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Why do we observe so many examples in nature in which individuals routinely delay

or completely forgo their own reproductive opportunities in order to join and remain

within a group? Cooperative breeding theory provides a rich framework with which to

study the factors that may influence the costs and benefits of remaining philopatric as a

non-breeder. This is often viewed as an initial step in the development of costly helping

behavior provided by non-breeding subordinates. Despite many excellent empirical

studies testing key concepts of the theory, there is still debate regarding the relative

importance of various evolutionary forces, suggesting that there may not be a general

explanation but rather a dynamic and taxonomically varied combination of factors

influencing the evolution and maintenance of sociality. Here, we explore two potential

improvements in the study of sociality that could aid in the progress of this field. The first

addresses the fact that empirical studies of social evolution are typically conducted using

either comparative, observational or manipulative methodologies. Instead, we suggest

a holistic approach, whereby observational and experimental studies are designed

with the explicit view of advancing comparative analyses of sociality for the taxon,

and in tandem, where comparative work informs targeted research effort on specific

(usually understudied) species within the lineage. A second improvement relates to the

broadening of tests of cooperative breeding theory to include taxa where subordinates

do not necessarily provide active cooperation within the group. The original bias

toward “helpful subordinates” arose from a focus on terrestrial taxa. However, recent

consideration of other taxa, especially marine taxa, is slowly revealing that the theory

can and should encompass a continuum of cooperative social systems, including those
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where subordinates do not actively help. This review summarizes the major hypotheses

of cooperative breeding theory, one of the dominant frameworks to examine social

evolution, and highlights the potential benefits that a combined methodological approach

and a broader application could provide to the study of sociality.

Keywords: cooperative breeding theory, evolution of sociality, methodology, kinship, ecological constraints,

benefits of philopatry, life-history hypothesis, fish

INTRODUCTION

The animal kingdom contains many examples of species,
including our own, which form surprisingly complex social
structures (Munday et al., 1998; Purcell, 2011; Grueter et al., 2012;
Chapais, 2013; Johnson et al., 2013; Taborsky and Wong, 2017).
The size, structure and composition of these groups can vary both
within and between species, from pair-bonding monogamous
partners (Kleiman, 2011; Servedio et al., 2013) to large and highly
complex societies exhibiting social hierarchies and division of
labor (Duffy and Macdonald, 2010; Nandi et al., 2013). Such
variation in social structure is intriguing as it suggests that there
may be a great diversity of underlying social, ecological or life
history factors that influence the evolution of stable groups and
their maintenance over many generations.

One of the most fascinating cases within the broad spectrum
of sociality is the formation of groups where individuals delay
or forgo their own reproductive opportunities (Clutton-Brock
et al., 2001; Buston, 2003b; Faulkes and Bennett, 2013; Margraf
and Cockburn, 2013). Subordinate members of such groups often
but not always, provide help in raising the offspring of dominant
breeders. When this alloparental care is present in the group
the social system is often referred to as “cooperative breeding.”
Delayed dispersal is widely believed to be the first step in the
evolution of cooperative breeding (Emlen, 1982a; Brown, 1987).
Importantly, the factors influencing an individual’s decision to
delay its dispersal and breeding are often the same as the factors
that select for the evolution of subsequent cooperative actions,
such as alloparental care, territory defense or nest maintenance.
For example, high predation pressure can act as a constraint
on dispersal, driving group formation (as shown experimentally
by Heg et al., 2004a). This same pressure may then select for
individuals who contribute to the collective defense of the group
by increasing their individual chances of survival and future
reproduction (e.g., Heg and Taborsky, 2010; Groenewoud et al.,
2016).

Besides explaining the evolution of group-living and helpful
cooperation in groups, we propose that cooperative breeding
theory can also be applied to explain the evolution and
maintenance of group living even for species where there is no
helpful cooperation. In such groups subordinate group members
may exhibit behaviors that offset or avoid inflicting costs on
dominants (Kokko et al., 2002; Buston and Balshine, 2007; Wong
et al., 2007) such that their overall effect on dominant fitness
is neutral (termed “peaceful cooperation”; Wong et al., 2007).
While such actions may not increase dominant fitness, it still
represents a cost to a subordinate who must assess this against
the benefits gained from remaining within the group. That is,

subordinates in groups, whether or not they actively cooperate
must weigh the costs and benefits of group membership. It
is these costs and benefits that the hypotheses that make up
cooperative breeding theory focus on. Thus, studies investigating
the determinants of group living need not be restricted to
applying cooperative breeding theory only to species where
helping actively occurs.

Notwithstanding the excellent empirical and theoretical work
conducted in this field (e.g., Emlen, 1994; Cockburn, 1996;
Arnold and Owens, 1998; Hatchwell and Komdeur, 2000; Pen
and Weissing, 2000; Buston and Balshine, 2007), the relative
importance of the evolutionary forces at play which influence
the decision of non-breeders to forego their own reproductive
opportunities and remain within a group are still the subject
of much discussion. Advances in understanding have so far
been made through either comparative studies, focusing on
a broad group of taxa, or through more narrowly focused
observational or manipulative work on a more restricted subset
of species in a generally piecemeal fashion. Each methodology
provides important insights into the study system, but they
also have their own unique limitations. A combination of
methodologies will address many of these limitations and give a
more general understanding of the system (Brown, 1974). Indeed,
comparative studies often use data from focused observational
and experimental studies and many researchers have combined
observational and manipulative methodologies to provide
powerful results. However, we contend that combining all three
methodologies under a single framework provides the most
comprehensive approach to studying the evolution of sociality.
The fresh water cichlid Neolamprologus pulcher provides an
excellent example of how many comparative, observational and
experimental studies have provided an extremely robust view
of social evolution and maintenance and challenged terrestrially
derived theories, such as kinship based mechanisms, in being
involved in social evolution (e.g., Wong and Balshine, 2011).
But what does the evolution of sociality in N. pulcher, tell
us about sociality in the (roughly) 50 other species in the
Neolamprologus genus? Can these results be generalized to all
social freshwater fishes or indeed all vertebrates? Interspecies
comparative analyses are the only way that we can answer
such broad evolutionary questions. Obviously, gathering the
observational and experimental data for comparative analysis
of 50 species would represent an extremely time consuming
and costly process. Carefully coordinated collaborations between
research groups could help to spread the research effort. In order
to maximize the impact of any individual piece of research,
focused observational and experimental work should be targeted
toward species within the given lineage which are lacking in
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data and designed with the express view of contributing to
future comparative work. Mapping sociality and traits of interest
onto a phylogeny for the lineage would help to identify suitable
species and can be used to study questions about the evolutionary
origins of sociality and how those traits might have contributed.
Manipulative studies should then be undertaken for the purpose
of assigning causality to the findings of the comparative work.
This approach will allow the comparison of multiple traits across
a lineage and will allow researchers to provide robust answers to
broad evolutionary questions about sociality.

The great variation in factors contributing to social evolution

is likely to differ among species. For this reason it is imperative

that research effort is spread across a large number of species in
order to gain a truly comprehensive understanding of the role
that these factors play in the evolution of sociality. Comparisons
across multiple species would be best performed when focused
observational or experimental data has been gathered under
the same theoretical framework. The majority of studies of
social group living have so far focused on species of birds,
mammals and insects with comparatively little attention given
to ectothermic vertebrates with the exception of one notable
family of freshwater fishes (Elgar, 2015; Figure 1). Inclusion
of understudied animal groups is important for our ability to
assess the universality of frameworks of social evolution and
to gain novel insights as a result, especially when these species
display uncommon traits or unconventional life-histories. For
instance, the ability of many social marine fishes to change sex
may have interesting implications for hypotheses regarding an
individual’s ability to acquire a mate and hence on its decision
disperse or remain within a group. Likewise, comparisons of
long-lived social reptiles and avian lineages could lend support
to hypotheses examining the role that longevity plays in the

evolution of sociality. In this review, we assess the major
theoretical framework in this field, highlight the advantages and
disadvantages of the different methodologies used to test existing
theory, and discuss developments made in less-well studied social
systems with the aim of galvanizing a more holistic integration
of multiple techniques and taxa into future studies of social
evolution.

THEORETICAL FRAMEWORK

Group Living as a Major Transition
The evolution of sociality in animals may be considered as
one of the most recent evolutionary transitions according to
Szathmáry and Smith’s (1995) major evolutionary transitions
theory. This theory examines the idea that major evolutionary
transitions occur when groups of “individuals” come together
to form more complex forms of life. This theory explains the
evolution of all life from individual biological molecules through
to colonies of eusocial multicellular animals (Bourke, 2011). The
evolution of cooperation was a necessary step along the path
toward eusociality. There is a continuum of cooperation among
groupmembers in animal societies and the degree of cooperation
displayed is likely to depend on a range of life-history, social and
ecological factors (Kokko et al., 2002; Buston and Balshine, 2007).

