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Human activities are leading to rapid environmental change globally and may affect

the eco-evolutionary dynamics of species inhabiting human-dominated landscapes.

Theory suggests that increases in environmental heterogeneity should promote variation

in reproductive performance among individuals. At the same time, we know that

novel environments, such as our urbanizing study system, may represent more benign

or predictable environments due to resource subsidies and ecological changes. We

tested the hypothesis that reduced environmental heterogeneity and enhanced resource

availability in cities relax selective pressures on birds by testing if urban females vary less

than rural females in their demographic contributions to local populations. From 2004

to 2014, we monitored local population densities and annual reproductive output of 470

female Northern Cardinals (Cardinalis cardinalis) breeding at 14 forested sites distributed

across a rural-to-urban landscape gradient in Ohio, USA. Reproductive contribution was

measured as the difference between individual and site-averaged annual reproductive

output across all nesting attempts, divided by the annual density at each site. We show

that among-individual variation in reproductive contribution to the next year’s population

declined with increasing urbanization, despite similar variability in body condition across

the rural-urban gradient. Thus, female cardinals that bred in urban habitats within our

study area were more similar in their contribution to the next generation than rural

breeders, where a pattern of winners and losers was more evident. Within-individual

variation in annual reproductive contribution also declined with increasing urbanization,

indicating that performance of females was also more consistent among years in

urban than rural landscapes. These findings are consistent with the hypothesis that

urbanized environments offer more homogeneous or predictable conditions that may

buffer individuals from environmental heterogeneity and relax natural selection.
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INTRODUCTION

Human activities are causing rapid and novel environmental
change around the planet, highlighting a need to understand
how non-human species adapt to such changes. Although,
evolutionary and ecological processes are often characterized as
operating on different time scales, rapid environmental change
can lead to strong natural selection and rapid adaptive evolution
(Thompson, 1998; Reznick and Ghalambor, 2001; Hendry et al.,
2008). Examples of rapid adaptation to pollutants (Berry, 1964;
McNeilly and Bradshaw, 1968; Kettlewell, 1973), pesticides
(Georghiou, 1972), and harvest (Handford et al., 1977) are well-
known, but more recent examples (e.g., Olsen et al., 2004;
Phillips and Shine, 2004; Law and Salick, 2005) highlight the
key role of eco-evolutionary dynamics on species persistence and
distribution (e.g., Davis and Shaw, 2001; Stuart et al., 2014).

Perhaps nowhere is an understanding of the interplay between
ecological and evolutionary processes more urgently needed than
in human-altered systems, where anthropogenic disturbance
can lead to strong selection on fitness traits (Stockwell et al.,
2003; Kinnison and Hairston, 2007; Hendry et al., 2011).
Urbanizing landscapes therefore offer excellent opportunities
to study spatial and temporal heterogeneity in selection across
rural to urban gradients (Siepielski et al., 2009; Cornwallis
and Uller, 2010; Safran et al., 2010). Urban development alters
biological (e.g., types of food), physical (e.g., temperature,
light), chemical (e.g., pollutants), and ecological (e.g., densities
of competitors or predators) factors known in other systems
to strongly influence selection on phenotype (Reznick and
Ghalambor, 2001). However, relatively few studies of eco-
evolutionary dynamics in urban systems exist (Alberti, 2015).
Badyaev et al. (2008) found evidence that urbanization via access
to human-provided birdseed led to adaptive divergence in bill
shape in urban and desert house finches (Carpodacus mexicanus).
Atwell et al. (2014) report correlated changes in life history traits
in an urbanizing junco population (Junco hyemalis). Likewise,
Marnocha et al. (2011) provided evidence that morphological
changes in brown anoles (Anolis sagrei) represented an adaptive
response to human-induced habitat alteration via residential
development. A recent global meta-analysis of 1,600 phenotypic

changes across species, regions, and ecosystems showed that
rates of phenotypic change were also greater urban than non-
urban systems, consistent with an hypothesis of strong selection
(Alberti et al., 2017).

