Drosophila to capture with the

greatest possible accuracy the variation found in nature. Efforts, such as the Drosophila

melanogaster Genetic Reference Panel (DGRP) or the Drosophila Synthetic Population

Resource (DSPR) allied to the advances in whole-genome sequencing and analysis

have propelled to unprecedented level our capacity to dissect the genotype-phenotype

map. However, several practical problems arise upstream of these analyses starting

with the collection and identification of wild specimens. These problems are dealt with

in different ways by each researcher generating solutions not necessarily compatible

across laboratories. Here, we provide a systematic coverage of every phase of this

process based on our experience, and suggest procedures to maximize and share the

generated resources potentiating future applications. We propose a detailed pipeline

to guide researchers from collection in the wild to the development of a large array of

molecular and genetic resources. We designed a multiplex-PCR that distinguishes sister

species D. melanogaster and D. simulans and is diagnostic of the presence/absence of

Wolbachia infection. These procedures may extend to other cryptic species pairs and

endosymbionts. We developed a standardized protocol to create, replicate and maintain

isofemale lines and outbred populations. Finally, we explore the potential of outbred

populations across several applications from experimental evolution, to introgression of

transgenic constructs or mutant alleles, and genomic analyses. We hope to contribute

to the success in developing Drosophila resources for evolutionary genetics studies and

facilitate exchanges across laboratories based on a common set of procedures.

Keywords: experimental evolution, Drosophila outbred populations, cryptic species multiplex PCR, isofemale

lines, introgression

INTRODUCTION

To study the evolution of species in a controlled and accurate way is undoubtedly a challenge. The
complexity of factors acting simultaneously on individuals inevitably blurs the conclusions that
can be drawn. To minimize this risk by facilitating the control of experimental conditions, we must
bring populations from nature to the laboratory. Maintaining the original populations variation is
challenging and can be achieved through two different methods, using parental lineages (isolines)
or recreating a new outbred population, the central element to experimental evolution studies.
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Experimental evolution can establish direct causation between
selection in a given environment and the genetic and phenotypic
changes observed in a population. This powerful approach
departs from the comparative method in three fundamental
aspects: (i) knowledge of the ancestral state, (ii) knowledge of the
adaptive trajectories in real-time, (iii) high degree of replication
under controlled selection and control regimes (Gibbs et al., 1997;
Magalhães and Matos, 2012; Kawecki et al., 2012).

At a different plane, recent years have witnessed the rise of
genomic studies, which have provided significant insights into
the genetic basis of adaptation for a variety of complex traits.
Examples cross all biological organization levels and include
studies on transposable element population dynamics (Barrón
et al., 2014), developmental time (Burke et al., 2010), immune
response (Martins et al., 2013, 2014), hypoxia tolerance (Zhou
et al., 2011), body size (Turner et al., 2011), climatic adaptation
(Orozco-terWengel et al., 2012; Tobler et al., 2014; Zhao et al.,
2016), courtship behavior (Turner et al., 2013) and life span
(Remolina et al., 2012; Durham et al., 2014).

The combination of genomics with experimental evolution
can provide a nearly unbiased estimate of the genetic changes
that underlie the adaptation of populations to a given selection
pressure, a central issue in evolutionary biology (Kawecki et al.,
2012). The success of this methodology lies in the choice of the
model species (with solid genomic tools, such as Drosophila) and
the availability of outbred populations (with high levels of genetic
variability) in which adaptation relies mostly on standing genetic
variation (SGV) (Barrett and Schluter, 2008; Teotónio et al.,
2009). The potential of this methodology has been confirmed in a
number of recent studies (Turner and Miller, 2012; Abbott et al.,
2013; Klepsatel et al., 2013; Martins et al., 2013; Durham et al.,
2014; Tobler et al., 2014), and expectedly this approach will gain
more and more followers in the coming years (Kawecki et al.,
2012; Kofler and Schlötterer, 2014).