Reproductive Skew Theory
Reproductive skew theory offers a potential general theory
for social evolution through competitive effects and conflict
resolution. Reproductive skew theory views reproduction as a
limited resource and focuses on the distribution of reproductive
shares within the group (Emlen, 1982b; Reeve and Ratnieks, 1993;
Johnstone, 2000). Groups with one or a few dominant breeders

FIGURE 1 | Approximate number of articles published on major animal groups focusing on four key hypotheses of cooperative breeding. Abbreviations are: Kin,

Kinship; Monog, Monogamy; LH, Life-history; EC, Ecological Constraints; BoP, Benefits of Philopatry; FW, Freshwater; M, Marine. Search parameters are available in

Supplementary Table S1. Numbers presented here are intended as approximations only as search parameters were not completely mutually exclusive or exhaustive.
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fall at the “highly skewed” end of the spectrumwhile aggregations
where any individual can breed with any other individual would
be considered to have “low skew.” In this review we will restrict
our discussion to groups with dominant breeders and one or
more non-breeding subordinates, i.e., high reproductive skew
societies.

Cooperative Breeding Theory
Cooperative breeding theory (Brown, 1974) is derived from
Hamilton’s rule (Hamilton, 1964; Grafen, 1982; Bourke,
2014) and describes the evolution of social systems in
which reproductively mature individuals delay their own
independent breeding in order to remain within a group as
non-breeding subordinates and help to raise the offspring of
dominant breeders. Cooperative breeding groups are generally
characterized by high reproductive skew. Offspring of such
groups often, but not always remain on the natal territory and
many groups are therefore comprised of subordinates related
to the dominant breeders, in which case relatedness is high
(in Hamilton’s rule) and the likelihood of cooperative actions
being selectively favored is raised (Bourke, 2014). However, a
growing number of studies have revealed social systems where
non-breeding subordinates disperse to other groups and are
unrelated to the dominant breeders (Double and Cockburn,
2003; Gardner et al., 2003; Awata et al., 2005; Dierkes et al.,
2005; Wong, 2010; Riehl, 2013). In these cases, cooperative
rearing of young may still take place as well as other forms of
cooperative behavior in order to avoid conflict and maintain a
stable group structure (Gardner et al., 2003; Wong et al., 2007).
While these latter groups may not strictly fit the definition of a
cooperatively breeding group if they do not provide alloparental
care, cooperative breeding theory forms a rich framework
with which to assess the circumstances that could lead to an
individuals’ decision to forgo its own reproductive opportunities
and remain in a group as a non-breeding subordinate (Emlen
et al., 1991; Koenig et al., 1992).

Cooperative breeding theory encompasses several non-
mutually exclusive hypotheses for the evolution of sociality
(Table 1). Cooperative breeding theory can be applied to two
broad areas of social behavior—the evolution of group living and
the evolution of cooperation (Koenig et al., 1992). This review
will focus primarily on those studies addressing the evolution
of group living so as to incorporate studies where subordinate
individuals remain in groups but do not provide any active
forms of help to dominant breeders (e.g., Eden, 1987; Gardner
et al., 2003; Wong and Buston, 2013; Buston and Wong, 2014;
Drobniak et al., 2015). In groups where subordinates do not
provide active help, dominant group members may still tolerate
their presence. Actions such as regulation of growthmay facilitate
group stability in groups where active subordinate help is absent
(e.g., Wong et al., 2007). Whether or not help is later provided,
the first step of this evolutionary strategy is an individuals’
decision of whether to disperse and pursue its own breeding
opportunities or to delay such opportunities in order to obtain
the benefits of group living (Emlen, 1982a). Furthermore, the
factors involved in the evolution and maintenance of sociality
and in the development of helping behavior are often the same

(e.g., Groenewoud et al., 2016). The hypotheses comprised within
cooperative breeding theory may therefore be useful to study
social systems in which non-breeding subordinate members
cooperate in some form regardless of relatedness or whether
active help is provided in the care of offspring.

METHODOLOGICAL APPROACHES

Many studies have focused on testing four key hypotheses of
cooperative breeding theory (Table 1) using broad comparisons
of relevant ecological, social and life history variables across
multiple species of birds, mammals and insects (Cockburn,
1996; Arnold and Owens, 1998; Johnson et al., 2002; Purcell,
2011). Essentially, these studies have investigated the evolution
of sociality by phylogenetic comparative analysis, comparing
differences in key variables between multiple social and asocial
species within a given lineage. While such contrasts enable
broad generalizations to be made, they fall short of identifying
causality of effects. In contrast to this methodology, studies
that have tested these hypotheses through refined experimental
manipulation of characteristics associated with the evolution of
sociality (Komdeur, 1992; Baglione et al., 2002; Wong, 2010)
do demonstrate causality, but their necessary focus on just one
or a few species greatly reduces the ability to draw general
conclusions. Therefore, it is through using a combination of
these approaches for a given lineage that holds the potential to
provide an insight into the generality and causality of sociality
across a broad range of species (Figures 1, 2).While many studies
do combine observational and experimental methodologies (e.g.,
Komdeur, 1992; Stiver et al., 2005) we suggest that great advances
could be made by following such work with comparative studies.
This would work most efficiently if the observational and
experimental studies were specifically designed with comparative
analysis in mind.

Comparative Analyses and Syntheses
Comparative analyses are used to compare traits across multiple
taxa or populations across multiple geographic locations and
may range in taxonomic scale from studies within a genus
to studies across phyla (e.g., Blumstein and Armitage, 1999;
Boomsma, 2009; Jetz and Rubenstein, 2011). They may draw
upon the findings of other observational and/or manipulative
studies (Cockburn, 2006) or theymaymake use of novel data (Du
Plessis et al., 1995). Combining this comparative approach with
phylogenetic information is arguably one of the most powerful
methods with which to examine broad evolutionary trends and
patterns (Arnold andOwens, 1998; Briga et al., 2012). Comparing
ecological, life-history, morphological and/or behavioral traits
across multiple taxa in a molecular phylogenetic context may
allow researchers to examine the evolutionary history of many
different attributes and identify ecological, social, morphological
and behavioral differences between social and non-social species
(Ford et al., 1988; Pagel and Harvey, 1988; Arnold and Owens,
1998; Cornwallis et al., 2010). In turn, the differences that are
detected may provide an insight to the conditions under which
sociality (or other traits) may have evolved. In this way, future
observational and experimental studies could be targeted at
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TABLE 1 | Four of the major hypotheses of Cooperative Breeding Theory and the respective key factors proposed to influence the evolution of sociality.

Hypothesis Description Key factors Key predictions Key references

Observational Experimental

Monogamy:

Kinship

Monogamy and natal

philopatry should result in

groups of closely related

individuals providing a context

which may promote

cooperative breeding

Within-group

relatedness (rY)

Subordinate helpers should be

closely related to breeders

Subordinates should

preferentially provide help to

close kin

Removal of subordinates

should reduce fitness of

breeders

Subordinates should

preferentially choose to

settle with or provision kin

over unrelated group

members

Hamilton, 1964; Hughes

et al., 2008; Boomsma,

2009; Cornwallis et al.,

2010; Lukas and

Clutton-Brock, 2012;

Bourke, 2014

Life History Certain suites of life history

traits of a species or lineage,

such as low fecundity and low

mortality rates, lead to habitat

saturation and a shortage of

suitable breeding sites, which

may predispose a species or

lineage to sociality

Reproductive output (X)

life span (Z)

growth rate (Z)

age at first

reproduction (Z)

birth rate : mortality

ratio (X, Z)

Species characterized by low

mortality rates and low fecundity

should be more social than those

characterized by higher mortality

rates and high fecundity

Subordinate removal or

addition should have an

impact on life-history traits

Supplemental feeding

may alter growth rates,

survival or longevity

Rowley and Russell, 1990;

Arnold and Owens, 1998;

Hatchwell and Komdeur,

2000

Ecological Factors:

Costs of Dispersal

Costs of dispersing due to

ecological pressures, such as

high predation rates or low

resource availability promote

delayed dispersal and thereby

restraint from independent

breeding and helping

Predation risk (X)

Habitat saturation (X)

Mate availability (X)

Resource availability (X)

Sociality will be more prevalent in

species or populations

experiencing high constraints on

dispersal

Sociality will be less prevalent in

species or populations

experiencing relaxed constraints

on dispersal

Increasing ecological

constraints should

promote philopatry and

increasing sociality

Decreasing ecological

constraints should

promote dispersal and

decreasing sociality

Selander, 1964; Brown,

1974; Gaston, 1978; Emlen,

1982a; Kokko et al., 2002

Ecological

Factors: Benefits

of Philopatry:

direct and indirect

Direct benefits of remaining on

the natal site, such as

increased protection and

access to high quality habitat

following the death of

dominant, promote sociality

Indirect benefits of remaining

on the natal site, such as

increased fitness and survival

of offspring

Habitat size (X)

Habitat variability (X, Z)

Life span (Z)

Fecundity (X)

inheritance of breeding

status (Z)

Offspring fitness (Z)

Offspring survival (Z)

Social species will live in

environments with high variance

in habitat quality and high levels

of predation risk

Less social species will live in

environments with low variance

in habitat quality

Social species will be found in

areas with high predation risk

Subordinates should inherit

breeding status and/or gain

survival benefits

Subordinates should delay

dispersal when other

available habitats are of

lower quality relevant to

the current habitat

Subordinates should

disperse to pursue

independent breeding

opportunities when higher

quality habitat is available

Woolfenden, 1975; Stacey

and Ligon, 1991; Kokko

and Ekman, 2002;

Taborsky, 2016

Hamilton’s rule describes the conditions under which a cooperative action will be favored: Xi + rYi + fZi > Xj + rYj + fZj , where X, Y and Z are present direct benefits, indirect benefits

and future direct benefits respectively. r is the relatedness between the actor and recipient of an action and f is the probability of inheritance. i and j denote the effects of a cooperative

act (e.g., staying and helping) and non-cooperative act (e.g., dispersing) respectively. Parentheses in the Key Factors column indicate the relevant parameters of Hamilton’s rule.

specific sets of species within the lineage showing variation in
sociality and traits of interest. Understanding the causes of these
variations (only achievable through experimental manipulations)
could provide specific mechanisms that have caused the observed
social systems in these socially contrasting species.