In contrast, urban breeders might also be expected to
experience relaxed selection pressures if urban environments
are buffered from the deleterious effects of environmental
variation experienced by rural breeders. For example, buffering
in urban habitats might occur via increased predictability or
homogenization of resources and the subsequent decoupling
of urban breeders from naturally-occurring cycles of nutrients
and water (Shochat et al., 2006; Buyantuyev and Wu, 2009,
2012; Groffman et al., 2014). Although, some work suggests
that even abundant urban birds may reproduce less well in
cities than rural areas (Meyrier et al., 2017), our prior results
show that urban forests provide cardinals with more reliable
and predictable food subsidies, including birdfeeders and the

fruits of exotic shrubs, than those available to rural breeders
(Atchison and Rodewald, 2006; Leston and Rodewald, 2006).
Urban areas also offer warmer winter temperatures (Atchison
and Rodewald, 2006; Shustack et al., 2009) and preferred nesting
substrates (Leston and Rodewald, 2006; Rodewald et al., 2010).
Overall, these factors promote high densities of cardinals in
urban forests in patterns that are consistent with resource-
matching (Rodewald and Shustack, 2008). However, despite
nesting earlier than rural cardinals (Shustack and Rodewald,
2011) and experiencing similar rates of brood parasitism and
predation on nests (Rodewald et al., 2013), fledglings (Ausprey
and Rodewald, 2011), and adults (Rodewald and Shustack, 2008),
urban and rural cardinals produced similar numbers of offspring
each year (Rodewald and Shustack, 2008; Rodewald et al., 2013).
Our prior results are also consistent with the hypothesis that
abundant, accessible resources in urban habitats has relaxed
selection on male coloration in Northern Cardinals (Cardinalis
cardinalis) by disassociating color, condition, and reproductive
performance (Rodewald et al., 2011). Overall, therefore, we
expected to observe evidence of relaxed selection on breeding
cardinals in urban vs. rural habitats.

Specifically, we estimated individual variation in the
reproductive contributions of female cardinals to local
population growth following Ezard et al. (2009) and Coulson
et al. (2006). These methods allowed us to test the prediction
that variation in female reproductive contributions to the next
generation should be more similar in urban than rural habitats
due to environmental buffering, consistent with an hypothesis
of relaxed selection in urban vs. rural habitats, while accounting
for variation in local population density (Coulson et al., 2006;
Pelletier et al., 2007, 2009). We also tested two corollaries of
the hypothesis that urban areas represent more benign selective
environments than rural areas, by testing if urban females were
in better condition and had greater reproductive success than
rural females.

MATERIALS AND METHODS

Study System
From 2004 to 2014, we studied a common synanthropic bird,
the Northern Cardinal (C. cardinalis). Cardinals are year-round
residents that nest in understory and midstory vegetation and
defend territories during the breeding season (Halkin and
Linville, 1999). Breeding densities of cardinals are highest in
sites with dense understory shrubs (Leston and Rodewald, 2006),
particularly Amur honeysuckle (Lonierca mackii), an exotic
shrub that is preferred as a nesting substrate and can act as
an ecological trap (Rodewald et al., 2010). Cardinals are multi-
brooded, can quickly re-nest after failure, and often make 3–5
nest attempts annually. Nest predation is overwhelmingly the
most common cause of nest failure in our system, and the nest
predator community is diverse with 21 species documented to
depredate cardinal nests (Rodewald and Kearns, 2011).

We studied cardinals at 14 sites located in mature riparian
forests distributed across a rural-to-urban landscape in Ohio,
USA (ca. 40N 00′ 83W 00′). Forest patches varied in size
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(mean width 163m ± 2 SE) but were comparable in urban and
rural landscapes. Building densities in our landscapes ranged
from 0.1 to 7.3 buildings per ha (10–727 buildings/km2), and
agriculture was the most common non-urban land use in rural
landscapes. To quantify the matrix, we derived an urban index
based on a principal components analysis (PCA) of landscape
composition (number of buildings, percentages of agriculture,
pavement, lawn, roads) within a 1-km radius area centered
on each study site. We used the first principal component as
an “urban index” because it explained most of the variation
among sites and correlated strongly with urban land uses, being
positively correlated with buildings, roads, pavement, and lawn,
and negatively related to agriculture. Our measurements of
landscape composition at our sites in 2001 and 2006 indicated
that study sites changed little in the amount of urbanization over
the course of our study.

Surveys of Avian Communities
Density of breeding cardinals within a 2-ha grid at each site
was determined using spot-mapping (Bibby et al., 2000), noting
the location, sex, and behavior of birds on detailed maps. This
allowed us to estimate of the density of birds and number of
territories in a specified area based on territorial behavior. Each
grid was traversed at 50-m intervals 8–10 times from mid-April
to June of each year.

