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The harlequin ladybird Harmonia axyridis is now established as a model to test

hypotheses explaining why some species become successfully invasive, while others,

even closely related ones, do not. In this review, we evaluate behavioral and

immunological features that may play a role in the invasive performance of this model

species. We discuss the behavioral traits and associated semiochemicals that promote

the invasive success of H. axyridis. In particular, we consider (1) the aggregative behavior

and the particular role of long-chain hydrocarbons; (2) the importance of sex pheromones

and non-volatile chemicals in mate location and selection; (3) the use of allelochemicals

for prey location; and (4) the nature of chemicals that protect against natural enemies. We

also highlight the superior immune system of H. axyridis, which encompasses a broader

spectrum of antimicrobial peptides (and higher inducible expression levels) compared

with native ladybird beetles such as Adalia bipunctata and Coccinella septempunctata.

The chemical defense compound harmonine and the antimicrobial peptides are thought

to confer resistance against the abundant microsporidia carried by H. axyridis. These

parasites can infect and kill native ladybird species feeding on H. axyridis eggs or larvae,

supporting the hypothesis that intraguild predation plays a role in the ability of H. axyridis

to outcompete native ladybird species in newly-colonized areas.

Keywords: biological invasions, ladybirds, innate immunity, chemical ecology, Harmonia axyridis

INTRODUCTION

Biological invasions are attracting scientific interest because invasive species can cause extensive
economic losses and negatively affect the biodiversity of newly-colonized areas. The harlequin
ladybird Harmonia axyridis (Coleoptera: Coccinellidae), which is also known as the multicolored
or Asian ladybird, has emerged as a powerful model in which to test hypotheses explaining why
some species are successful invaders, while others, even closely related ones, are not. H. axyridis
is native to continental, temperate and subtropical parts of East and Central Asia and has been
introduced into North America, Europe and Russia since the beginning of the Twenty-fifth century
as a biological control agent against aphid and/or coccid pests (Roy et al., 2016). It is an excellent
example of an efficient invasive species, being one of the most abundant ladybird species in
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various agricultural ecosystems including corn, soybean, wheat,
corn, broad bean, potato, and cotton (Gardiner et al., 2011;
Vandereycken et al., 2013a,b). H. axyridis is highly fertile and
the eggs show high viability (Santos et al., 2014). Multi-year
surveys have documented the decline of native coccinellid species
in concert with the establishment of H. axyridis (e.g., Bahlai
et al., 2015). Such declines are partially explained by exploitative
competition for shared prey and interference competition via
intraguild predation (Smith and Gardiner, 2013). Further effects
caused by the introduction of H. axyridis include aggregation in
buildings and in some agricultural settings, such that the species
is considered both an urban and agricultural pest. However,
several reports also highlight the positive effects of H. axyridis
on agriculture, mainly due to its spectacular voracity, predation
capacity, and effectiveness in suppressing plant pests (Riddick,
2017).

H. axyridis is a widely-used model species for research,
especially studies concerning the effects of invasive species
when they are introduced into new environments (Roy and
Wajnberg, 2008; Sloggett et al., 2011). Invading populations
often undergo rapid evolutionary changes associated with their
introduction, particularly life history traits (Lambrinos, 2004).
Studies comparing H. axyridis with other coccinellid beetles help
to determine the basis of its unique invasive success. This paper
considers the immunological and behavioral traits that make
H. axyridis a successful invasive species.

Behavioral Features
Aggregation

Aggregation is one of the most basic social behaviors. It leads
isolated individuals to gather at particular sites to exploit
resources. Many insect species show aggregation behavior, which
has a range of benefits including enhanced defense, better access
to mates, food location and utilization, prevention of desiccation,
and regulation of internal temperature. Many beetle species
aggregate, and this behavior can be observed at any time of year in
H. axyridis (Durieux et al., 2015). This behavior can be a nuisance
to humans, e.g., in vineyards, adult H. axyridis aggregate on ripe
grape clusters. If they are not removed, they can be processed
with the grape juice, and can introduce unpleasant aroma and
taste qualities to the resulting wines (Botezatu et al., 2013). In
H. axyridis, aggregation behavior is observed both at the adult
and the pupal stage, and both increase the general fitness of the
gregarious individuals.