One issue arising from the comparison of a trait across
multiple taxa within a given lineage is that the individual
species are part of a hierarchical structure. That is, they are
related by a common ancestor and therefore not independent.
Felsenstein (1985) discussed this issue and proposed a method
to overcome the non-independence of species which he terms
“phylogenetically independent contrasts.” Essentially, while the
species themselves may not be independent, the contrast (or
difference) between pairs of species in the trait being measured
is independent. This method requires a fully resolved phylogeny

of the lineage and a model of evolutionary change. Other authors
have since improved upon this method to enable the use of
partially resolved phylogenies (Garland et al., 1992; Pagel, 1999;
Freckleton et al., 2002). For this reason, comparative analyses
are particularly well suited to taxa with well-studied phylogenies
or for which genetic material can be easily obtained. Thus far,
the majority of comparative studies have focused on terrestrial
taxa which has resulted in many great advancements in the field
(Brown, 1974; Arnold and Owens, 1998; Boomsma, 2009; Riehl,
2013). However, marine organisms are relatively understudied in
terms of comparative work, which is unfortunate as they offer a
rich diversity of social organization and varied ecological niches
and life-history strategies with which to explore the various
hypotheses of social evolution and maintenance (McLaren, 1967;
Gowans et al., 2001; Duffy and Macdonald, 2010; Wong and
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FIGURE 2 | Approximate number of articles published on each of the major

hypotheses using comparative, observational and experimental

methodologies. Abbreviations are: Kin, Kinship; Monog, Monogamy; LH,

Life-history; EC, Ecological Constraints; BoP, Benefits of Philopatry. Search

parameters are available in Supplementary Table S1. Numbers presented here

are intended as approximations only as search parameters were not

completely mutually exclusive or exhaustive.

Buston, 2013). Given the great variety of social organization
displayed in these organisms, there is clearly enormous potential
to test and challenge terrestrially derived cooperative breeding
hypotheses under novel conditions.

A variety of studies have so far demonstrated the increasing
availability and ease of phylogenetic analyses as a powerful
tool to conduct comparisons across multiple taxa. Arnold
and Owens (1998) employed this technique in a comparative
analysis of 9,672 bird species representing 139 families to
demonstrate that cooperative breeding was not randomly
distributed amongst avian taxa, and in fact showed an uneven
geographic distribution of “hotspots” of cooperatively breeding
species which the authors considered could infer some common
biological predisposition to this system. Similarly, Edwards and
Naeem (1993) found that cooperative breeding in birds was
not randomly distributed among taxa in a meta-analysis of
avian cooperative breeding including phylogenetic simulations
of ancestral states. Most recently, this non-random phylogenetic
distribution of cooperative breeding amongst avian taxa has
been confirmed in a comprehensive review of modes of parental
care amongst the avian phylogeny (Cockburn, 2006). Another
phylogenetic comparison of 44 species of mammals found
that there was a strong phylogenetic signal for allomaternal
care (multiple females assisting a dominant female in maternal
care duties), in other words, that cooperative breeding in the
form of allomaternal care was strongly clustered (Briga et al.,
2012). This finding is similar to the non-random phylogenetic
distribution of cooperative breeding observed in birds (Edwards
and Naeem, 1993; Arnold and Owens, 1998; Cockburn, 2006)
suggesting that cooperative breeding is strongly clustered in
birds and mammals. These studies demonstrate the effectiveness
of phylogenetic comparative analyses for uncovering broad

trends acrossmultiple species.Withmolecular genetic techniques
becoming increasingly available, it is more feasible for researchers
to conduct phylogenetic comparative studies and to incorporate
them into a research program alongside observational and
experimental studies. The piecemeal approach widely used at the
time of writing, while highly effective at advancing our knowledge
of the evolution of sociality, could be made more efficient if finer
scale observations and experiments were specifically designed
around planned comparative work. This comparative work can
then be used to more effectively target research effort on sets of
species which contrast in their degree of sociality and in other
traits of interest.

Monogamy and Kinship
Studies of the relationship between monogamy, kinship and
sociality have championed the use of phylogenetic comparative
analysis to test entrenched theory. In particular, the idea that
monogamous breeding systems lead to high levels of relatedness
amongst subordinates which in turn promotes sociality has
been suggested comparatively for insect, bird and mammalian
societies (Hughes et al., 2008; Boomsma, 2009; Cornwallis et al.,
2010; Lukas and Clutton-Brock, 2012). For example, Cornwallis
et al. (2010) conducted a comparative analysis of 267 birds and
showed that species displaying high levels of promiscuity (i.e.,
polygamous species) were less likely to transition to cooperatively
breeding systems. Furthermore, this study showed that lineages
that evolved cooperative breeding systems and subsequently
reverted to independent breeding systems hadmore promiscuous
ancestors (Cornwallis et al., 2010). Similarly, Hughes et al.
(2008) concluded that monogamy was critical in the evolution
of eusociality in a comparative analysis of 267 species of eusocial
bees, ants and wasps. Boomsma (2009) later reviewedmonogamy
and eusociality in insects and found that all of the evidence at the
time of writing indicated that eusocial insect societies with sterile
worker castes only arose in lineages with monogamous parents.

High levels of kinship due to monogamous associations may
certainly predispose a species to cooperative breeding, but the
emerging number of cases of cooperative breeding amongst
unrelated group members suggests that direct benefits from
group living and cooperation must be considered (Riehl, 2013;
Bourke, 2014). In a review of 213 cooperatively breeding birds,
Riehl (2013) suggested that as much as 15% of these species
nest with unrelated individuals. These individuals are clearly not
gaining inclusive fitness benefits and must therefore be accruing
sufficient direct benefits, either presently or in the future, to offset
the costs associated with group living. However, the majority of
species in this study did nest with related individuals. Therefore,
monogamy and kinship likely played a significant role in the
evolution of cooperative breeding in these species. It should also
be noted that living in groups of close kin may involve costs due
to deleterious inbreeding effects and many group living species
have developed behaviors to avoid this (costs of inbreeding are
discussed in Lubin and Bilde, 2007). Thus far little comparative
work has taken place to examine the evolution of sociality
amongst groups of unrelated individuals (but see Groenewoud
et al., 2016 for an intraspecific comparative analysis). Social
marine species with a pelagic larval stage present an excellent
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avenue for future comparative work in this area as the mixing
of larvae in the water column makes settlement in family groups
highly unlikely.

Comparative studies have substantially contributed to our
understanding of the role that kinship and monogamy has
played in promoting the evolution of sociality. However, there
is a bias toward terrestrial taxa in the comparative literature
which confines our understanding of the factors involved in
the evolution of group living to relatively conventional breeding
strategies (Figure 1). Social marine fishes are particularly
interesting as many species undergo a pelagic stage in their
life-cycles, whereby larvae are mixed in the water column and
eventually settle onto a habitat. This mixing of larvae means
that social groups formed by these species are unlikely to consist
of related individuals (Avise and Shapiro, 1986; Buston et al.,
2007, 2009). Cooperative rearing of young does not appear to
occur in the species studied to date which supports the idea that
kinship is a major factor in the evolution of helping but may
be less influential in the development of group living. Direct
fitness benefits however, likely play a greater role in social group
formation and maintenance in these species (Wong and Buston,
2013; Buston and Wong, 2014) and there is a need for more
comparative studies focusing on these benefits and their role in
the evolution of sociality. In any case, such examples of non-kin
social groups are the minority in terrestrial systems which have
typically shown strong support for monogamy and kin selection
as key factors in the evolution of group living and cooperative
breeding.