Banding and Nest-Searching
To estimate annual reproduction, female cardinals were target-
banded and individually-marked with a numbered aluminum
metal (United States Geological Survey) and unique combination
of colored plastic bands. Birds were captured and measured early
in the breeding season, typically during territory establishment
or nest building. Morphometric measurements (mass ± 0.5 g,
wing ± 0.5mm, and tarsus length ± 0.1mm) were collected
for each individual and used to calculate an index of body
condition for each female at the time of first capture. While no
single metric can fully capture body condition of an organism
as is relevant to fitness, we used an approach commonly used
in ornithological studies. To do so, we first used a PCA to
estimate frame-size from wing and tarsus length. PC1 was
positively correlated to wing and tarsus length (0.76 for each),
explained 59% of variation in size (eigenvalue = 1.16), and
used thereafter to indicate frame-size. We then regressed mass
on frame-size and used residuals as a body condition index:
females heavier or lighter than expected given frame-size were
thus assumed to be in higher or lower condition than expected
on average. Previous research in our system indicates that
male brightness, timing of breeding, and ability to secure a
preferred territory were all positively related to our condition
index in rural birds (Rodewald et al., 2011), suggesting that it
is linked positively to potentially influential reproductive traits.
We examined relationships between urbanization and (a) body
condition and (b) variance in body condition (i.e., among females
breeding at the same site) separately using mixed models using
site as a random factor and urban index as a fixed effect
(predictor).

Field teams monitored all nesting attempts of known
individuals from late March to September. Most nests were
located early in the nesting stage, usually during building or egg-
laying, and then checked at 1–3 day intervals. For nests that
successfully fledged young, numbers of young were determined
by either counting the number of nestlings immediately prior to
fledging and/or by observing parents and young for extended
periods near the time of fledging. Numbers of young that
successfully fledged were summed across all nesting attempts for
a given female in each year. Number of fledglings was then used
as a response variable in amixedmodel that included urban index
as a fixed effect and site as a random effect.

Calculation of Reproductive Contributions
of Individuals to Local Populations
Because natural selection and population dynamics are each
driven by the birth and death of individuals, a demographic
signature of selection can be measured on ecological time
scales by examining the differential contributions of individuals
to populations in a next generation (Coulson et al., 2006;
Pelletier et al., 2007, 2009). Many studies of evolutionary change
and selection estimate the fitness of alleles or phenotypes
by measuring their representation in populations in future
(Hamilton, 1964; Dawkins, 1982; Metz et al., 1992; Benton
and Grant, 2000). Fitness can also be estimated as the relative
reproductive performance of individuals within populations
(Fisher, 1930; Lande, 1982), which is a function of population size
and individual reproductive contributions to future generations
(Coulson et al., 2006), and can be estimated annually to
avoid complications related to among-individual variation in
generation length, and helps control for the potential effects
of environmental and ecological variation over an individual’s
lifetime.

We followed Coulson et al. (2006) to estimate individual
contributions to population growth annually rather than by
generation. Because our previous work showed that survival in
rural and urban sites was similar in adults (ϕ = 0.57 + 0.04
SE; Rodewald and Shustack, 2008) and juveniles (ϕ = 0.44; 71
days, n = 45 birds; Ausprey and Rodewald, 2011), we simplified
Coulson’s equation by treating survival in each site as constant
and calculated an individual’s annual contribution to population
growth, pt(i), as the number of offspring produced by female i in
year t [ft(i)] minus the mean ft for that site and year, divided by
the population density (per 10 ha) for that site and year minus
one.

Reproductive contributions were calculated for 470 females in
14 study sites. In order to compare across populations of different
densities, we summed the squared reproductive contributions
across all females breeding within a given site and year [6 =

pt(i)
2]. We then used this sum as a measure of variation in

contribution and also as a response variable in amixedmodel that
included urban index as a fixed effect and site as a random effect.
We also calculated variance in the reproductive contributions
of individual females across years, and used that as a response
variable in a mixed model that included urban index as a fixed
effect and site as a random effect. Two post-hoc tests were used to
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FIGURE 1 | Variance in reproductive contributions of female cardinals

breeding across a rural-to-urban landscape gradient in Ohio, USA from 2004 -

2014. Each point reflects the variation among females breeding within a given

site and year (i.e., sum of squared reproductive contributions).

examine the relationships between numbers of young produced
(response variable) and either body condition of females or
population density, using mixed models with site as a random
effect variable. Sample sizes differ among the tests (see Section
Results) because we did not have morphometric measurements
for every banded female in every year for which we had annual
reproduction, nor reproductive data for every banded female.

RESULTS

Variation in individual contributions to local populations
declined with increasing urbanization [β = −0.08 ± 0.03 SE,
F(1, 90) = 5.41, P =0.02; n = 113; Figure 1], indicating that
the reproductive contributions of females to local populations
were more homogenous in urban than rural sites. However,
despite marked variation in the reproductive contributions of
individuals, the mean number of fledglings produced by females
at a site in a given year was similar across the rural-urban
landscape gradient [F(1, 99) = 0.06; P = 0.81, n= 113; Table 1].