Aggregation in H. axyridis has been studied predominantly
to investigate their overwintering behavior. The beetles tolerate
cold by accumulating large quantities of polyols, and thus
reducing their supercooling point (Watanabe, 2002). However,
this physiological trait does not allow H. axyridis individuals
to remain in their feeding habitat and survive low winter
temperatures. Therefore, the beetles are solitary during spring
and summer, but seek aggregation sites as temperature
and sunlight decrease. In their native range, overwintering
H. axyridis aggregate in natural shelters (caves, crevices and
rocky depressions) with good exposure to the sun, to mitigate
their exposure to freezing conditions. On their way to these
natural shelters, they sometimes shelter in human residences for

several days (Wang et al., 2011). When the temperature and
sunlight increase in the spring, the aggregated individuals return
to nearby agricultural habitats and resume their solitary life.
Invasive populations behave similarly, but whereas most native
individuals aggregate outside during winter, this is not possible
for invasive individuals. In Canada for example, H. axyridis
does not survive outside during winter, whereas the native
species do. With lower proportions of lipids than native species,
H. axyridis is thought to be physiologically ill-equipped to
overwinter outside in North America. The migratory flight
pattern of invasive H. axyridis has been well-documented,
with individuals preferentially moving toward prominent and
high-color-contrast elements (Nalepa et al., 2005). On sunny
autumn days, pale exterior walls with southern exposure can
be covered by hundreds of migrating individuals. A correlation
between the ability to select a proper overwintering site and the
subsequent invasive success of H. axyridis has been suggested
(Labrie et al., 2008). Invasive populations of adult H. axyridis
are considered urban pests because large aggregations often form
inside buildings, including dwellings, offices, and wind turbines
(Nalepa et al., 1996; Dudek et al., 2015). Dwellings can be invaded
by thousands of individuals, which release an unpleasant smell,
cause staining, and sometimes induce allergic reactions (Nalepa
et al., 2004; Goetz, 2007).

Camazine et al. (2001) categorize aggregation behavior in
the animal kingdom as social and non-social aggregation,
according to whether or not individuals interact with each other
to modulate the behavioral decisions of conspecifics. During
aggregation, adult H. axyridis show mutual interactions, and
should therefore be considered as social aggregators. In addition
to the physical contacts between congeners (Durieux et al.,
2014a), laboratory assays have shown that chemical markings
are involved in this aggregation behavior (Durieux et al., 2012).
Non-volatile long-chain hydrocarbons are passively deposited
by walking males and females on the surfaces surrounding the
aggregation site (Kosaki and Yamaoka, 1996; Durieux et al.,
2012). The chemical composition of the marking varies with the
season, being richer in unsaturated hydrocarbons in winter than
in summer (Durieux et al., 2013). Overwintering individuals are
also more likely to follow this chemical mark than individuals
collected in spring or summer. The overwintering surface is also
chemically marked with a similar chemical blend, comprising
the same molecules but in different ratios (Durieux et al.,
2012). This suggests there are two different blends of long-chain
hydrocarbons, the first leading conspecifics toward aggregation
sites and the second ensuring the cohesion of the aggregate.
The first individuals reaching a potential overwintering site may
use chemical tracks left earlier by conspecifics. The chemical
marking of oviposition sites is not exclusive to H. axyridis,
e.g., it is also observed in Adalia bipunctata (Majerus, 1997).
Thanks to their low volatility and high stability, these long-
chain hydrocarbons remain on surfaces for several weeks
(Durieux et al., 2014b). However, chemical analysis has shown
that unsaturated hydrocarbons were no longer detected after a
year, whereas some saturated hydrocarbons were still present
in large quantities, suggesting that the chemical markings left
by conspecifics during a previous aggregation period in an
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overwintering site are not sufficient to induce the gathering
of new individuals (Durieux et al., 2014b). Whether a volatile
aggregation pheromone is used by gregarious H. axyridis
remains unclear. It is possible that (–)-β-caryophyllene fulfills
this role, because this sesquiterpene (1) was isolated from the
headspace volatiles above overwintering H. axyridis individuals,
(2) elicited electrophysiological responses from female and male
antennae, and (3) attracted both genders in a laboratory bioassay
(Verheggen et al., 2007).