Life-History Hypothesis
Akin to the reasoning that monogamy creates the necessary
conditions for cooperative breeding to evolve through kinship
based mechanisms, life-history traits such as longevity are
thought to promote favorable ecological conditions for the
evolution of sociality. Comparative work in this field has
informed much of the debate surrounding the life-history
hypothesis. Based on their comparative analysis, Arnold and
Owens (1998) proposed that low annual mortality was the
main factor predisposing avian species to cooperative breeding—
a key prediction of the life-history hypothesis (Table 1).
This proposition was questioned by Blumstein and Moller
(2008) based on their comparative study of 257 North
American birds. Their study controlled for body mass, sampling
effort, latitude, mortality rate, migration distance and age at
first reproduction (factors which Arnold and Owens, 1998;
had not accounted for), and found no association between
sociality and increased longevity per se. Blumstein and Moller
(2008) note however, that longevity and sociality are often
confounded with other life-history factors, such as reproductive
suppression, delayed breeding, increased parental care and
survival, suggesting the need for further comparative research
into these factors. Similarly, a more recent comparative meta-
analysis of mammalian phylogenies found no support for
longevity playing a part in the transition from independent
breeding to cooperative breeding in mammals (Lukas and
Clutton-Brock, 2012). Instead, they found that cooperative
breeding only occurred in mammalian lineages displaying

monogamy and polytocy (multiple offspring per birth). However,
using Australian Scincid lizards (genus Egernia) as model species,
Chapple (2003) demonstrated that several species of this genus
were shown to exhibit life-history traits (increased longevity and
age at maturity) associated with similar levels of sociality to those
found in avian taxa, suggesting that life history traits could still
play a role in some vertebrate groups. From these varied results it
seems clear that the role that life-history plays in the evolution of
group living is likely to be taxonomically specific which highlights
the need to assess life-history factors and sociality across a broad
range of taxa and to incorporate species which display unusual
life-history strategies.

Besides the latter example, there appears to be relatively little
support for the life history hypothesis, at least from comparative
studies. However, the majority of comparative analyses have
focused on the relationship between longevity and sociality, a
single case among a myriad of potential life-history traits that
could have influenced the evolution of sociality (Blumstein and
Moller, 2008). Given the potential role that life-history traits may
have played in setting the stage for the evolution of sociality,
phylogenetically independent contrasts across multiple species
combined with more focused observational and experimental
(where possible) studies would be a useful method for future
research in this area. Also, species with less conventional life-
history strategies, such as small body size, high mortality rates,
sex change and indeterminate growth, all traits exhibited by
a range of marine fishes (Munday and Jones, 1998; Munday
et al., 1998; Wong et al., 2005; Depczynski and Bellwood, 2006),
have thus far received little attention (Figure 1). To this end,
social habitat specialist fishes wouldmake particularly good study
species for comparative analysis, especially given that several
groups have already well resolved phylogenies (e.g., Herler et al.,
2009; Thacker and Roje, 2011; Duchene et al., 2013).

Ecological Factors
While monogamy and life-history traits may create ideal
conditions for social evolution, ecological factors may ultimately
determine which species display social behavior. Comparative
analyses are ideal for the study of large scale environmental
influences on the evolution of sociality since their very aim is to
compare patterns across multiple taxa or within a single species
over large geographic areas. Such analyses have demonstrated
that there is a non-random geographic distribution of sociality
in a variety of taxa (Jetz and Rubenstein, 2011; Purcell, 2011).
For example, Purcell (2011) conducted an extensive review of the
literature pertaining to arthropod sociality along latitudinal and
altitudinal gradients, and reanalyzed five previous case studies of
social spiders and four ant subfamilies. It was found that climatic
factors were correlated with variation in colony size, with social
arthropod species occurring more frequently at lower latitudes.
Such geographic hot-spotting of cooperative breeding was also
recognized by Jetz and Rubenstein (2011), who conducted a
global comparative analysis of sociality for 95% of the world’s
bird species. They found that temporal (among-year) variability
in precipitation was a major predictor of the occurrence
of cooperative breeding. Together, these studies demonstrate
the effectiveness of comparative analyses in identifying likely
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environmental factors involved in the evolution of sociality,
suggesting that broad scale environmental characteristics, such
as rainfall, temperature, predator abundance and the size and
availability of food resources may be important in the evolution
of sociality in a diverse range of animals.

Some comparative studies have also shown that cooperative
breeders are more likely to occur in temporally variable
(unstable) environments (Rowley, 1968; Grimes, 1976; Jetz
and Rubenstein, 2011). In contrast, other studies have shown
a greater occurrence of cooperatively breeding species in
less temporally variable (stable) environments (Brown, 1974;
Ricklefs, 1975; Woolfenden, 1975; Ford et al., 1988). Emlen
(1982a) sought to reconcile this discrepancy in ecological
observations of cooperatively breeding birds with his ecological
constraints model. The ecological constraints hypothesis focuses
on the ecological characteristics of a species’ environment
that may prevent group members from dispersing (Emlen,
1982a). Emlen (1982a) proposed that the common thread in
these opposing observations was that individuals were faced
with the decision of either dispersing to pursue independent
breeding opportunities or to remain at the nest as a non-
breeding subordinate. Either environmental condition (stable
or unstable) could sufficiently restrict an individual’s success
in dispersing and pursuing independent breeding opportunities
and thus “force” them to remain at the nest. For example,
in stable environments, populations of animals may expand
and preferable breeding habitat could quickly become saturated
(e.g., Schradin and Pillay, 2005). In this situation, dispersal due
to limited opportunities for successful independent breeding
options is constrained. Alternatively, in unstable environments,
the benefits of remaining at the nest may be greater than
dispersing and rearing young independently, which is what
Stacey and Ligon (1991) subsequently coined as the benefits of
philopatry hypothesis.

Environmental variability is likely linked to the availability
of food resources which has also been shown to be a constraint
on dispersal and hence a factor of interest in the evolution
of cooperative breeding (Rubenstein and Lovette, 2007). A
comparative analysis conducted by Du Plessis et al. (1995)
investigated 217 South African birds comprising 175 non-
cooperative breeding species and 25 obligate and 17 facultative
cooperative breeding species. Based on the findings of their study,
Du Plessis et al. (1995) proposed that obligate and facultative
cooperative breeding systems had evolved independently under
different ecological circumstances. Obligate cooperative breeders
tended to live in predictable habitats where year-round food
availability was sufficient to sustain permanent groups and
benefited by increasing survival from predation. Facultative
cooperative breeders, on the other hand, lived in less predictable
environments where food limitations negated the formation of
stable groups, with cooperative breeding occurring in years of
higher food availability, suggesting that benefits gained were
predominantly related to reproduction rather than survival.

Many of the comparative analyses discussed thus far have
focused on broad scale environmental patterns, and the
availability of resources. One area that appears to be distinctly
lacking is risks of dispersal. One notable exception to this

observation is an intraspecific comparative analysis of the African
cichlid Neolamprologus pulcher by Groenewoud et al. (2016)
which examined predation risk and its interaction with other
ecological factors such as shelter availability and population
density across eight populations. This study concluded that
predation risk was a significant driver of group formation and
the evolution of complex social behavior. Comparative analyses
appear to be well suited to examine risks of dispersal as a
mechanism of ecological constraint on dispersal. For example,
one might expect that dispersal would be more risky in arid
environments where foraging success is enhanced by group size,
as predicted in the aridity food-distribution hypothesis (Faulkes
et al., 1997; Spinks et al., 2000; Ebensperger, 2001). Aridity is a
large-scale environmental factor linked to precipitation which, as
previously discussed, has been well studied through comparative
analyses. While the paucity of comparative studies specifically
addressing dispersal risk appears to be a significant gap in the
literature, it should be noted that some comparative analyses may
touch on risks of dispersal through other mechanisms such as
increased benefits of philopatry gained through predator defense
(e.g., Ebensperger, 2001). Such constraints on dispersal may also
increase the benefits of remaining philopatric through increased
survival.

Benefits of philopatry can be gained through either direct
fitness benefits (e.g., survival, growth, predator detection,
dilution or competitive advantage) or indirect benefits (e.g.,
increased fitness and survival of offspring). While many
comparative analyses have examined the ecological factors
that constrain dispersal and hence promote natal philopatry
(Emlen, 1994; Hatchwell and Komdeur, 2000; Lucia et al.,
2008), none have explicitly focused on the benefits of philopatry
hypothesis on its own. Instead, discussion of benefit based
mechanisms of social evolution and maintenance are from
studies examining the effects of multiple ecological factors.
Much support for benefit based models has come from
the mammalian literature, especially rodents, particularly in
relation to the thermoregulatory benefits of huddling (Hayes,
2000; Ebensperger, 2001; Solomon, 2003). Ebensperger (2001)
suggested that comparative methods should be used for future
studies of the evolution of rodent sociality and that they should
simultaneously weigh the constraints and benefits associated with
group living. The concept that these hypotheses are not mutually
exclusive led Hayes (2000) to propose a “pup defense—animal
density hypothesis” in a review of communal nesting in rodents.
This hypothesis explores the idea that the benefit of pup defense
generally increases with group size (Manning et al., 1995), but
this benefit must be weighed against the potential constraint of
the increased probability of infanticide by conspecifics locating
the nest, which is more likely at higher animal densities (Wolff,
1997).