Other important, and complementary approaches, underscore
the importance of describing and understanding the nature of
SGV in natural and laboratory populations. For example, the
increased use of isogenic lines propelled by the DGRP-Drosophila
melanogaster Genetic Reference Panel (Mackay et al., 2012),
has inaugurated an era of unprecedented studies in Drosophila
GWAS studies (Huang et al., 2012; Jordan et al., 2012; Magwire
et al., 2012;Weber et al., 2012; Kislukhin et al., 2013; Swarup et al.,
2013). In parallel, the development of recombinant inbred lines
that constitute the Drosophila Synthetic Population Resource
(DSPR) have provided another important resource for the
dissection of the genetic basis of complex traits (King et al., 2012;
Burke et al., 2014; Marriage et al., 2014; Cogni et al., 2016). Before
this, isofemale lines had been at the core of fecund research
programs aiming at describing and comparing genomic variation
betweenD.melanogaster and its sister species (Begun et al., 2007),
and comprehending their genotype-phenotype map (Hoffmann
et al., 1990; Turelli and Hoffmann, 1995; Lazzaro et al., 2004,
2006; Scott et al., 2011; Zhu et al., 2012; Ventura et al., 2013).
Finally, individually wild-collected flies have provided valuable
information in describing and quantifying natural variants (Clark
et al., 1994; Nunes et al., 2008), characterizing ecological and
evolutionary dynamics of natural populations (Fabian et al.,

2012; Bergland et al., 2014; Rajpurohit et al., 2017), estimating
the spread dynamics of endosymbionts in natural populations
(Kriesner et al., 2013), contrasting or validating laboratory results
(Macdonald, 2004; Mathur and Schmidt, 2017) and testing high
throughput re-sequencing techniques (Zhu et al., 2012).

Though these different approaches differ in the nature and
level at which they ask their questions, they share a common
founding feature: the collection of material from nature and its
subsequent establishment as a laboratory resource. In the case
of Drosophila melanogaster, one seemingly trivial yet important
question that must be resolved consists of its co-existence with
the cryptic species D. simulans. Here, we present a protocol
to streamline the collection, identification and establishment
of D. melanogaster in the laboratory. We provide a high-
throughput method by multiplex-PCR to identify the species and
the individual status of Wolbachia infection that can be easily
extended to other species. We provide a pipeline to maximize
the resources generated, namely the establishment of outbred
populations, isofemale lines, and DNA/RNA banks for genomic
studies.

MATERIALS AND METHODS

Collection
Using a portable vacuum cleaner coupled to a simple acrylic
tube custom made with a soft net on one end (Figure 1B),
we collected large numbers of flies from a vineyard dump site
(Figure 1C). After collection, flies were transferred directly to
bottles containing standard cornmeal-agar medium (Figure 1D).
Around 1000 females were separated and individually distributed
to vials with standard food. These females were transferred twice
to new vials, laying eggs during 3 days in each vial.

Nucleic Acid Extraction
To perform nucleic acid extraction, after the second round of egg
laying, each vial with fertile progeny (checking the presence of F1
larvae in the food) was numbered and the respective female was
anesthetized with CO2. A 96-well plate was previously prepared
for DNA extraction, cooled over dry ice to facilitate the placing of
the anesthetized females in the respective wells.

Nucleic acid extraction was performed according to (http://
www.drosdel.org.uk/molecular_methods.php) with minor
modifications. Briefly, each biological sample was homogenized
with metallic beads and detergent for cell lysis. After removing
the cellular waste by centrifugation, the supernatant was
transferred to a new 96-well plate and nucleic acids were
separated and precipitated with KCl and isopropanol. Samples
were further washed in EtOH 70% and afterwards ressuspended
in milliQ H2O. All steps were alternated with centrifugation
steps. DNA or RNA were isolated after incubation with either
RNase or Dnase, respectively.

Diagnostic PCR
After DNA extraction, a multiplex PCR reaction was performed
in 96-well plates using 1µL of diluted DNA, GoTaq DNA
polymerase (Promega) in a 20µL total reaction volume per well,
using the primers Slif (Fwd–5′GTTAGCGCCTATTAGCACAT;
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FIGURE 1 | Vineyards are large-scale collection sites for wild Drosophila specimens. (A) Winery dump site in Southern Portugal (B) portable vacuum cleaner coupled

to a acrylic tube with a soft net (C) collecting a large number of individuals (D) flies are transferred directly to bottles containing standard fly food.

Rev–5′CGGGACAACTCAGTCTGTAA) to distinguish between
D. melanogaster and D. simulans, and wsp (Fwd8 1-5′-TGGTCC
AATAAGTGATGAAGAAAC-3′; Rev691-5′-AAAAATTAA
ACGCTACTCCA-3′), to diagnose for the presence or absence
of Wolbachia. The PCR program was used as follows: 95◦C
for 10min; 30 cycles at 95◦C for 30 s (denaturation), 60◦C
for 1min (annealing), 72◦C for 1min (elongation) and a final
extension step at 72◦C for 10min. PCR amplification products
were visualized after electrophoresis in agarose gel (1.5% in TAE
supplied with 0.5% RedSafe).

