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Nitrogen (N) and/or phosphorus (P) availability can limit growth of primary producers

across most of the world’s aquatic and terrestrial ecosystems. These constraints are

commonly overcome in agriculture by applying fertilizers to improve yields. However,

excessive anthropogenic N and P inputs impact natural environments and have

far-reaching ecological and evolutionary consequences, from individual species up to

entire ecosystems. The extent to which global N and P cycles have been perturbed

over the past century can be seen as a global fertilization experiment with significant

redistribution of nutrients across different ecosystems. Here we explore the effects of

N and P availability on stoichiometry and genomic traits of organisms, which, in turn,

can influence: (i) plant and animal abundances; (ii) trophic interactions and population

dynamics; and (iii) ecosystem dynamics and productivity of agricultural crops. We

articulate research priorities for a deeper understanding of how bioavailable N and P

move through the environment and exert their ultimate impacts on biodiversity and

ecosystem services.

Keywords: crops, genome size, nitrogen, nutrients, phosphorus, polyploidy, stoichiometry

INTRODUCTION

Fertilizers are central to the “green revolution,” which has seen about half of the world’s land
converted to agriculture (Kareiva et al., 2007). Nitrogen (N) and phosphorus (P) are the dominant
rate-limiting nutrients in most natural systems and the major constituents of agrochemical
fertilizers. The consequences of N and P losses from agricultural land, e.g., through runoff and
leaching, can span multiple organizational levels and scales in time and space, threatening essential
ecosystem services (Smith et al., 1999; Elser, 2012; Fowler et al., 2013). In nature excessive loadings
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of N and P are extrinsic drivers that (i) often reduce biodiversity
directly (Chapin et al., 2000; Erisman et al., 2008; Lambers
et al., 2010), and have indirect effects through (ii) increased
local extinction via dominance of a few competitive species,
leading to (iii) altered plant community structure (Rohr et al.,
2016), (iv) reduced functional trait diversity of communities
and ecosystems (Tilman and Lehman, 2001; Díaz et al., 2006),
and (v) ultimately reshaping ecosystem services (Millennium
Ecosystem Assessment., 2005; Figure 1). Examples of such
services include the provision of cleanwater for human needs and
leisure, maintaining and regulating soil fertility, and supporting
services such as nutrient cycling and the transfer of nutrients
through trophic levels (Millennium Ecosystem Assessment.,
2005; Bommarco et al., 2013; Harrison et al., 2014).

At the organism level, N and P availability is known to have
powerful influences on functional traits and growth rates, but
we are only just beginning to understand that genome structure
(e.g., genome size, ploidal level) can also play an important role
(e.g., Neiman et al., 2009, 2013b; Šmarda et al., 2013; Guignard
et al., 2016). At the genomic level, environmental nutrient
limitation may constrain cellular processes (e.g., photosynthesis,
transcriptomes) and over time may result in divergence of genes
and the proteins they encode (Acquisti et al., 2009a,b; Elser et al.,
2011; Seward and Kelly, 2016; Figure 1).

Thus, the fluxes, feedbacks, and availability of N and
P fundamentally impact biota at all levels from genes and
genomes to ecosystems, reshaping ecological and ultimately

FIGURE 1 | Effects of N and P availability—from genomes to ecosystems. Inputs of nutrients, in particular nitrogen (N) and phosphorus (P), act as extrinsic drivers

affecting biological dynamics at the genomic to the ecosystem level, and which in turn feed-back on these drivers. An essential component of the ecosystem is the

cycling of nutrients through the food web and back to the atmosphere and soil in inorganic forms. Such ecosystems provide services of benefit to humans. 1Services

as defined by the Millennium Ecosystem Assessment. (2005).

ecosystem processes. It is therefore crucial to understand
how environmental N and P impact all levels of biological
organization, from genome dynamics and cell metabolism, to
the structure and functioning of multispecies systems (Figure 1).
Such research could dramatically improve both the efficacy
of biodiversity conservation and the development of more
sustainable farming systems with lower N and P demands.

This paper evaluates the roles of N and P (1) in the
environment, (2) within organisms, (3) in multispecies systems,
and (4) in meeting human needs in the context of rising to the
dual challenges of increasing food production and maintaining
functional biodiversity to underpin the delivery of essential
ecosystem services. It also proposes research priorities in these
areas.