It is clear that ecological factors are influential in determining
the costs and benefits of remaining philopatric and hence
group-living, though much debate remains over which particular
ecological factors provide sufficient benefits or constraints for
sociality and subsequent cooperative breeding to evolve and be
maintained. Comparative analyses have proven a useful tool with
which to identify these benefits and constraints as cooperative
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breeding species likely share similar benefits or occupy similar
ecological niches.

Other Hypotheses
Much of the work discussed thus far has focused on the
roles of kinship, life-history and ecological factors. While these
factors tend to dominate the literature (Figure 2), there are
alternative hypotheses such as group augmentation (Kokko
et al., 2001), which examines the benefits conferred to breeders
in the group from maintaining a number of subordinate
helpers at the nest (i.e., breeders actively recruit or even
kidnap subordinate group members) rather than focusing on
constraints placed upon subordinate dispersal from a group,
or the ecologically-associated benefits conferred to subordinates
of remaining at the nest. Such alternative hypotheses should
also be considered when examining mechanisms of social
evolution. Thus far, no comparative analyses have explicitly
addressed group augmentation as a mechanism of social
evolution and maintenance, but the hypothesis was the subject
of a review by Kingma et al. (2014) who formalized a clear
conceptual framework to guide future empirical work in the
area. Several comparative studies have also alluded to group
augmentation effects such as increased survival (and hence
greater lifetime reproductive output) through group defense or
predator detection (the “many eyes hypothesis”) (Ebensperger,
2001; Ridley and van den Heuvel, 2012).

Multiple Factors
Although the ecological constraints, benefits of philopatry and
life-history hypotheses have so far been dealt with separately
in this review, it is important to note, as many of these
studies have done, that ecological and life-history factors are not
mutually exclusive and often act in concert and alongside other
evolutionary selective forces. Multiple factors likely have varying
influences on different species. It is therefore paramount that
these factors are studied in concert across a range of lineages if
we are to gain a truly representative view of how sociality evolved
and is maintained. Comparative analyses and syntheses are well
placed to advance the study of social evolution in this way.

For example, the comparative analysis conducted by Arnold
and Owens (1998) suggested that while life-history traits such
as longevity predisposed avian lineages to cooperative breeding,
ecological constraints might then determine which species
would benefit from cooperative breeding behavior (and hence
determine whether cooperative breeding was actually expressed
in a given lineage). While this explanation accounted for the
patchy phylogenetic distribution of cooperative breeding, it did
not fully explain why species within the same lineages varied
so markedly in their social behavior. Hatchwell and Komdeur
(2000) coined a “broad constraints hypothesis,” whereby life-
history traits and ecological constraints acted together causing a
broad constraint on the turn-over of breeding opportunities of
a species, a concept originally proposed by Ricklefs (1975). This
broad constraints approach was also echoed by Solomon (2003)
in a review of factors influencing philopatry in rodents. These
studies show that broad constraints on breeding opportunities
explain the variation in cooperative behavior observed in species

exhibiting similar life histories and inhabiting similar ecological
niches. Blumstein and Armitage (1999) argued that ecological
factors such as harsh environmental conditions, and food
availability drove life-history characteristics such as growth rates
and age of maturation. They found that marmots living in harsh
environments delayed dispersal past a reproductive maturity
index which resulted in the formation of extended family groups,
further highlighting the link between ecological factors and life-
history in the formation of family groups.

Although these examples demonstrate the effectiveness of
comparative analyses in studying multiple factors of social
evolution, to date they have only focused on the interplay of
ecological and life-history traits. There is clearly a need for more
comparative studies focusing on integrating additional factors
as well, such as kinship and group augmentation (Figure 2).
Furthermore, comparative studies are not capable of showing
causation. To gain this level of understanding researchers should
aim to follow comparative work with manipulative experiments.
The comparative analysis can be used to target these experiments
at sets of species contrasting in sociality.

Observational Studies
Observational studies covered in this section refer to those
that are correlative and focus on a small subset of species,
often a single species, as opposed to the comparative analyses
which examine broad scale patterns across multiple taxa or
manipulative experiments which are capable of demonstrating
causality. For these reasons, observational studies should be
augmented by comparative and experimental work to gain
a holistic view of social evolution. Observational studies are
particularly well suited to investigating animals which live in
groups on discrete habitat patches or well defined territories (e.g.,
Nam et al., 2010; Marino et al., 2012). Similar to comparative
analyses, there is a pervading taxonomic bias in observational
studies leaning toward terrestrial taxa (Figure 1). Species with
less conventional life-histories, often seen in marine taxa,
are relatively understudied yet could shed new light on the
evolution and maintenance of sociality. Habitat specialist fish
are particularly well suited to observational work as they are
widely distributed on coral reefs, display a wide variety of social
organization and live on discrete habitat patches (Buston, 2003b;
Wong et al., 2005). Additionally, many are demersal spawners
and as such provide a convenient measure of fecundity through
egg counts (Herler et al., 2011).

Finer scale observational studies are useful for examining
intraspecific variation in cooperative breeding behavior, which
may be overlooked in comparative analyses (Schradin and Pillay,
2005; Sorato et al., 2012). Additionally, the comparative analyses
discussed above often rely on the data provided by finer scale
observational studies. For example, Cockburn’s (1996) breeding
data was compiled from 20 different studies in order to compare
ecological correlates of cooperative breeding in a group of
Australian birds (Table 1 in Cockburn, 1996). Alternatively,
other studies such as Ridley and van den Heuvel (2012) have
used comparative methods to identify a trend to focus on and
subsequently conduct finer scale observational analyses. In both
methodologies, detailed observational data from a subset of
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species has played a key role in informing discussion on the
evolution of sociality. Furthermore, many observational studies
can be performed over large temporal scales (e.g., Rubenstein,
2011; Marino et al., 2012), which is often logistically impractical
for experimental manipulations and typically outside of the
aims of such research (though multi-generational experimental
manipulations may be an option for researchers wishing to
demonstrate evolutionary mechanisms). Such long-term data is
extremely important in the study of sociality, especially when
species are subjected to seasonal or other temporal fluctuations
in their ecology or behavior.

Monogamy and Kinship
Kinship based models of cooperative breeding propose that
helpers should maximize their indirect genetic benefits by
preferentially helping descendent or close kin. Testing this
hypothesis requires knowledge of the relatedness of individuals
in a population. This can be achieved through observation of
group history of the study population or by inferring relatedness
by comparing genetic markers. Microsatellite markers have
thus far tended to be the preferred tool for genetic inference
of relatedness. However, more recently, single nucleotide
polymorphisms (SNP’s) have emerged as a potential alternative
as the markers tend to be cheaper and easier to develop
than microsatellites (Weinman et al., 2015). Genetic inference
of pedigree is not always straightforward, especially when
researchers have difficulty in determining the relative frequency
of kin/non-kin in the population, which is often the case in wild
populations in which the dispersal or settlement of offspring
cannot be directly observed (e.g., fish with a pelagic larval
phase). Combining observations of group history with genetic
inference is an effective method of determining relatedness
and many studies have used this approach (e.g., Wright et al.,
1999; Legge, 2000; Clutton-Brock et al., 2001; Dierkes et al.,
2005). However, when such observational data is not available,
researchers must rely on genetic tools alone (e.g., Buston et al.,
2009). A number of estimators of pair-wise relatedness have
been proposed (Lynch and Ritland, 1999; Van De Casteele et al.,
2001), but these estimators still rely on sound knowledge of the
true frequency distribution of relationship in the population in
order to determine the likelihood that two individuals are indeed
related (Buston et al., 2009, Supplementary Material). If this
requirement can be fulfilled, genetic inference of relatedness is
a powerful method for studying the effects of kinship on the
evolution of sociality.

These methods have been used to demonstrate preferential
provisioning of close kin in many species such as long-tailed
tits (Nam et al., 2010), carrion crows (Canestrari et al., 2005),
and gray mouse lemurs (Eberle and Kappeler, 2006). However,
there is some ambiguity as to whether related individuals actively
choose to remain philopatric and provision care to related young
in order to maximize indirect benefits, or whether family groups
form due to some direct benefit of remaining at the natal habitat
and the provision of help to close kin is merely a result of
nesting in family groups. Observational studies have played a
key role in informing this debate. For example, Nam et al.
(2010) examined the investment of helpers of the cooperatively

breeding long-tailed tit, Aegithalos caudatus, using group history
pedigrees and microsatellite genotypes from a 14 year field study
to show that investment by helpers increased with relatedness.
Likewise, Bruintjes et al. (2011) found that subordinate cichlids,
Neolamprologus pulcher, raised their levels of helping behavior
when they had bred successfully and their offspring were present
in the clutch. In another observational study, Canestrari et al.
(2005) found that among a cooperative breeding population of
carrion crows, Corvus corone corone, genetic parents fed chicks at
greater rates than helpers with no parentage. However, the nests
often contained the offspring of several breeding individuals, and
the amount of feeding was not proportional to the number of
offspring in the nest. This may indicate that carrion crows do
not have a mechanism to recognize close kin and/or that costs
associated with provisioning unrelated chicks may be low.