After analysis, the F1 vials of each tested-isofemale line could
be separated into four groups, D. simulans or D. melanogaster,
andWolbachia positive or negative.

Tetracycline Treatment
To create a Wolbachia-negative population from the founded
outbred infected population, an egg lay with controlled density
was allowed in standard food containing 0.05 mg/ml tetracycline
hydrochloride (Sigma). Throughout 3 generations, the full life
cycle was carried out in food containing tetracycline at the
same concentration, after which the population returned to
regular maintenance in standard food for two generations for
mitochondrial recovery. Finally, we standardized the microbiota
by transferring the gut microbiome from the original population
(Wolbachia-positive), as described in Faria et al. (2016). In the
case of isofemale lines, the same procedure can be applied and
adjusted to tubes.

Outbred Populations Foundation
From 160 isofemale lines of each group previously diagnosed,
10 F1-flies, 3–5 virgin females and 3–5 males were separated.
Groups of males and virgin females were placed simultaneously
in population acrylic boxes (50 × 30 × 25 cm), thus minimizing
sib-mating. Around 1,500 individuals founded each population.

Populations were kept on a 3-week non-overlapping
generation cycle. Treatments were always performed 3–5
days after eclosion and reproduction occurred 5–7 days after
treatment. Reproduction was performed in 10 plastic cups (5
per day) with standard food. Egg density was limited to 400
per cup, a density determined experimentally to enable optimal
larval development and population effective numbers. Flies were
maintained under constant temperature (25◦C), humidity (60–
70%) and light-darkness cycle (12:12 h), and fed with standard
cornmeal-agar medium.

Each population was kept in laboratory cages with high census
(between 1,500 and 2,000 individuals). Census above 2,000 flies
will lead to excess moisture inside the boxes that compromises
egglaying, mobility and viability of flies and promotes bacterial
and fungal proliferation.

Heterozygosity and Fst Analyses
Average expected heterozygosity in Initial population (2007) and
outbred population adapted to the laboratorial conditions (2010),
were estimated using 103 SNP markers described in Teotónio
et al. (2009) and were analyzed as described in (Martins et al.,
2013; Supplementary Information fromMartins et al., 2014). We
used samples of 52 individuals from initial founding females and
48 individuals in 2010.

Starting Experimental Evolution
Before the initiation of experimental evolution experiments,
populations were maintained under the laboratory previously
described conditions for a minimum of 15 generations and then
serially expanded for two generations to allow the establishment
of the new replicate populations. In our case, all lines of all
treatments were derived from the same base population (from 1
to 6 in first generations and from 6 to 36 in the second). It enables
that all populations under different experimental treatments
will start with the same genetic pool, even losing some initial
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variability due to adaptation to the laboratory or to an unequal
representation of founder lines. The egg laying for the foundation
should be randomly distributed across the replicates to avoid any
selection for fertility. In each generation, pools of 200–300 flies of
each replicate were frozen in liquid nitrogen and kept at−80◦C.

Isofemale Lines
Isofemale lines were established using the vials of each original
line used to extract the virgins and males which have founded the
outbred population. In this case the lines were maintained, as is
customary, with overlapping generations.

Starting from the isofemale lines, one can also establish
isogenic lines. To do so, each isofemale line can be taken through
20 generations of full-sib mating as done by Mackay et al. (2012).
This procedure should purge deleterious alleles and provide, at a
reasonable frequency, fertile and viable genetically-homogeneous
lines.

Introgression
We introgressed the white mutant allele (w1118) into the outbred
population. Using 80–100 single female crosses in the first two
generations, we replaced all second and third chromosomes
from the w1118 stock by “wild” chromosomes of the outbred
population. In each odd generation (F1, F3, F5, F7, F9, F11)
recombination in females reduces the contribution of the w1118

stock. From these crosses, 2 white-eyed males were used to
establish at least 100 single female crosses with virgins from the
outbred stock (all even generation F2, F4, F6, F8, and F10). In
the F12 generation, 3–5 virgin females and 3–5 males from 140
F11 single-female crosses were released into a population cage to
establish the white introgressed population.