(1) N and P in the Environment
Nitrogen and P both underpin photosynthetic processes, cell
growth, metabolism, and protein synthesis (Chapin et al., 2011),
but their natural sources and rates of supply are very different:
in principle, N availability is unlimited as an atmospheric gas,
whereas P comes from rock phosphate, renewed with the uplift
of continental rock. N and P co-limitation is common across
the Earth’s ecosystems in all the major biomes (Elser et al.,
2007a). Today the primary sources of N and P originate from
the massive anthropogenic inputs of fertilizers onto agricultural
land (Fowler et al., 2013; Figure 2). For instance, industrial
N production via the Haber–Bosch process surpassed natural
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FIGURE 2 | Consumption of N and P fertilizer by year (A) globally, and (B,C) by world regions, from 1961 to 2014. Data are available from the Food and Agriculture

Organization of the United Nations (FAO, 2016).

fixation of dinitrogen gas more than 50 years ago. It affects vast
areas by increased deposition of oxidized and reduced N with
increased runoff of N to freshwater and coastal areas (Galloway
et al., 2013).

Anthropogenic N-deposition also originates from nitrogen
oxides created during fossil fuel combustion, from nitrogen
fixation of cultivated legumes (Ciais et al., 2014), and ammonia
produced from animal wastes (Sutton et al., 2013). This elevated
N-deposition may shift ecosystems from N to P limitation, with
subsequent detrimental ecosystem impacts (Elser et al., 2009,
2010). Conversely, the deposition of P from P-rich dust from
sand and agricultural soils may shift some ecosystems from P to
N limitation (e.g., mountain lakes: Camarero and Catalan, 2012;
Brahney et al., 2015).

In ecosystems, N and P are bound within waste organic
products and dead organic matter (e.g., in nucleic acids). They
must first be remineralized to release inorganic orthophosphates
or dissolved and reduced to inorganic nitrate and ammonia
before either element can be absorbed by primary producers
(i.e., autotrophic bacteria, algae, plants). The mineralization
of organic to inorganic forms of N and P is completed
primarily by microorganisms as they metabolize carbon (Spohn
and Kuzyakov, 2013). These microorganisms also require N
investment to synthesize the alkaline phosphatase enzymes that
release P. Because organic N concentrations are higher than
those of P, this investment is balanced by N availability and
the corresponding gain in P. In terrestrial systems, P cycling is
closely linked to mycorrhizal fungi in plant roots that release
extracellular phosphatases. If N is applied above a certain
threshold, P cycles faster in response to greater N availability for
producing phosphatase enzymes. This in turn results in faster
rates of P removal and increased P limitation (Vitousek et al.,
2010). This implies that elemental imbalances generated at the
molecular level can influence elemental stoichiometry in the
ecosystem.

In agriculture, nutrients are also lost from ecosystems when
crop products are harvested, leaving less plant litter to decompose
and fewer nutrients to be returned to the soil. Consequently,
fertilizers are added to build and maintain soil fertility. When

applied at excessive levels, however, N and P may be lost via
leaching, runoff, and erosion (e.g., globally, an estimated 15
million tons of P are lost annually from crop fields due to erosion;
Smil, 2000), and an estimated 8 million tons of P are lost in
runoff from arable land annually (Cordell et al., 2009). Nitrogen
is additionally removed from an ecosystem as N2 and N2O gases
derived from microbial denitrification (when bacteria use nitrate
as a source of oxygen) and anaerobic ammonium oxidation (or
anammox, when the oxidation of ammonium is coupled with
the reduction of nitrite). With entry into aquatic systems, N and
P will trigger eutrophication before being cycled or buried as
sediments.

Future Research Priorities

Frequently, the stores, fluxes, and cycling of N and P have
been considered separately, partly because of the relative ease
of tracing N cycles compared with P. A unified interdisciplinary
approach is needed to fully understand macronutrient fate and
transport through the ecosystem. It needs to incorporate both
terrestrial and aquatic components of the landscape as well as
how different macronutrient cycles interact (Grimm et al., 2003;
Guenet et al., 2010; Soininen et al., 2015). A better understanding
of how N:P supply ratios affect microbial activity (e.g., nitrogen-
fixing bacteria and mycorrhizal fungi), and subsequently the flow
of these nutrients to and between organisms (e.g., Cherif and
Loreau, 2009), may be obtained via controlled experiments. This
may help to develop a clearer understanding of the impact of
fertilizers on soil and water health and a more informed and
environmentally sensitive approach to how we use fertilizers.
The urgent need for a more comprehensive understanding is
highlighted by the rising concern of a potential global scarcity of
P (Cordell et al., 2009).