The data summarized above suggest thatH. axyridis aggregate
inside buildings due to their intrinsic behavior and this is not
an emergent trait of invasive populations. However, differences
between native and invasive populations may have arisen in
the context of chemical communication established during the
aggregation process. It is unclear whether behavioral/chemical
traits associated with aggregation behavior are promoted as a
result of the invasion process. Finally, gregarious pupation may
act as a defensive mechanism for H. axyridis (Roberge et al.,
2016). In the field,H. axyridiswas the coccinellid species showing
the highest rate of gregarious pupation events. The mortality rate
of pupae located in a group was lower than that of isolated pupae
exposed to intraguild predators or cannibals.

Mate Location, Mating, and Oviposition
For sexually-reproducing animals, finding and selecting mates
is an essential step which determines their reproductive success.
Ladybird species exhibit a range of behavioral traits associated
with reproduction, and chemical cues are usually involved
(Fassotte et al., 2016). Like other ladybeetle species, freshly
emerged H. axyridis adults pass through a pre-mating period
during which their gonads mature (Obata and Hidaka, 1987).
Several behavioral observations suggest that males are attracted
over a distance (e.g., Schaller and Nentwig, 2000; Omkar and
Pervez, 2005), and H. axyridis is the only ladybird species
in which a female volatile sex pheromone has been identified
(Fassotte et al., 2014). In the presence of prey, virgin H. axyridis
females display a typical calling behavior: they raise their elytra
and squeeze their abdomen. This behavior is associated with the
release of five chemicals that attract males: (–)-β-caryophyllene
(themajor constituent), β-elemene, methyl-eugenol, α-humulene
and α-bulnesene. The trichoid sensilla of the male beetles are
thought to act as pheromone receptors (Chi et al., 2009).

Following distance attraction, the courtship behavior of
H. axyridis males involves four characteristic steps before
copulation: getting close to the female, examining her at a
distance, mounting and attempting to copulate (Obata, 1987).
The relative importance of visual, tactile and olfactory cues in
mate recognition is often the subject of debate, and is likely
to vary among different species. In contrast to H. axyridis,
A. bipunctatamales do not examine a female before touching her
body surface with their maxillary palps, and copulation occurs
directly after mounting the female (Hemptinne et al., 1998).
Additional behavioral movements are sometimes observed in
males of other species, including C. sexmaculata and Anegleis
cardoni, and these behaviors may encourage the female to remain
still during copulation and post-copulation (Maisin et al., 1997;
Omkar et al., 2013). After genital connection, H. axyridis males

shake their body at constant intervals to allow sperm transfer
(Obata, 1987). The mating receptivity of H. axyridis females
is dependent on their physiological state. Sexually immature
females avoid copulation by moving away from an insistent male
or by shaking him off their abdomen (Obata, 1988). They are also
more reluctant to mate when they are deprived of food. Not all
H. axyridis males are of equal fitness value as mate, and both
the elytra color and body size affect male mating success (Ueno
et al., 1998). As in other ladybeetle species, multiple copulations
occur and enhance the total number of eggs and the percentage
of hatching (Ueno, 1996; Omkar and Pervez, 2005). Furthermore,
H. axyridis females retain their eggs for longer after mating with
less preferred males, allowing the females to partially replace
stored sperm with that from a preferred male (Su et al., 2009).

Chemical signals are involved in the courtship behavior of
many invertebrate species, and ladybeetles are no exception.
A significant number of published reports highlight the role
of cuticular chemicals (Fassotte et al., 2016). Indeed, the
qualitative and quantitative profile of cuticular hydrocarbons
(CHCs) tend to be species and gender specific, making them
good candidates for mate recognition (Hemptinne et al.,
1998). The dominant CHC may facilitate species recognition,
whereas gender recognition is dependent on quantitative and/or
qualitative differences (Pattanayak et al., 2014). The CHC
profile differs between virgin and mated H. axyridis females
(unpublished results). To overcome sperm competition and
subsequently increase their fitness, males should select their
mate based on the reproductive status of the female. However,
H. axyridismales failed to discriminate between virgin andmated
females based on their chemical profile during laboratory assays
(unpublished results).