Crossing scheme:

(P) Outbred females (O;O;O) × w; If/CyO; MKRS/TM6b
males,

(F1) O/w; O/CyO; O/TM6b× Outbred males (O; O; O),
(F2) Outbred females (O;O;O)× w; O; O,
(F3) O/w; O; O× Outbred males (O; O; O),

F2 and F3 crosses were repeated 4 more rounds,
(F12) O/w; O; O× O/w; O; O,

Number of individuals used in each single-female cross
throughout the introgression procedure.

Females Males

F1 80 160
F2 100 60
F3 100 200
F4 120 120
F5 120 200
F6 120 100
F7 110 220
F8 120 100
F9 100 200
F10 140 280
F11 140 280
F12 (3–5) ∗140 (3–5) ∗140

RESULTS

Collection
Generic methods to collect Drosophila species have been
described in Markow and O’Grady (Markow, 2006). For
the specific collection of Drosophila melanogaster, our own
experience favors the choice of a vineyard as the collection
site, given the advantages that collecting from large populations
provides (particularly during harvest, which corresponds roughly
to the period from August to October in the northern
hemisphere) (Figure 1). Using a hand vacuum cleaner adapted
to this purpose (see M&M), in 2007 and 2013, we collected in
1h around 5000 females from the José Maria da Fonseca winery
in Southern Portugal (Azeitão, Portugal GPS: 38◦ 31′ 04.91′′ N9◦

00′ 56.24′′).
Back to the lab, we followed systematically the steps

schematically represented in Figure 2 in order to maximize
the collected resources. First, single females were separated in
vials to lay eggs and ensure the next generation. Then, the
progenitor females were sacrificed and used as starting material
for individual nucleic acids extraction (both DNA and RNA) in
96-well plates.

Screening Isofemale Lines
Guided by Alberto Civetta (Minuk and Civetta, 2011), we have
scanned the genomes of D. melanogaster and D. simulans for
large indels that would be diagnostic of species through a simple
PCR followed by electrophoresis. We chose Slif (CG11128) for
which we designed a primer pair (see M&M) that amplifies
fragments of 939 bp in D. melanogaster and 1058 bp in D.
simulans. To detectWolbachia,we used primers designed for wsp
(Wolbachia surface protein) by Zhou et al. (1998) (see M&M),
which produce two differently sized fragments of 610 and 590 bp,
forD. melanogaster andD. simulans, respectively. TheWolbachia
wsp gene amplification product serves therefore two purposes:
the characterization of the individual’s infection status and a
second (indirect) confirmation of the Drosophila species itself,
conveyed by the different amplicon sizes generated by respective
Wolbachia strains.

Figure 3 shows how this combination of primers reveals
simultaneously, in a multiplex PCR (see M&M), the status
of Wolbachia infection and which of the cryptic species it is.
The PCR program used permits the simultaneous amplification
of both fragments without any primer incompatibility or
confounding effects from nonspecific bands. We have performed
this method at high throughput rate using 96-well plates.

To validate the species diagnosis, we performed in parallel
a blind test running our method and performing the classical
male genitalia classification based on morphological analysis. For
this we took 50 males from one collection and mounted their
genitalia (Figure 4) as described in Ashburner (Ashburner et al.,
2011) and used the carcass to prepare genomic DNA for each
individual. We found a 100%match (50 in 50) fit between the two
classification methods, leading to the conclusion that the method
we developed is at least as good as themore time-consuming (and
more subjective) classical method.

As an illustration of the proportions found in our specific case,
in the 2013 collection we genotyped 576 (96 × 6) fertile females
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FIGURE 2 | Pipeline of how to establish Drosophila laboratory resources upon collection from nature.

FIGURE 3 | Rapid Drosophila species identification and infection status by multiplex PCR. Each lane contains the PCR amplification products using Wolbachia
specific primers and primers for the gene slif. In both cases, amplification products have distinctive sizes that allow identification of the species and determination of

Wolbachia infection status. Letters A, B, or C refer to D. melanogaster/ Wolbachia-negative, D. melanogaster/ Wolbachia-positive and D. simulans/
Wolbachia-positive samples, respectively.

FIGURE 4 | Species confirmation using male genitalia. As described in (Ashburner et al., 2011) we show the distinctive male genital arch (arrows) of D. simulans (left)
and D. melanogaster (right).
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(progenitors of isofemale lines), being 341 (D.mel/Wol+), 189
(D.mel/Wol−), 36 (D.sim/Wol+), 1 (D.sim/Wol+), and 9 failed
extractions/amplifications.