(2) N and P Usage within Organisms and
Genome Structure
Nucleic acids are approximately 39% N and nearly 9% P by
mass (Sterner and Elser, 2002), making them among the most
N- and P-demanding biomolecules of the cell. Accordingly, the
nucleus of eukaryotes represents a substantial sink for N and P.
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How this nucleic acid “sink” influences N and P stoichiometry
remains unclear, yet these connections are potentially profound:
genome size is one of the most variable of all organismal traits,
varying 4-fold in mammals, 187-fold in insects, 378-fold in
bony fishes, 460-fold in crustaceans (Gregory, 2016), and 2,400-
fold in angiosperms (Pellicer et al., 2010). These differences
in genome size reflect underlying genomic processes such as
(retro)transposon amplification and deletion and whole-genome
duplication (polyploidy). All of these processes can influence
molecular evolution, gene expression, and organismal phenotype
(Neiman et al., 2009, 2013a; Gerstein, 2013; Mayfield-Jones
et al., 2013; Ramsey and Ramsey, 2014; Dodsworth et al., 2015;
Selmecki et al., 2015; Soltis and Soltis, 2016). Polyploidy in
particular has been implicated in the remarkably successful
radiations of angiosperms (Soltis et al., 2009; Jiao et al., 2011;
Albert et al., 2013; Tank et al., 2015; Van de Peer et al., 2017) and
teleost fish (Van de Peer et al., 2009; Braasch and Postlethwait,
2012). Even so, many groups of eukaryotes are characterized
by relatively small genomes, arising from genome-streamlining
processes such as unequal and illegitimate recombination and
chromosomal rearrangements triggered following polyploidy
(Leitch and Bennett, 2004; Hessen et al., 2010; Dodsworth et al.,
2016). Furthermore, the limited availability of environmental
N and P and the expense of building and maintaining nucleic
acids and associated proteins necessary to maintain a larger
genome and hence cell may, under certain circumstances, act as
a selection pressure driving the evolution of smaller genomes.

Selection on N and P use may also have an impact on genome
composition. A comparative genomics approach on a set of
animal and plant model organisms has shown N-conservation in
the transcriptomes of wild plant taxa relative to both crop plants,
which have a history of fertilizer application, and animals, which
harvest N in organic form from other organisms (Acquisti et al.,
2009a,b). Similarly, bias toward lower numbers of N atoms is
reported in the highly expressed proteins of bacteria and yeast (Li
et al., 2009), and in bacterial and eukaryotic parasites with low-N
diets (Seward and Kelly, 2016).

The biochemical link between N and P in growth processes
might underpin the broadly convergent ratios reported in many
eukaryotic groups, such as the classic Redfield ratio, which states
that marine plankton exhibit a mean C:N:P of 106:16:1 (Redfield,
1934; Klausmeier et al., 2004). Most eukaryotes, including
microbes (Cleveland and Liptzin, 2007), maintain a certain
degree of C, N, and P homeostasis. However, ratios vary with
species growth rate (Hillebrand et al., 2013), trophic level, and
environmental parameters. For example, N:P ratios range from
21:1 in broadleaved forests to 43:1 in tropical forests (McGroddy
et al., 2004), while a more general ratio of 28:1 has been attributed
to vascular plants (Chapin et al., 2011). Thus, while general
ratios have been described, there is considerable variation due
to fluctuations in environmental nutrient availability (Güsewell,
2004), phylogeny, and geography.