Following mate attraction and selection, oviposition is the
next important behavioral step for female ladybeetles. The
distribution of oviposition sites among conspecific females is of
prime importance because it allows them to share resources by
partitioning their niches (Sicsú et al., 2015). A few laboratory
and semi-field studies suggest that H. axyridis is deterred
from ovipositing in the presence of conspecifics, whereas
heterospecific competitors do not influence oviposition site
selection (Yasuda et al., 2000; Almohamad et al., 2010). Gravid
H. axyridis females reduced their rates of oviposition when
exposed to the feces of conspecifics, but not when exposed to
the feces of heterospecifics (Propylea japonica) (Agarwala et al.,
2003). However, the opposite is not true, i.e., P. japonica avoids
sites contaminated with either heterospecific or conspecific feces.
Chemical markings deposited by syrphid and coccinellid larvae
did not deter H. axyridis females from laying eggs. Similar
results were observed in other ladybeetle species, including
C. septempunctata, Hippodamia convergens, and A. bipunctata,
where oviposition was deterred in the presence of conspecific
larvae, but not in presence of heterospecific competitors
(Ruzicka, 1997; Doumbia et al., 1998; Michaud and Jyoti,
2007). These results suggest the presence of a species-dependent
oviposition-deterring pheromone in ladybeetles, which remains
to be characterized and compared among coccinellid species.
Finally, the cluster size and the distance from the cluster to
an aphid colony affect the proportion of cannibalized eggs, as
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suggested by laboratory and field observations of H. axyridis
(Osawa, 2003).

When a species shifts its geographical range, invading
individuals face new selective pressures that may affect
their reproductive strategy. Indeed, reproduction-associated life
history traits may be subject to rapid evolutionary shifts
during invasions because they affect population dynamics and
genetic parameters that can, in turn, have feedback effects
on evolutionary processes (Laugier et al., 2013). Evolutionary
changes in reproductive strategy associated with invasion
have been highlighted. A comparison of the sex pheromone
composition between native and invasiveH. axyridis populations
showed no qualitative differences, but females from invasive
populations released up to three times as much of the
sex pheromone compared to native individuals (unpublished
results). It is unclear whether invasive individuals were selected
during invasion due to their capacity to call and find sexual
partners more effectively. Males and females from invasive
populations are also more reproductively efficient, with both
sexes showing a shorter pre-mating period and producing more
offspring than native individuals (Laugier et al., 2013). Finally,
H. axyridis males can identify the population of origin (native
vs. invasive) of a female based on her CHC profile (unpublished
results). The reproductive behavior of H. axyridis is certainly
a trait that deserves more attention in terms of the potential
evolutionary shifts that may have accompanied its invasive
success.

Prey Location
H. axyridis is a generalist predator that feeds preferentially
on aphids, but also occasionally upon a wide range of other
soft-bodied arthropods and plant products (Koch, 2003). This
feeding practice is thought to enhance its ability to colonize
various ecosystems. Studies directly comparing prey location
and consumption between H. axyridis and more strictly
aphidophagous coccinellids are scarce, but would allow a better
understanding of the invasive success achieved by H. axyridis.
Because aphid colonies are sporadically distributed and transient,
efficient prey finding behavior is essential. Indeed, when prey are
scarce, H. axyridis exhibits slower development and produces
smaller larvae (Dmitriew and Rowe, 2007). Compared to other
ladybeetle species, H. axyridis is reputed to be more strongly
polyphagous and voracious (Koch, 2003). This reputation was
confirmed in a laboratory experiment where Leppanen et al.
(2012) found that H. axyridis find aphids more quickly and
consume more of them compared to six other ladybeetle
species. However, Reynolds and Cuddington (2012) found that
H. axyridis was less able than the green lacewing to attach and
maneuver on plants with few branches and edges, resulting in a
lower aptitude to capture prey on such plants.