Isofemale Lines and Outbred Population
Establishment
From the collection described above, we established an outbred
population from 160 fertilized Wolbachia-positive females. We
used 3–5 virgin females and 3–5 males from the F1 of each
previously screened line. In parallel, we started 160 isofemale
lines, kept in similar maintenance conditions but under an
inbreeding regime, in vials with uncontrolled census and
overlapping generations. Further, after 3 years we re-derived
an outbred population without Wolbachia through tetracycline
treatment (see M&M). After the full procedure, the new
population (Wolbachia-free) was ready to be expanded and
tested.

We performed extensive analyses for quality-control purposes
of these established populations. Specifically, we quantified
heterozygosity (H) and Fst for a subset of the starting foundation
lines (using the extracted and stored DNA as described above)
and in the two established outbred populations. We used
the genomic DNA extracted from the founding females in
2007 to genotype 48 individuals and estimated an Expected
Heterozygosities (Hexp) of 0.344 (±0.016 SE). In 2010 we
repeated the procedure on the established outbred population
to find a Hexp of 0.320 (±0.017 SE) (Martins et al., 2014). We
estimated the Fst at 0.038.

Experimental Evolution
After the establishment of laboratory-controlled outbred
populations, namely of Drosophila melanogaster infected with
Wolbachia, we waited several generations for adaptation to the
lab and consecutive stabilization of genetic pool. After that,
we sequentially expanded the population in order to generate
several identical replicas (see M&M). In our case, we used those
populations to follow their response and genetic configuration
upon different pathogenic challenges and different infection
routes (Martins et al., 2013, 2014). Additionally, we also approach
the eventual costs of adaptation and the influence of the increase
of immunocompetence on Wolbachia population (Faria et al.,
2015) and the evolutionary significance of its presence (Faria
et al., 2016).

In each generation of experimental evolution, 200–400 flies
(males and females) were frozen and posteriorly used for different
analyses, such as PoolSeq and genotyping (Martins et al., 2014;
Faria et al., 2016).

Introgression
After the foundation of outbred populations, the introgression of
specific alleles in the populations can be performed. In the case of
visible markers this procedure is rather simple, though laborious,
as exemplified by the scheme below used to introgress the white
mutant allele (w1118) into the outbred population. Using over
100 single female crosses per generation, we recombined the
white mutant allele into “wild” chromossomes 6 times. Also, all
other chromosomes were outbred as they were replaced in full
(using balancer chromosomes) from the initial generations of the

crossing scheme (seeM&M).With this number of recombination
rounds the estimated proportion of the white allele-carrying X
chromossome in the final population is theoretically inferior to
2% (2∧6 = 1/64). Except for the fragment of the X in linkage
with the white locus, every other fragment from the w1118 stock
was randomized and should have virtually no impact on the
phenotypes observed at the population level. Effectively, we have
generated an outbred population genetically indistinguishable
from the wild-derived initial outbred population except for the
fact it carries the w1118 allele.

Additionally, we have started a systematic introgression of
transgenic lines into the outbred background using the same
crossing scheme.

DISCUSSION

We have attempted to propose a systematic and normalized set of
procedures when establishingDrosophila tools upon collection of
flies from nature. This approach can be extended to any cryptic
species pair, including both intra and extracellular symbionts.
In our case, a collection in vineyard in Portugal (Figure 1)
potentially allows the establishment a total of 4 different
populations: D. melanogaster and D. simulans, with or without
Wolbachia. Interestingly, we also observed in our collections
the sporadic presence of parasitoid wasps, in particular species
belonging to the genus Leptopilina. Although it is possible to start
some laboratorial isolines with captured wasps, the low frequency
indicates that the open-air method (or even the location) used
to flies is not the most suitable to catch high number of wasps
to, for example, initiate an outbred population of wasps. Other
relevant studies could be performed with these flies concerning
the gut microbiome of different capture regions and seasons,
which probably reflects the difference in locations and diets.