Body condition declined as urbanization increased [β =

−0.49 ± 0.22 SE; F(1, 317) = 5.14, P = 0.02; n = 341], but
variation in body condition among females at the same site
was similar across the rural to urban gradient [F(1, 64) =

0.03, P = 0.86; n = 78]. Thus, despite heterogeneity in the
reproductive contributions of females across the rural-urban
gradient, similar patterns did not emerge with respect to body
condition. In contrast, urban females were more similar in their
reproductive contributions among years than were females in
rural sites [β = −0.03 ± 0.01 SE, F(1, 108) = 7.91, P = 0.01;
n = 122; Figure 2]. Our two post-hoc analyses showed that (1)
body condition was negatively related to number of fledglings
produced in a given year [β = −0.08 + 0.03; F(1, 182) = 5.54; P
= 0.02, n = 204] and (2) density at a site was not significantly
related to fledgling production [F(1, 446) = 0.70; P = 0.40,
n= 470].

TABLE 1 | The urban index and mean (SE) for density, mean number of fledglings

per year, and body condition of female cardinals distributed across 14 forested

sites in central Ohio, 2004–2014. Body condition is the residual from a regression

of mass against a principle component of frame size (i.e., wing and tarsus).

Site Urban index Density (2 ha) Number of

fledglings

Body condition

Ngalena −1.27 1.2 (0.23) 1.3 (0.37) 2.07 (1.83)

Pubhunt −1.15 1.9 (0.17) 2.0 (0.26) −0.41 (0.66)

Prairie −1.12 1.8 (0.23) 2.0 (0.54) 1.31 (0.68)

Creeks −0.71 1.6 (0.28) 1.8 (0.42) −1.04 (1.18)

Sgalena −0.57 2.1 (0.15) 1.1 (0.27) 1.22 (1.02)

Galena −0.48 1.9 (0.21) 2.3 (0.34) 0.12 (1.40)

Elkrun −0.16 4.2 (0.31) 2.1 (0.35) 1.83 (1.62)

Woodside 0.32 2.3 (0.36) 2.0 (0.47) 1.31 (1.04)

Rushrun 0.75 4.4 (0.22) 1.8 (0.17) −1.39 (0.53)

Cherry 0.76 3.3 (0.28) 1.6 (0.33) −0.37 (1.05)

Kenny 0.89 7.3 (0.39) 1.8 (0.35) 0.31 (0.64)

Casto 1.25 3.7 (0.27) 1.9 (0.22) −1.44 (0.91)

Lou 1.26 4.1 (0.33) 1.5 (0.42) 0.94 (1.10)

Tuttle 1.61 4.1 (0.41) 2.1 (0.35) −0.63 (0.62)

FIGURE 2 | Within-individual variance in reproductive contributions for female

cardinals across years at sites distributed along a rural-to-urban landscape

gradient in Ohio, USA from 2004 - 2014. Each point represents the variance

within an individual across years.

DISCUSSION

We found that the annual reproductive contributions of female
cardinals breeding in cities were less variable—both within and
among individuals—than observed among rural females. The
comparatively lower variation in contributions among females
at urban than rural sites was observed despite similar patterns
of among-individual variation in body condition. This finding
implies that the higher variation in reproductive contribution in
rural as compared to urban females was not a consequence of
higher variation in female condition.

Theory suggests that environmental heterogeneity, either
spatially or temporally, should promote variation in reproductive
performance among individuals and the intensity of natural
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selection on phenotype (Wade and Kalisz, 1990; Byers, 2005;
Siepielski et al., 2009, 2011, 2013; MacColl, 2011). Conversely,
in more homogeneous or benign environments, we might
expect reduced variation in the reproductive contributions of
individuals and intensity of natural selection. Although, we
did not measure selection directly, our results are consistent
with the hypothesis that urban environments are more
spatially and temporally homogeneous and/or resource-rich
than rural environments and thereby buffer individuals from
environmental variation and resource shortage in ways that relax
natural selection. Indeed, our prior results in this system show
that urban forests contained 2.5 times more fruit, 2.7 times more
birdfeeders, and 2.5 times more preferred nesting substrate for
cardinals than rural forests (Leston and Rodewald, 2006). High
resource availability in urban as compared to rural forests is also
consistent with our earlier observation that cardinal territories
in urban forests were about one-third the size of those in rural
forests (Rodewald and Shustack, 2008), as expected if territory
size and resource abundance were negatively related (Hixon,
1980; Norton et al., 1982; Smith and Shugart, 1987). Access to
urban-associated resources was also suggested to have reduced
selection on male plumage color in urban vs. rural cardinals
(Rodewald et al., 2011).