Although visual cues are likely to be involved (Lambin et al.,
1996), olfactory cues are considered more important for prey
location by H. axyridis (Obata, 1986; Mondor and Warren,
2000; Sloggett et al., 2011). When seeking prey, ladybeetles
increase their walking speed and reduce their turning frequency.
Like other aphidophagous predators, H. axyridis is attracted to
volatile cues released by prey and infested plants (Verheggen

et al., 2007, 2008). When getting closer to prey, the foraging
behavior becomes more intensive, with lower walking speed and
more directional changes (Pettersson et al., 2005). Olfactory cues
include prey pheromones (Verheggen et al., 2007, 2010), host-
plant volatiles (Leroy et al., 2012a), prey waste products such
as honeydew (Leroy et al., 2012b), and conspecific-associated
odors (Almohamad et al., 2010; Leroy et al., 2012a). Like
other insects, H. axyridis larvae deposit chemical marks as they
forage. Following the detection of such marks, they modify their
foraging behavior to avoid areas already visited, hence marking
individuals consumemore prey than non-marking ones (Meisner
and Ives, 2011). Both H. axyridis and C. septempunctata larvae
avoid foraging in areas with conspecific chemical markings,
to reduce the risk of cannibalism (Meisner et al., 2011). But
whereas C. septempunctata also avoids H. axyridis larval tracks,
H. axyridis does not avoid C. septempunctata larval tracks,
demonstrating an asymmetry in response to larval tracks that
parallels the asymmetry in aggressiveness between these species
as intraguild predators. Finally, recent experiments have shown
that H. axyridis beetles exposed to sub-lethal doses of pesticide
fly for longer periods and cover greater distances than non-
exposed beetles (Xiao et al., 2017). They are thought to follow the
migration of their prey away from the contaminated ecosystem
and may also have developed avoidance behavior in the presence
of pesticides, both of which are likely to promote the fitness of
H. axyridis (Desneux et al., 2007).

Intraguild Predation
Native ladybeetle populations have declined in most areas
where H. axyridis has been introduced (Camacho-Cervantes
et al., 2017) and this is often blamed on interference
competition via intraguild predation (Pell et al., 2008). More
specifically, H. axyridis is considered a top-level predator
in the aphidophagous guilds, reflecting its direct predation
behavior toward eggs and larvae of native coccinellids (Ware
and Majerus, 2008) as well as non-coccinellid aphidophagous
species, such as hoverflies and lacewing (Wells et al., 2017).
H. axyridis also practices indirect intraguild predation on
aphid parasitoids, because it preferentially consumes parasitized
aphids over uninfected ones (Meisner et al., 2011). Laboratory
and field studies of intraguild predation involve both visual
observations and, more recently, the screening of gut contents
by DNA analysis (e.g., Gagnon et al., 2011; Rondoni et al.,
2015). Such studies have repeatedly indicated that intraguild
predation behavior is important for the invasion success of
H. axyridis.Moreover, semi-field experiments directly comparing
the frequency of intraguild predation events in coccinellid
species confirm that H. axyridis is the most successful intraguild
predator during heterospecific confrontations (Raak-van den
Berg et al., 2012). After encountering a heterospecific competitor,
H. axyridis also drops less easily from a plant leaf than
other coccinellid species. Poorly-fed H. axyridis larvae feed
more voraciously on intraguild competitors than well-nourished
ones (Ingels et al., 2015; Mirande et al., 2015). Indeed,
small and poorly-fed larvae may have more to gain, from
a fitness perspective, than well-nourished larvae, for whom
food is not critical for survival. Along with its aggressive
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behavior, H. axyridis has multiple other traits making it more
competitive than native ladybeetle species, i.e., it has a relatively
large body, and carries spines at the larval stage as well as
chemical defenses (Ware and Majerus, 2008; Sloggett et al.,
2011).