Biotic stoichiometric ratios are especially good reflections
of nutrient availability at the base of the food web, where the
scope for plasticity is greatest: proxy measures associated with
latitudinal gradients have been described for both terrestrial
plants (Reich and Oleksyn, 2004; Kerkhoff et al., 2006) and

marine phytoplankton (Martiny et al., 2013). For example,
older tropical soils are richer in N than P, whereas soils of
recently glaciated regions at higher latitudes show the opposite
pattern, implying reduced N:P ratios in colder areas (Reich and
Oleksyn, 2004). Latitudinal and temperature-related changes in
N:P likely reflect a higher demand for ribosomes (and thus P)
to maintain sufficient protein synthesis at lower temperatures
(Toseland et al., 2013; Thrane et al., 2017). This apparent link
between temperature and stoichiometry in primary producers
is perhaps unsurprising given that temperature drives the rates
of many biological processes, including photosynthesis (C gain)
and N and P uptake from the environment. At the genomic
level, transcription rates in plants also increase with temperature
(Sidaway-Lee et al., 2014). The higher demands for ribosomes at
lower temperatures may occur to maintain protein synthesis or
arise from the increased number of stored immature ribosomes
in the nucleolus (Leitch et al., 1995), which can also translate into
higher P-demands (and lower N:P) (Woods et al., 2003; Toseland
et al., 2013; Thrane et al., 2017).

Future Research Priorities

At an organismal level, functional traits influence fitness via
their effects on growth rate, reproduction, and survival (Violle
et al., 2007). A stoichiometric perspective leads us to speculate
that genome size and ploidal level are important but often
ignored functional traits. For example, very large genomes in
plants could be selected against in many ecosystems due to
their higher demands for N and P. In animals, there may
also be selection against larger genomes due to the reduced
fitness associated with relatively low developmental rates and
the relatively high demand for P invested in RNA (as much
as 50–80% of cellular P) for protein synthesis (Hessen and
Persson, 2009; Neiman et al., 2013a, but see Larkin et al.,
2016). A definitive answer to the question of the extent to
which larger genome sizes and higher ploidal levels translate
into N and P costs will require characterization of organism-
level consequences. For example, the increased N and P
demands could be offset by the lower number of cells that
are sometimes, but not always, associated with larger genomes
(Neiman et al., 2017). Demands may also be offset by more
efficient allocation of cellular P to RNA. Indeed polyploidy
can rapidly induce a diversity of genetic and epigenetic
responses, which can lead to highly variable total transcriptome
volumes (Grover et al., 2012), a trait upon which selection
can act.

Another key unanswered question is the nature of trade-offs
between the genome, transcriptome, proteome, and metabolites
for N and P usage, under differing N and P stress, at the cellular,
tissue, and organismal levels and in organisms with different
genome sizes. Controlled growth experiments under differing
nutrient regimes, combined with biochemical, DNA/RNA, and
genome analyses, are needed. Understanding the associations
between C:N:P ratios and how these elements are partitioned for
ribosomal synthesis vs., for example, histone synthesis may not
only lead to important insights for organisms within ecosystems,
but also provide novel medical insights into cancer dynamics
(Elser et al., 2003, 2007b).
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(3) The Roles of N and P and Genome Sizes
in Species Assemblies
As we move beyond the organism and population levels, we
can begin to elucidate some of the roles and consequences of
these phenomena on multispecies systems such as communities,
food webs, and entire ecosystems. Polyploidy is a genomic trait
that may have cascading effects on food webs. For instance, in
marine ecosystems, polyploidy may influence the composition
of zooplankton communities. Polyploid zooplankton are more
common in the Arctic, where a time constraint is imposed by
the short growing season (Van Geest et al., 2010). The differential
responses between taxa of different ploidal levels could shift the
balance of power in both horizontal (competitive) and vertical
(consumer-resource) interactions within ecological networks of
interacting taxa.

The functional traits of species can influence energy and
nutrient fluxes and the resilience of ecosystems to environmental
disturbances. Recent evidence suggests that genome structure
(i.e., genome size, ploidal level) and nutrient availability can
influence plant distributions, community composition, and
biomass production in grasslands (Šmarda et al., 2013; Guignard
et al., 2016; Segraves, 2017). This possibility is bolstered by
large-scale comparative analyses using the Plant DNA C-values
database (Bennett and Leitch, 2012) which suggest that plants
with large genomes are at greater risk of extinction and are less
tolerant of polluted soils and extreme environmental conditions
(Vinogradov, 2003; Knight et al., 2005; Greilhuber and Leitch,
2013). Although genome size effects can depend on ploidal
level, these data clearly demonstrate that genome structure has
ecological consequences that can shape the distribution and
persistence of biodiversity.