In contrast, we failed to support two assumptions about
how resource-rich environments might affect urban populations.
First, although high resource abundance or predictability in
urban areas might be expected to enhance female condition,
we found that female body condition declined as urbanization
increased and that body condition was negatively related to
number of fledglings produced. Such a pattern might arise if
females in resource-rich environments invest more heavily in
reproduction at the expense of future survival or reproduction in
order to take advantage of temporal peaks in resource abundance
(Williams, 1966; Wilson et al., 2007; Tarwater and Arcese, 2017).
Indeed, many birds adjust body condition to balance the risks
of food deprivation and depredation (Rogers, 1987) and when
trading-off future reproduction or survival to invest in current
reproduction (Arcese and Smith, 1988; Tarwater and Arcese,
2017). Whether cardinals engage in such trade-offs remains
uncertain, but previous work in our system shows that urban
cardinals bred earlier than rural birds, and although individuals
that bred early attempted a greater number of nests, there was no
measurable increase in numbers of fledglings due to the high rates
of predation early in the breeding season (Rodewald et al., 2010;
Shustack and Rodewald, 2011). Previous work in our system
also provided evidence that cardinals distribute themselves in
an ideal-free, or “resource-matching” manner, whereby resource-
rich urban sites attain higher densities and support smaller
territories, but perform similarly to individuals at lower density
site in terms of condition, survival and reproduction (Rodewald
and Shustack, 2008). If “faster” life histories are favored in
predictable and/or resource-rich sites, which we have shown
previously occur mainly in our urban study sites, the high
variance in annual reproductive contribution observed among
females in rural sites may simply reflect a wider range of
reproductive tactics employed by females faced with higher
spatial and temporal variation in resources (Williams, 1966;
Wilson et al., 2007; Tarwater and Arcese, 2017). However,

there is also the possibility that there is an advantage to being
lean in urban environments. For example, in resource-rich
environments, the relative benefit of fat reserves may be small
compared to the potential costs of doing so via reduced agility or
ability to evade predators (Rogers, 1987, 2015; Rogers and Smith,
1993).

In contrast to the assumption that resource-rich urban
environmentsmight enhance reproductive success, we found that
urban and rural females had similar reproductive success. This
result may be due to the fact that cardinal density increased in
resource-rich urban areas, but territory size declined (Rodewald
and Shustack, 2008), suggesting an ideal-free distribution of
cardinal territories and reproductive success overall (Fretwell
and Lucas, 1969). Similarly, the resource matching hypothesis
predicts that individual fitness will not differ in rural and urban
sites and is consistent with our finding no effect of site density on
the number of young fledged annually. An ideal-free distribution
of territories and annual reproductive success via resource
matching is also consistent with our earlier results showing no
difference in survival, condition, or reproductive output between
urban and rural environments (Rodewald and Shustack, 2008).
Similar patterns of resource matching have been demonstrated in
many taxa, including birds (Harper, 1982; Recer et al., 1987; Diaz
et al., 1998; Telleria and Perez-Tris, 2003), mammals (Morris,
1994), and fish (Milinski, 1984, 1988; Abrahams, 1989; Gotceitas
and Colgan, 1991).

By driving change in global climate and land cover,
humans create novel ecological conditions that are likely
to drive evolutionary change in species capable of taking
advantage of these “ecological opportunities” (Schluter,
2000; Badyaev et al., 2008; Atwell et al., 2014; Norman and
Christidis, 2016). In particular, to the degree that urbanization
increases environmental heterogeneity, we might expect
populations occupying urban areas to experience increased
variation in reproductive performance, their contributions
to future generations, and the intensity of natural selection
on individual phenotype. In contrast, our results are
consistent with the hypothesis that urban areas represent
more benign or predictable environments than rural areas due
to resource subsidies and habitat homogenization, leading to
a reduction in individual variance in the annual reproductive
contributions among urban as compared to rural females.
These and other results from urbanizing bird populations
(e.g., Badyaev et al., 2008; Atwell et al., 2014; Alberti et al.,
2017) suggest that comparative studies of life history and
morphological evolution in populations distributed across
more and less human-dominated landscapes offer outstanding
opportunities to test for temporal and spatial variation in
the intensity of natural selection and evolution of novel
phenotypes.
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