Phenotypic Plasticity
Theory suggests that invasive populations should evolve
toward greater phenotypic plasticity because they face diverse
environments during the invasion process (Lombaert et al.,
2008). The high degree of phenotypic plasticity observed in
H. axyridis has enabled its populations to become successful
invaders of new territories, where they dominate native
coccinellid species (Alyokhin and Sewell, 2004; Lombaert et al.,
2008). Lombaert et al. (2008) compared phenotypic traits related
to fitness among differentH. axyridis populations and found that
invasive populations displayed higher survival and phenotypic
plasticity when entering into quiescence at low temperatures,
compared to populations commercialized for biological control.

H. axyridis is highly polymorphic in terms of color patterning
(Dobzhansky, 1933). In ladybeetles, melanism is advantageous in
winter but costly in summer, so species that can change color
throughout the year can maximize their fitness (Michie et al.,
2010). Laboratory and field observations suggest that H. axyridis
demonstrates seasonal phenotypic plasticity related to melanism,
the non-melanic morph being more abundant in spring, and
the darker morphs being more abundant in autumn (Michie
et al., 2011). Melanization in H. axyridis is predominantly
controlled by temperature during larval development. Such
seasonal phenotypic plasticity allows individuals to produce
the level of melanin necessary to maintain activity at the
temperatures encountered when they emerge (Michie et al.,
2011).

Chemical Defenses
Like all coccinellid beetle species, H. axyridis can synthesize
several defensive secondary compounds which play an important
role against a range of attackers and are especially effective in
reducing the performance of predators. The chemical defense
system of ladybirds is based mainly on repellent (and in some
cases toxic) alkaloids, which tend to be produced during all life
stages. These alkaloids are derived from simple fatty acids, and
their remarkable diversity makes ladybird beetles pioneers in
combinatorial chemistry. Some defensive alkaloids are extremely
toxic, such as precoccinelline produced by the seven-spot
ladybird C. septempunctata, which is a potent neurotoxin in both
insects and mammals. In contrast, adaline produced by the two-
spot ladybird A. bipunctata is toxic in many insects but has little
effect in mammals. The chemical defenses of H. axyridis have
been extensively reviewed (Sloggett et al., 2011). In the context
of its invasive performance, we focus here on the chemical
defensive alkaloid harmonine [(17R,9Z)-1,17-diaminooctadec-
9-ene], which is not produced by C. septempunctata or A.
bipunctata. This compound was found to be responsible for
the high constitutive antibacterial activity in the hemolymph of
H. axyridis beetles (Röhrich et al., 2012).

A synthetic analog of harmonine has been produced as a
reference and has been used to screen the activity of the natural
compound against pathogens and parasites. The harmonine
concentration in the hemolymph increases during development,
reaching 27mM in adult beetles (Schmidtberg et al., 2013).
Interestingly, harmonine is active against a broad spectrum
of bacteria, particularly against mycobacteria. Harmonine was
also active against both chloroquine-sensitive and chloroquine-
resistant Plasmodium falciparum, which is responsible for the
most severe form of malaria (Röhrich et al., 2012). In addition,
harmonine was also found to inhibit Leishmania major, which
causes leishmaniosis (Nagel et al., 2015). These findings suggest
that harmonine may function as a broad-spectrum chemical
weapon, providing protection against diverse pathogens and
parasites that are encountered by H. axyridis in also newly-
colonized environments. Furthermore, harmonine may help
to regulate the abundant microsporidia found in H. axyridis
(Vilcinskas et al., 2015). Microsporidia are spore-forming
obligate parasites that are frequently associated with insects.
The average concentration of microsporidia in the H. axyridis
hemolymph was found to increase during development, reaching
appr. 13 × 106 per ml. These parasites have been shown to kill
A. bipuncata larvae feeding on microsporidia-infected eggs or
larvae of H. axyridis, suggesting they can be transmitted from
the invasive carrier to native ladybirds via intraguild predation
(Vogel et al., 2017a). The potential role of these parasites as
bioweapons against competing native ladybird is discussed in
more detail below.