Variation in DNA and RNA usage in primary producers may
also cascade upwards to higher trophic levels. For example,
higher ploidal-level representatives of aquatic animals fare better
(biomass as well as amount of N and P in their tissues)
than their lower ploidal-level congeners, when their diets
(composed of primary producers) have relatively high nutrient
content. The reverse holds true in low-nutrient conditions
(Neiman et al., 2013b; Jeyasingh et al., 2015). Radiotracer
assays have also revealed that polyploid Daphnia incorporated
significantly more 33P and excreted significantly less 33P
compared with diploids (Jeyasingh et al., 2015), indicating
potentially strong effects of ploidal level on key population
and, by extension, community parameters related to consumer-
resource interactions. In addition to these “green pathways” that
link autochthonous producers to herbivorous consumers, there
is clearly the potential for the “brown pathways” that transfer
energy and nutrients via detrital feeding links to also be affected
by N and P and genome structure. For instance, terrestrial leaf
litter fuels the base of many freshwater food webs and the main
determinants of its consumption are its C:N:P stoichiometry,
which is shaped by the taxonomic and functional attributes of the
plants as well as environmental nutrient conditions (e.g., Hladyz
et al., 2009; Woodward et al., 2012). Consequently, if the C:N:P
stoichiometry of terrestrial plants is itself linked to genome size,
genome attributes of these plants have clear potential to shape

ecosystem-level processes and the trophic basis of production
of the higher trophic levels in the food web. How, and to what
extent, these influences are manifested in natural ecosystems
also could depend on the extent of nutrient enrichment from
agriculture within the surrounding landscape.

Future Research Priorities

Polyploids and taxa with larger genome sizes should be more
commonwhere nutrients are more abundant (Lewis, 1985; Leitch
and Bennett, 2004; Leitch and Leitch, 2008; Hessen et al., 2010;
Neiman et al., 2013a; Leitch et al., 2014). Support for these
predictions has come from recent studies of freshwater snails
(Neiman et al., 2013b) and angiosperms (Šmarda et al., 2013;
Guignard et al., 2016). Further data collection on, and empirical
tests of, the associations betweenN and P limitation, genome size,
and ploidal-level variation in diverse habitat types and biomes
are clearly needed to determine how far such predictions hold
across different ecosystems and larger, continental scales. Such
investigations may take advantage of geographical information
systems and niche modeling approaches.

Organisms are frequently linked in stoichiometric feedback
loops (Sterner, 1990; Gruner et al., 2008) within wider elemental
cycles. Even so, and perhaps due to the sheer complexity
of ecological systems, research is most often focused on
top-down (consumer-directed) vs. bottom-up (resource-based)
effects within only a small part of the food web. A broader
system-level approach that can also include indirect effects or
reciprocity is needed. Elemental availability can also play a large
role in predator-prey interactions, including nutrient cycling by
predators, which, in turn, influences what elements are available
to prey (Grover, 2003; Andersen et al., 2004; Sardans et al.,
2012). With respect to macro-organisms, plants form the base
of the food web; the diversity of plant structures is hypothesized
to influence multiple trophic levels via effects on differential
nutrient requirements, intake, growth rates, and, thus, food
quality for higher trophic levels, either as an autochthonous
resource that is processed via the food web’s green pathways or
as detritus within the brown pathways.

Plants are affected by their environment but they can also
modify this environment via shifts in microbial communities
that have short- and long-term effects (Putten et al., 2013;
Van Nuland et al., 2016). Such ecological feedbacks occur
when interactions at one time determine the performance or
interactions of organisms at another (Hendry, 2016). The impact
of nutrient availability has already been demonstrated to alter
eco-evolutionary dynamics in plants (Wooliver et al., 2016) and
in fish due to increased eutrophication, resulting in changes to
parasite load and individual feeding ecology (Anaya-Rojas et al.,
2016; Brunner et al., 2017). Future research will thus not only
have to focus on direct effects of N and P on species but also
on how they impact the interactions between species at the
ecosystem level.