The generic pipeline here presented (Figure 2) can be applied
to any collection regardless of the fly species and initial object
of study as it preserves to the fullest the potential of samples
for future analyses. Inbred lines and the outbred population
have, in principle, retained to a great extent the same qualitative
variation of the sampled population. Yet, these different methods
of maintaining specimens impact differently in genetic variation,
namely in what regards the frequencies of deleterious recessive
alleles and epistatic complexes (Rose, 1984; Mackay, 2013). For
example, this has been approached by Huang and co-workers
that found distinct genetic bases for the same traits analyzed
by GWAS on the DGRP panel or on a population reconstituted
from the same DGRP panel lines (Huang et al., 2012). Instead, a
recent study shows that no significant allele differences are found
between an ancestral population and a reconstituted counterpart
generated by isofemale lines derived from the same original
population (Nouhaud et al., 2016). Moreover, these approaches
may reveal comparable outcomes and corroborate one another
as illustrated by resistance against DCV infection, for example
(Magwire et al., 2012;Martins et al., 2014). Thus, since there is not
always compatibility in the results revealed by both methods, it is
essential to deeply understand where exactly lies the difference
of power: (i) in signal detection or statistical constraint or (ii)
in biological differences, such as the absence of new epistasis in
isolines (GWAS) or costs under-selection (Evolve&resequence).
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Be that as it may, isofemale lines or isogenic lines, on one hand,
and outbred populations, on another, are best suited for different
purposes and questions.

The sequential 96 well-plate protocols of DNA extraction,
multiplex PCR and agarose gel electrophoresis allows a quick
analysis of a large number of specimens. Moreover, the method
is also very reliable to distinguish between D. melanogaster and
D. simulans, as evidenced by the comparison with the male
genitalia method (Figure 4). However, while the preparation of
the genitalia is a time consuming procedure that may need
an experienced manipulator to dissect, assemble and efficiently
distinguish both species, the PCR here described easily allows a
high-throughput scale. This method tolerates the testing of large
numbers of individuals necessary for the foundation of outbred
populations. In addition, after this first nucleic acids extraction,
the resulting material may be used for further genetic tests. In
addition, in this setup, other primers may be included or changed
to quickly diagnose different species and/or strains.

Prior to starting selection experiments, it is essential to adapt
the outbred population to the lab, in itself a novel environment
to which the population is exposed (Simões et al., 2007; Santos
et al., 2010). Major changesmay occur in the population structure
during this period of adaptation to laboratorial conditions, both
in flies and associated microbiome. After this step, performing
pilot tests is essential to confirm that replicate populations
respond similarly against the chosen selective pressure. Another
complementary and important verification in each foundation
is to investigate the linkage disequilibrium in both approaches,
isolines and outbred populations, to then understand the real
effect of bringing specimens to the lab and of the consequent
associated bottleneck. This information helps to characterize and
validate the populations before testing and provides a clear idea of
the potential of this tool in future studies. In our case, and based
in the markers used, the estimation of heterozygosity reveals that
the populations do not loose significant variability over time.
The estimation of the effective population size based on linkage
disequilibrium revealed that we had enough mapping resolution
to work with the chosen markers.

Population replicates are therefore ready to be submitted
against a vast range of selective pressures. In our case, as already
mentioned, we evolved those populations in the presence or
absence of pathogens, namely Pseudomonas entomophila and
Drosophila C Virus (DCV). Throughout experimental evolution,
we have frozen adult flies in each generation, creating a bank to
explore genetic questions about the adaptive processes.

The posterior introgression of genetic markers could also
create very useful tools to evolutionary and genetic questions.
The outbred w1118 population can be compared and/or used as
control as it is easily distinguishable from the outbred population,
though virtually identical from a genetic perspective. Behavioral

and competition experiments are also important applications
of this tool. However, caution is advised in this case, as the
white mutation is far from being a fully innocuous marker.
Indeed, white codes for an ABC transporter subunit (Sullivan
and Sullivan, 1975) described to play a role in a number of
homeostatic functions, namely in the nervous system. This
important role may impinge functionally on a number of traits
(Diegelmann, 2006; Sitaraman et al., 2008).

Finally, this population can be used to introgress transgenic
constructs into the outbred background. Following the same
crossing scheme (see M&M) it is straightforward to introgress
into the outbred background mini-white containing transgenics,
namely of the vast available collection of UAS and GAL4 lines.
In this case, upon recombination in heterozygous females, non-
white males can be selected to cross against outbred white
females. This may prove to be an interesting tool to test the effects
of such transgenes in a properly controlled genetic background.

In pace with the growing technological and conceptual
advances developed for the dissection of the genotype-phenotype
map, rises the interest in studying SGV in natural populations.
Here, we have attempted to provide the community with a
comprehensive guide for the establishment and development
of the necessary laboratory resources stemming from the
initial collection of wild Drosophila specimens. With this we
hope also to contribute to the standardization of procedures
permitting an easier exchange of resources across researchers
engaging in the study of natural variation in laboratory
conditions.
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