The Superior Immune System of H. axyridis
Insects lack the antibody-based adaptive immunity found
in vertebrates and rely entirely on innate immunity, which
encompasses cellular mechanisms such as the phagocytosis
and multicellular encapsulation of pathogens and parasites
as well as humoral mechanisms based on the synthesis of
antimicrobials. In the latter context, antimicrobial peptides
(AMPs) play a predominant role among the immunity-related
effector molecules produced by insects, and a large spectrum
of evolutionarily conserved and taxon-specific AMP families
has been described in insects (Mylonakis et al., 2016). Theory
predicts that invasive species should have a better or more
flexible immune system than even closely related non-invasive
species because they have to cope with pathogens and parasites
in new habitats, meaning they cannot adapt to such threats
by coevolution (Lee and Klasing, 2004; Vilcinskas, 2013).
Accordingly, next-generation sequencing of the immunity-
related H. axyridis transcriptome revealed almost 50 genes
encoding putative AMPs, the highest number of AMPs found
in any animal species investigated thus far (Vilcinskas et al.,
2013a). Native ladybirds have far fewer AMP genes (Vogel
et al., 2017a): 15 putative AMP genes were identified in
C. septempunctata and only 12 in A. bipunctata (Figure 1).
H. axyridis not only has more AMP genes than native ladybird
species such as C. septempunctata and A. bipunctata, but these
genes are induced much more strongly in H. axyridis when
the immune system is challenged (Vilcinskas et al., 2013a)
(Figure 1).
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FIGURE 1 | Coleoptericin and defensin gene trees and maximum induction levels after an immune challenge in three ladybeetle species. (A) Evolutionary relationships

and gene expression changes among the coleoptericin proteins. (B) Evolutionary relationships and gene expression changes among the defensin proteins. The

alignments were created using MAFFT and gene trees were built using the BioNJ algorithm implemented in MegAlignPro. The distance scale is shown at the top left.

Differential gene expression values are shown for a selected set of coleoptericins and coleoptericin-like genes (A) or defensins and defensin-like genes (B) and are

shown as fold changes following an immune challenge vs. untreated control beetles. Red arrows indicate higher gene expression levels in immune-challenged beetles

whereas dashes indicate no change. Nt, not tested; Haxy, Harmonia axyridis; Abip, Adalia bipunctata; Csept, Coccinella septempunctata.

Phenotypic Variation of Immunity-Related
Gene Expression
A key question emerging from the studies described above is
whether the differential induction of immunity-related genes
in invasive and native ladybeetle species is related to the
observed differences in immunity. The injection of bacteria
caused a 100-fold induction of certain AMP genes (compared
to untreated controls) in A. bipunctata, a 1,000-fold induction
in C. septempunctata but a more than 10,000-fold induction in
H. axyridis (Figure 2). Differences in induction spanning several
orders of magnitude reflect unprecedented immunological
differences between invasive and non-invasive species, which
support the hypothesis that invasive success depends in part on
a superior immune system (Lee and Klasing, 2004; Vilcinskas,
2013).

The importance of diverse AMP repertoires and high
induction levels became clearer when evidence emerged that
insect AMPs show potentiating functional interactions against
microbial pathogens (Rahnamaeian et al., 2015). For example, c-
type-lysozymes from H. axyridis boost the antibacterial activity
of co-expressed coleoptericins (Beckert et al., 2015), which are

a family of AMPs restricted to the Coleoptera (Mylonakis et al.,
2016). The diversity of the coleoptericin family has expanded
during the evolution of H. axyridis (Vilcinskas et al., 2013a) and
the genes are induced by up to 10,000-fold when the immune
system is challenged (Vogel et al., 2017a). Taken together, these
data suggest that coleoptericins play a key role in supporting the
invasive performance of H. axyridis.

Figure 1 presents gene trees and maximum induction levels
for the coleoptericin and defensin families in H. axyridis,

C. septempunctata and A. bipunctata. The results show that
H. axyridis induces these genes most strongly overall following
an immune challenge, but even closely-related members of
the coleoptericin and defensin families within each species
display striking differences in fold-change values, showing that
evolutionary relatedness is not a good predictor of AMP gene
expression levels. Our latest data provide evidence of population-
specific AMP gene expression, and the induction levels of
individual AMPs indicate that AMP gene expression is dynamic,
and may change more rapidly than previously thought (Gegner
et al. unpublished results). These observations highlight the
practical relevance of natural variability among AMP gene family
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FIGURE 2 | Relationship between immune-related traits, pathogen resistance

and invasiveness in three ladybeetle species: A. bipunctata, C.

septempunctata, and H. axyridis. As the number and inducible expression

levels of AMPs increase, the greater the resistance against pathogens and

parasites, and the greater the invasive performance.

members in terms of expression levels and induction among
H. axyridis populations, which might add to the eventual success
or failure of these populations when fighting off pathogens,
especially in newly-colonized environments.