Conversely, in mammalian lineages, cooperative breeding in
the form of allosuckling represents a high energetic investment
to mothers. Eberle and Kappeler (2006) documented this
behavior during a long-term observational study of a population
of gray mouse lemurs (Microcebus murinus). Microsatellite
analyses showed that groups consisted of related individuals
and their observations showed a high mortality rate of both
adults and juveniles in this species. Eberle and Kappeler’s
(2006) study indicated that female gray mouse lemurs possess a
kin recognition mechanism, regularly discriminating their own
offspring over the offspring of other females in communal nests,
but provisioned allomaternal care and in some instances, adopted
the young of other related individuals in the case of their mother’s
death. The provision of care however, was more often directed
toward direct descendent pups and pups suckled more at their
own mothers. Eberle and Kappeler (2006) concluded that kin
selection was most likely the main selective force behind this
cooperative breeding system which provided “family insurance”
in the face of high mortality risk in this species.

In contrast, other observational studies have found little
evidence to support a relationship between relatedness and
helping behavior (Wright et al., 1999; Legge, 2000; Clutton-
Brock et al., 2001; Wong et al., 2012). For example, in a six year
observational study of meerkats (Suricata suricatta), Clutton-
Brock et al. (2001) assessed the individual contributions of
helpers toward relatives. They found that individual variation
in the amount of food that helpers gave to pups was related to
individual foraging success, sex and age rather than relatedness
to the pups. Similarly, in a population of Arabian babblers,
Turdiodes squamiceps, Wright et al. (1999) found little effect of
relatedness on feeding rates or load sizes using three different
measures of relatedness. Cooperatively breeding kookaburras
(Dacelo novaeguineae) also did not invest in higher provisioning
or incubation at nests of related individuals (Legge, 2000).
Instead, individuals in larger groups provisioned less food to
chicks regardless of relatedness. Since food provision represents
a high energetic cost in this species, Legge (2000) believed that
larger groups of kookaburras may gain direct fitness benefits
through higher survival and hence greater life-time reproduction
by “load lightening” when more helpers were available rather
than indirect genetic benefits via kin selection. Similarly, Wong
et al. (2012) found that while helpers were indeed more related to
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breeders in monogamous than polygynous mating systems, they
did not provide more help in the cooperatively breeding cichlid,
Neolamprologus pulcher. However, Stiver et al. (2005) found that
other factors acted alongside kinship effects to determine helping
behavior in the same species. They showed that relatedness,
although not the only driver in helping behavior, still plays a role
in the amount of help provided by subordinate N. pulcher.

It is evident from these studies and others that the evolution
of sociality through kinship based processes is likely to be species
specific. However, the true specificity of these processes cannot be
determined unless subsequent comparative work is undertaken.
Furthermore, the question of whether the provisioning of
close kin is a cause or a consequence of kinship based
group formation can only be disentangled using manipulative
experiments. Nevertheless, these observational studies highlight
the importance of the relationship between genetic relatedness
and helping behavior, uncovered using either group history
information, genetic inference or both, to examine whether
kinship might have been a driver of sociality in these species.

Life-History Hypothesis
The importance of longevity in the evolution of cooperative
breeding has been demonstrated by Rowley and Russell (1990)
in a long term observational study of Splendid Fairy-Wrens
(Malurus splendens). In this study, Rowley and Russell (1990)
monitored color banded groups of Splendid Fairy-wrens (long-
lived cooperative breeders) between 1973 and 1987. Rowley
and Russell (1990) pointed out that the available habitat tends
to become saturated in longer lived species which restricts
independent breeding opportunities. In a study conducted on
Australian skinks, Egernia stokesii, Duffield and Bull (2002)
highlighted the similarity in life-history characteristics and
group formation in cooperatively breeding birds and mammals.
Duffield and Bull (2002) considered that the longevity of these
skinks caused the finite number of available rock crevices to
become saturated, constraining dispersal and promoting group
living. Kent and Simpson (1992) also describe eusociality in a
particularly long lived beetle, Autroplatypus incompertus, though
it is not clear whether this longevity is a cause of the social
structure.

Theoretically, the rate of development may also influence
the evolution of sociality through delayed dispersal as animals
exhibiting slower development and lower growth rates likely
require extended parental care (Solomon, 2003). While there
is some support for this hypothesis (Burda, 1990), several
observational studies of growth rates in mammals tend to
view this life-history trait as a consequence of sociality rather
than a potential cause (Oli and Armitage, 2003; Hodge, 2005).
Nevertheless, these studies show the usefulness of observational
methodology in informing discussions surrounding the role that
life-history traits may or may not have played in the evolution
of sociality. However, as observational studies are not able to
show causality, it is difficult to determine whether changes
in life-history are a cause or a consequence of sociality. This
limitation may be mitigated if the observational work is later
tested with experimental manipulations. Supplemental feeding or
food restriction experiments (e.g., Wong et al., 2008b; Bruintjes

et al., 2010 respectively) may be capable of altering growth
rates or overall body condition and hence longevity in some
species and as such may be capable of disentangling cause from
consequence especially if it is possible to maintain over multiple
generations. The relative ease with which observational studies
can be conducted over long periods makes them a valuable
method to use to study the role of life-history traits in the
evolution of group living and complex social behavior.

Ecological Factors
Finer scale observational studies are also excellent for examining
ecological correlates of sociality such as predation risk and habitat
saturation. Since such studies usually occur in situ, they are
valuable for providing a view of the relationship between sociality
and ecology under natural conditions. Sorato et al. (2012)
investigated the effects of predation risk on foraging behavior
and group size in the chestnut-crowned babbler, Pomatostomus
ruficeps, and found that larger groups were less likely to be
attacked by a predator. Sorato et al. (2012) proposed that
predation was therefore likely to be a key factor promoting
the evolution of group living in Pomatostomus ruficeps. Curry
(1989) examined patterns of sociality and habitat availability
amongst four species of allopatric Galapagos mockingbirds
(Nesomimus spp.) and found that species constrained by a lack
of available habitat maintained cooperatively breeding social
groups. Similarly, Schradin and Pillay (2005) found that group
formation in arid populations of the African striped mouse,
Rhabdomys pumilio, was likely caused by habitat saturation. They
also suggest that group living benefits such as increased vigilance
against predators and thermoregulation could be important
factors in promoting philopatric behavior.

As is the case for comparative analyses, there appear to be
fewer observational studies examining the effects of dispersal
risk on delayed dispersal in terrestrial taxa. Waser et al. (1994)
pointed out the absence of a parameter estimating the probability
of dispersing successfully in the cooperative breeding literature.
However, the authors believe that estimates of the survival rate
of emigrants and philopatric animals could be calculated from
existing census data and behavioral observations to estimate such
a parameter. Waser et al. (1994) demonstrated the effectiveness
of this approach using data from a number of observational
studies on dwarf mongooses,Helogale parvula (Rood, 1983, 1987,
1990; Creel and Waser, 1994). This study showed that in this
species, older and more experienced individuals had greater
dispersal success. Surprisingly, given that dwarf mongooses
are monomorphic, the study also showed that males had
greater survival after dispersing than females indicating a lower
dispersal risk for males than for females. Therefore, census and
behavioral observation data will certainly be vital for continued
advancement in this field, as risks of dispersal are likely to play a
role in group formation in a range of taxa.

Habitat specialist fishes for example, provide an excellent
opportunity to test such hypotheses under novel circumstances
as many of these species are sequential or bi-directional
hermaphrodites (Nakashima et al., 1996; Buston, 2004b) and few
congregate in groups of related individuals. Such a varied life-
history, rarely observed in terrestrial taxa, means that indirect
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genetic benefits are unlikely to be key factors in the evolution and
maintenance of sociality in these species. As such, these species
provide a novel system in which to explore the enhanced role
that ecological constraints and direct benefits could contribute
to the evolution and maintenance of sociality. For example, a
recent observational study by Groenewoud et al. (2016) showed
that predation risk was a significant constraint on dispersal
in the cooperatively breeding cichlid Neolamprologus pulcher.
A lack of available habitat to disperse to may also pose a
substantial risk to a subordinate considering dispersal. Buston
(2003a) showed that dominant clown anemonefish (Amphiprion
percula) strictly regulate the number of subordinates in their
group. A subordinate considering dispersal from the group
would therefore need to gauge its likelihood of being allowed
entry to a new group. Buston (2004b) further showed that
subordinate A. percula form a perfect queue for a breeding
position in the group and stand to inherit the breeding territory.
In this species and likely other habitat specialist fish which form
dominance hierarchies, the benefits of remaining philopatric
(territory inheritance) may help to explain the evolution of group
formation, especially when there are substantial risks of dispersal
(Buston, 2004b; Wong, 2011; but see Mitchell, 2005). The ability
of many species of habitat specialist fish to change sex could
be a key element in the development of social queuing and
increase the benefit of remaining in the group in these species
because once a breeding position is obtained, the previously
subordinate individual can change to the appropriate sex to
facilitate breeding. This ability may also mitigate the risk of
dispersing and not finding a mate of the opposite sex. The effects
of sex changing ability on the costs and benefits of dispersal
are largely untested and these habitat specialist marine fishes
represent exciting opportunities for future studies (Munday et al.,
1998). Furthermore, these species also tend to congregate on
discrete habitat patches enabling long term observation of social
behavior (Herler et al., 2011; Wong and Buston, 2013).