(4) N and P and Genomes—toward
Sustainable Agriculture
The world’s consumption of N- and P-based fertilizers has
increased substantially since the 1960’s although that rise is now
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largely driven by agriculture across Asia (FAO, 2016; Figure 2).
As discussed above, N and P availability may influence the
productivity of plant taxa differentially, depending on genome
structure: when nutrients are in excess, polyploid plants tend
to increase more in biomass production and competitiveness
than diploids. This increased yield may be one reason why most
crops are polyploids (Leitch and Leitch, 2008). The rapid rate
of biomass production for which crops are typically selected is
associated with high soil nutrient demands. Indeed this high
demand for nutrients has essentially been “designed” into our
current agricultural systems. That in turn has led to a high
dependence for fertilizer inputs, whereby agricultural crops
generally display high critical nutrient requirements (N and
P) for optimal growth with high product removal. This is not
only economically expensive but also biologically inefficient
and environmentally destabilizing, with increased potential for
collateral damage to aquatic ecosystems via eutrophication. For
example, P inputs are two to five times greater than the amount
exported in the final product (Simpson et al., 2011), and crops
take up only 30–40% of applied N (Kant et al., 2011). Nutrient-
use efficiency in crops can be improved by, for example, selection
of morphological and physiological traits that maximize nutrient
uptake (Richardson et al., 2011), optimizing traits that increase
the efficiency of ribosomes (Kreps et al., 2002; Kant et al., 2011;
Veneklaas et al., 2012), and reducing the carbon costs of nutrient
uptake (Lynch and Ho, 2005). Crops are high in P content
with a 15:1 N:P ratio (Veneklaas et al., 2012), in contrast to
the 28:1 ratio across vascular plants as a whole. Moreover, high
concentrations of P in grain crops are undesirable because P is
predominantly stored as phytate, which is indigestible, and which
reduces absorption of other nutrients in non-ruminant animals,
including humans (Veneklaas et al., 2012). The indigestibility of
this form of Pmeans it ends up in our sewage and waterways, and
one solution may be to reduce P uptake and/or P concentrations
in seeds and grains using genomic approaches (Raboy, 2001;
Yamaji et al., 2017).

Future Research Priorities

Many engineering approaches are being considered to help
improve the management of N and P in the environment. One
key goal is to apply less fertilizer while maintaining or even
enhancing agricultural yields. A key part of this process will be
to revisit our polyploid crops. To date, much plant breeding has
exploited polyploids, where genic diversity is fixed and favorable
characters can be selected (e.g., allopolyploids: wheat, cotton,
tobacco, sugarcane; autopolyploids: strawberry, alfalfa, banana)
(Udall and Wendel, 2006; Renny-Byfield and Wendel, 2014). Yet
these crops have been developed in a context of high inputs
of N, P, and other nutrients. By contrast, the wild relatives of
these crop species typically grow in relatively infertile habitats. By
targeting inbred introgressed lines and applying high-throughput
sequencing in combination with marker-assisted or genomic
selection approaches (Heffner et al., 2009; Xu et al., 2014; Jan
et al., 2016; Lv et al., 2016), it may be possible to reduce
nutrient requirements and/or improve nutrient-use efficiency
(higher yield per unit used of fertilizer) of crop plants. There
are significant commercial gains to be made from reducing our

dependency on N- and P-containing fertilizers. For example,
increasing N use efficiency by 1% alone could lead to estimated
annual savings of $1.1 billion (Kant et al., 2011). Additional
reductions in fertilizer use could also come from harnessing
the microbiome in plant selection, especially under limiting N
and P. Future avenues include the use of bacteria and fungi to
increase a plant’s uptake of nutrients, in particular P (reviewed
in Owen et al., 2015), and to exploit new technologies aiming
to inhibit P loss and increase fertilizer recovery (Withers et al.,
2015).

CONCLUSION

In defining a “safe-operating space” for humanity in the
Anthropocene, Rockström et al. (2009a,b) identified nine
planetary boundaries and thresholds for anthropogenic activities
to remain globally sustainable. They argued that some of these
have already been surpassed, including a proposed boundary
of 35 million tonnes (Tg) per year of N2 removed from
the atmosphere, far below the actual annual rate of 121 Tg
(Rockström et al., 2009b). We are very close to the proposed
boundary of 11 Tg per year of P flowing into oceans, currently
at c. 9 Tg per year (Rockström et al., 2009b). However, if
freshwater systems are also taken into account, we have also
surpassed that P boundary (Carpenter and Bennett, 2011).
Because N and P are linked to life systems ranging from
global ecosystems (e.g., oceans) to genomes, a more complete
understanding and an incorporation of stoichiometric analysis
at all levels of biological organization are needed. This is
indeed an urgent goal, as it will enable us to maintain
or enhance agricultural productivity whilst simultaneously
conserving and enriching the biodiversity that is essential
for the continued provision of ecosystem services across the
globe.
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