The benefits of philopatry hypothesis provides an excellent
example of how the combination of many smaller scale
observational studies have significantly advanced our
understanding of this particular hypothesis of cooperative
breeding theory. Notably, Stacey and Ligon (1991) initially
conceived this hypothesis by drawing upon observational data
from several long term studies of acorn woodpeckers (Stacey,
1979a,b; Stacey and Ligon, 1987), green woodhoopoes (Ligon
and Ligon, 1978, 1990) and mountain chickadee (McCallum,
1988). Support for this theory has gained momentum through
observational studies of mammalian species. Marino et al.
(2012) conducted a long term observational study in Ethiopian
wolves (Canis simensis) which form large packs in areas of high
prey abundance, but are only found in pairs in areas where
prey was limited. While this observation may be characteristic
of an ecological constraint, groups of wolves gained benefits
through defense of high quality habitat against neighboring
packs. Additionally, Marino et al. (2012) found that even when
habitat saturation was relaxed following an outbreak of rabies in
the population, subordinate individuals remained philopatric,
taking advantage of the enhanced foraging success of the group.
This indicates that subordinate individuals are not likely to be

constrained by ecological factors in this species, but are in fact
receiving direct benefits (increased foraging success) related to
remaining philopatric. Marino et al.’s (2012) study highlights
the importance of long term observational studies in providing
evidence to tease apart different hypotheses of cooperative
breeding theory.

Other Hypotheses
Other observational studies have questioned the life-history and
ecological constraints hypotheses as explanations for delayed
dispersal. Doerr and Doerr (2006) investigated two sympatric
species of treecreepers (Climacteris picumnus and Cormobates
leucophaea) and suggested that the life-history and ecological
constraints hypotheses did not explain why some bird species
remain at the nest while others adopt a range of “floater
strategies.” Instead, Doerr and Doerr (2006) proposed an “anti-
predator tactics” hypothesis based upon their findings to explain
the divergence between group and solitary living in these species.
Group augmentation, where advantages are positively related
to group size, has also been raised as a mechanism promoting
the formation of social groups (reviewed in Kingma et al.,
2014). Few observational studies have specifically focused on
this mechanism, although several have mentioned its effects
whilst focusing on alternative cooperative breeding hypotheses
(Clutton-Brock et al., 1999; Wright et al., 1999; Balshine et al.,
2001; Marino et al., 2012) or allee effects (Courchamp and
Macdonald, 2001; Heg et al., 2005).

Manipulative Experiments
While the literature discussed so far has been extremely
important in supporting debate regarding a number of social,
life-history and ecological correlates of sociality, we must keep
in mind that these comparative and observational methods are
not able to provide causal explanations of sociality. Brockmann
(1997) pointed out an apparent lack of data with which to
study the ecological constraints model at the time, deeming
the majority of evidence to be correlational. This finding may
have changed since Brockmann (1997) wrote her review, with
manipulative studies leading observational and comparative
studies in publication numbers in the last five years (Figure 3).
While experimental manipulation is an extremely powerful
tool for examining factors of social evolution, it must be
considered that the time and expense involved in altering aspects
of an individuals’ social or ecological environment may be
prohibitive to long term study. It is no surprise then that the
majority of manipulative studies are “snap-shots” and care should
be taken in the interpretation of results in an evolutionary
timeframe. Because of the logistical constraints of manipulative
experiments, many studies have focused on smaller species which
are more easily housed or species with habitats that can be
easily manipulated in situ. Social marine or freshwater fish make
excellent study species for this methodology as they tend to
congregate on discrete habitat patches which can be easily picked
up and moved or simulated in aquaria, making experimental
manipulations of ecological factors highly feasible (Wong, 2010).
Many are also demersal spawners which provides a convenient
measure of reproductive success and fecundity (Buston, 2004a;
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FIGURE 3 | Approximate number of publications on cooperative breeding for

each methodology. The number articles published in the last 5 years is shown

in dark gray and is included in the total count. Search parameters are available

in Supplementary Table S1. Numbers presented here are intended as

approximations only as search parameters were not completely mutually

exclusive or exhaustive.

Wong et al., 2008a, 2012). Recent experimental manipulations on
these fish are pushing the boundaries of our understanding of the
evolution and maintenance of sociality (Wong, 2011; reviewed in
Wong and Buston, 2013; Buston and Wong, 2014).

Monogamy and Kinship
Monogamy is thought to be directly related to the formation
of close family groups and hence sets the stage for cooperative
breeding to occur (Boomsma, 2009; Cornwallis et al., 2010). In
these close family groups, individuals are expected to increase
their indirect genetic benefits by provisioning close kin. While
much support for kin selection models has been gained through
observational and comparative studies, several experimental
studies have questioned kin selection as a mechanism driving
sociality. Clutton-Brock et al. (2001) conducted a supplemental
feeding manipulation in a population of meerkats (Suricata
suricatta) to test whether relatedness of helpers to a litter
predicted the amount of food they provisioned to the litter.
They found that the provision of food to the litter was related
to the foraging success of the individual helpers, regardless of
relatedness to the litter. Similarly, Riehl and Strong (2015) cross-
fostered broods of nestlings between pairs of nests ensuring
that none of the broods were related to the provisioning adults.
Feeding rates did not differ at cross-fostered nests compared
to those of sham-manipulated control nests (where nestlings
were removed and then returned to their original nests),
suggesting that provisioning was not influenced by relatedness.
Furthermore, Carter and Wilkinson (2013) demonstrated that
food sharing in vampire bats, Desmodus rotundus, was predicted
more by reciprocation than relatedness (that is, food donors were

more likely to share food with a recipient if the recipient had
previously donated food, regardless of relatedness).

A similar lack of kinship effect has also been demonstrated in
three independent experiments of artificially formed groups of
African cichlids, Neolamprologus pulcher (Stiver et al., 2005; Le
Vin et al., 2011; Zöttl et al., 2013). All three studies compared
groups of cichlids under laboratory conditions where helpers
were either related or unrelated to an adult pair and showed
that kinship was not related to the amount or type of help that
subordinates performed. While these findings may appear to
contradict kin selection based models, it is possible that related
and unrelated helpers are provisioning help for different reasons.
Le Vin et al. (2011) Stiver et al. (2005) and Zöttl et al. (2013)
all pointed out that related helpers may help their relatives in
order to receive indirect genetic benefits while unrelated helpers
may have to “pay to stay” (i.e., provide help to avoid eviction)
in order to enjoy the direct fitness benefits of group living (see
Quiñones et al., 2016 for a model based on this species showing
that negotiations in a pay to stay scenario can result in higher
levels of cooperation than relatedness). These studies highlight
the importance of using experimental studies to demonstrate
causality of effects described using observational data.

Life-History
While much support for the life-history hypothesis has been
gained from observational and comparative analyses, life-history
traits are generally difficult or in some cases impossible to
manipulate experimentally. It is not surprising therefore that the
majority of manipulative experiments designed to examine the
evolution of sociality, have focused on manipulating ecological
and social variables. However, Heg et al. (2011) performed a
series of manipulative experiments on Neolamprologus pulcher,
and concluded that although ecological and social factors were
responsible for the extent of cooperative breeding, a life-history
approach could best integrate the environmental and social
factors that influenced an individual’s decision of whether to
join a group as a subordinate helper or disperse to pursue
independent breeding opportunities. Despite this, there is clearly
a distinct lack of experimental studies focused on the life-history
hypothesis. Manipulating sociality by subordinate removal or
addition for example, could be an effective way of determining
whether measurable life-history traits, such as longevity or
growth rates, are a consequence rather than cause of sociality.
While not specifically designed to test this hypothesis, growth
rate adjustment has been experimentally induced by breeder
or helper removal or replacement experiments in a species
of African cichlid (Neolamprologus pulcher; synonymous with
N. brichardi, Duftner et al., 2007) and in a social marine
fish (Amphiprion percula) (Taborsky, 1984; Buston, 2003b; Heg
et al., 2004b; Bergmüller et al., 2005 respectively). However, to
specifically test the life-history hypothesis experiments would
necessitate considerably long time scales and the arrival or
premature departure of subordinates would need to be tightly
controlled. Such experiments would therefore be best suited to
fast growing, short lived species or animals which could be
easily housed in a captive setting. Several studies have used
supplemental feeding which has resulted in altered growth rates
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and increased survival of subordinates (Cole and Batzli, 1978;
Boland et al., 1997; Wong et al., 2008b). While not designed
to test the life-history hypothesis, these short-term experiments
have coincidentally changed life-history factors and this method
may be worthy of investigation for future experimentation in this
field. There is also a need for long-term experimentation in order
to detect changes in sociality over the temporal scale of the life-
history trait in question. Habitat specialist marine fishes would
make good study species as they display a variety of life-history
traits such as indeterminate growth rates and sex-change, a life-
history trait rarely observed in terrestrial taxa and many species
are short lived and have rapid growth rates (Munday and Jones,
1998; Munday et al., 1998; Wong et al., 2005; Depczynski and
Bellwood, 2006).

Ecological Factors
Ecological variables such as rainfall, and temperature can vary
substantially with latitude (Tewksbury et al., 2008). Reciprocal
transplant experiments over large latitudinal gradients are
therefore useful for assessing the role that ecological factors
could play in promoting sociality in broadly distributed taxa.
For example, Baglione et al. (2002) demonstrated a clear link
between sociality and environmental factors in carrion crows,
Corvus corone corone, via a transplant experiment where eggs
from asocial nests in Switzerland were moved to social nests in
Spain. Offspring of non-cooperative crows which were reared
in the cooperative population in Spain displayed cooperative
behavior and delayed dispersal. Although Baglione et al. (2002)
suspected that habitat saturation was not a factor contributing to
cooperative breeding in crows, habitat saturation as a constraint
on dispersal has been well supported in many species through
experimental manipulation (Curry, 1989; Schradin and Pillay,
2005). In contrast, Riechert and Jones (2008) found that a
species of spider, Anelosimus studiosus, which is only social
at high latitudes, maintained its social structure regardless of
location when transplanted between social and asocial nests,
demonstrating that sociality in this species does not change in
response to ecological factors.

Experimental studies can be used to tease apart the relative
effects of individual benefits and constraints, or examine their
interactions. Indeed, many experimental studies have examined
the combined effects of ecological constraints on dispersal and
benefits of philopatry, similar to comparative and observational
analyses of this hypothesis. For example, Heg et al. (2011)
examined the effects of habitat saturation, benefits of philopatry
and kin-selection on the extent of helping in the cichlid,
Neolamprologus pulcher. They found that habitat saturation
and benefits of philopatry were responsible for helping but
contrary to the kin selection model, found that individuals
preferred to settle with unrelated fish in an absence of dispersal
constraints. Previous experimental studies in freshwater fish
have also supported the idea that ecological constraints and
benefits are responsible for delayed dispersal in cooperatively
breeding cichlids (Heg et al., 2004a, 2008; Bergmüller et al.,
2005; Jungwirth et al., 2015). Predation risk in particular
has been shown to be a crucial ecological constraint on
dispersal in these species (Taborsky, 1984; reviewed in Taborsky,
2016). Komdeur (1992) showed that habitat saturation and

benefits of philopatry were important factors in the dispersal
of Seychelles warblers by experimentally introducing individuals
to unoccupied islands. Two years after the initial introduction
of warblers, all of the high quality territory was occupied,
and yearlings born on these territories began to stay and help
instead of pursuing independent breeding opportunities on still
vacant lower quality habitat. Komdeur’s (1992) results showed
that while habitat saturation constrained young birds from
leaving high quality habitat, the benefits of remaining at a high
quality nest resulted in higher life-time reproductive success.
Similarly, Wong (2010) used field and laboratory experiments
to demonstrate that subordinate dispersal in a coral reef fish,
Paragobiodon xanthosomus, was affected by a combination of
ecological constraints (habitat saturation and risk of movement)
and benefits of philopatry (coral size—a proxy for habitat quality
in this species), but not by social factors (social rank and forcible
eviction). Ligon et al. (1991) also tested the effects of several
ecological factors on cooperative breeding in groups of superb
fairy wrens,Malurus cyaneus. They examined the effects of mate
availability, habitat saturation and group augmentation. Ligon
et al. (1991) found that their study population ofM. cyaneus was
not constrained by a lack of breeding partners, or by limitations
of available breeding habitat and that subordinate presence was
not related to reproductive success. Ligon et al. (1991) concluded
that benefits of remaining on a higher quality habitat were
responsible for natal philopatry in male M. cyaneus. These
examples demonstrate the power of experimental manipulation
in identifying multiple factors which may have affected the
evolution and maintenance of sociality.

Experimental work, both on larger and smaller scales, has
been extremely important in identifying species which have
evolved sociality in response to ecological factors. These studies
have demonstrated that ecological factors relating to sociality
have proven relatively amenable to manipulation, either in the
field or the laboratory, for a range of species. It is clear from
these examples that the role that ecological factors have played
in the evolution of sociality is species specific, and that other
factors are likely to play a role in determining whether a species
exhibits social behavior. The relative effects and causality of
these factors can only be teased apart using robust manipulative
experiments.

COMBINING METHODS

The discussion so far has highlighted the benefits and pitfalls of
each individual methodology. We suggest that a combination of
these methodologies will provide an efficient and comprehensive
view of social evolution. This combination should start with
sourcing or building a phylogeny for the taxa. Building the
phylogeny would involve collection of genetic material from all of
the species within the lineage. Observational data on sociality and
associated ecological, life-history and behavioral factors could
also be collected at the same time. This data can then be mapped
onto the phylogeny and correlations between sociality and these
factors can be determined. This mapping can then be used to
target experimental work on sets of species varying in sociality
and other factors of interest to determine whether causality can
be assigned to any particular factors.
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In many cases, phylogenies will already be fully resolved and
relevant social observational work may have been undertaken
for some species. In such cases research effort should be
directed to “filling in the blanks” for any species lacking in
data. Research effort is often directed at a “popular” subset
of species within a lineage because field techniques have been
well established. While such research is valuable for examining
sociality at the species level, the results are less meaningful
at higher taxonomic levels. For this reason, we encourage
researchers to design observational and experimental studies
with the express view of contributing to future interspecific
comparative work. Observations and manipulative experiments
should be conducted using similar methods to previous work so
that meaningful comparisons can be made.

CONCLUSION

In this review, we explored the factors influencing the evolution
of social systems containing non-breeding subordinates, from
the perspective of the methodological approaches that have
been used to test multiple hypotheses. Great advances in the
field have been made through comparative work (Brockmann,
1997; Arnold and Owens, 1998; Clutton-Brock, 2002; Taborsky
and Wong, 2017) and fine scale observational (Rowley and
Russell, 1990; Schradin and Pillay, 2005) and manipulative
studies (Komdeur, 1992; Riechert and Jones, 2008; Heg et al.,
2011), although each method has its limitations and taxonomic
biases. Comparative analyses have proven useful for studying
evolutionary questions especially when combined withmolecular
phylogenetic tools as they are able to reveal patterns across
multiple species and lineages (e.g., Edwards and Naeem,
1993; Arnold and Owens, 1998; Cockburn, 2006). Intraspecific
comparisons across ecologically diverging populations have also
proven extremely valuable for testing ecological hypotheses (e.g.,
Groenewoud et al., 2016). However, these broad patterns may
overlook contrasting patterns in smaller sets of species or within
any given population, and are currently taxonomically restricted
to terrestrial species and a handful of freshwater fish species.
Smaller-scale observational studies have been effectively used to
investigate the relationships between life-history, ecology and
sociality, especially over the long-term. However, observational
studies are not able to show causality between these factors and
sociality and are limited in impact as only a few species can
be investigated. Manipulative experiments may save the day by
demonstrating causality in many cases, but they too by necessity
focus on smaller sets of species and short-term manipulations
which limits the generality of their conclusions. There is also
a need for more comparative and observational studies on the
effects of dispersal risk on delayed dispersal and additional
manipulative work on the life-history hypothesis in order to give
a well-balanced perspective of social evolution and maintenance.
We suggest that combining these approaches under a single
framework would provide a comprehensive method of studying
the evolution of sociality across a broad range of taxa, though few
studies have attempted to do so.

Additionally, different animal groups have proven to be more
amenable to particularmethodologies. For example, birds, insects

and mammals have been well studied through comparative
analyses due to their well-defined phylogenies and long history
of observation. On the other hand, habitat specialist fish,
because of their small body size and site attachment, are
extending the boundaries of our understanding of sociality
through amenability to experimental manipulation. Overall,
hypotheses for social evolution have been less extensively
studied in marine taxa. While cooperative rearing of young
has not been observed in marine fish, there are group living
species which are typically comprised of unrelated individuals
and often a monogamous breeding pair with a number
of non-breeding subordinates (Taborsky and Wong, 2017).
These groups bear many resemblances to cooperative breeding
birds and mammals and cooperative breeding theories have
proven successful in explaining the evolution and maintenance
of these social systems (Buston and Balshine, 2007; Wong,
2010; Wong and Buston, 2013). Unconventional life-history
strategies, such as bi-directional sex-change, and amenability
to experimental manipulation and observation present further
opportunities to challenge hypotheses of social evolution under
novel conditions. For example, the ability to change sex may
alter the costs and benefits associated with dispersal from
the group. Additionally, indeterminate growth as observed in
social marine fishes presents opportunities for exploring the
life-history hypothesis which is currently lacking experimental
testing. Combining multiple methodological approaches with
investigations of novel taxa are now clearly required to
gain a truly general understanding of the evolution of
sociality.
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