Changes in gene expression or gene regulation are thought
to underlie many of the phenotypic differences between species,
and may play an important role in adaptation to different
environments. The evolution of dynamic gene expression
profiles (and hence phenotypic plasticity) as different species or
populations of the same species adapt to different environments
is not understood in detail. Although gene expression variation
in natural populations has been shown for multiple genes, the
processes responsible for themaintenance of this variation as well
as the benefits for the individual remain obscure.

Immunity and Invasive Performance
Given the abovementioned differences between the immune
systems of three ladybird species differing in invasive propensity,
a key question is how does a superior immune system translate
into increased invasive success? One obvious explanation is that
a strong immune system provides resistance against pathogens
and parasites. Although some aphid symbionts have been shown
to negatively impact the development and survival (Kovacs
et al., 2017), indicating that certain prey-associated bacteria

can evade the immune system of the Asian ladybird, both
pupae and adults of H. axyridis were parasitized at a much
lower rate than e.g., C. septempunctata populations from the
same location (Comont et al., 2017). Accordingly, ladybird
parasitoids parasitize H. axyridis only sporadically, and the
beetles usually survive these attacks, with the parasitoids dying
in the egg or at the larval stage. Compared to the native ladybird
species C. septempunctata and A. bipunctata, H. axyridis is
also more resistant to entomopathogenic nematodes and the
entomopathogenic fungus Beauveria bassiana (Roy et al., 2008).
Increased pathogen resistance mediated by a diverse spectrum
of AMPs has also been reported in other insects challenged by
pathogen-rich environments, including rat-tailed maggots of the
drone fly Eristalis tenax, which can survive in contaminated
aquatic habitats such as liquid manure storage pits (Altincicek
and Vilcinskas, 2007), and the burying beetle Nicrophorus
vespilloides, which feeds and reproduces on cadavers (Vogel
et al., 2017b). However, the habitats colonized by H. axyridis are
not particularly burdened with pathogens—indeed H. axyridis
displaces native C. septempunctata andA. bipunctata populations
that can survive perfectly well in such environments until
H. axyridis arrives. So this raises the question, why has this
invasive ladybird evolved a superior immune system?

We postulate that the invasive performance of H. axyridis
may be directly and indirectly supported by its immune
system (Figure 2). This invasive ladybird carries abundant
microsporidia which it can tolerate, but which can infect and
kill native ladybirds such as C. septempunctata and A. bipunctata
when experimentally transferred or orally delivered upon
feeding on its eggs or larvae (Vilcinskas et al., 2013b; Vogel
et al., 2017a). As mentioned above, intraguild predation among
predatory ladybirds may explain whyH. axyridis can successfully
outcompete native ladybirds (Gardiner et al., 2011). For example,
A. bipunctata beetles die when feeding on H. axyridis eggs
or larvae, but H. axyridis beetles suffer no ill effects when
the relationship is reversed (Kajita et al., 2010). Accordingly,
we found that microsporidia associated with H. axyridis kill
A. bipunctata adults feeding on H. axyridis eggs (Vogel et al.,
2017a). These spore-forming obligate parasites, which are
distantly related to fungi, may function like biological weapons
because they are tolerated by the invasive carrier, but can
kill native competitors when transmitted (Vilcinskas, 2015).
Our findings support previous studies highlighting the role of
pathogens and parasites co-introduced with invasive species
(Amsellem et al., 2017; Young et al., 2017). Taken together, these
data suggest that the superior immune system in H. axyridis
may have evolved so that this invasive species can safely carry
microsporidia as biological weapons, unleashing them against
defenseless competitors in newly-colonized habitats. It remains
unclear whether the expanded spectrum of AMPs, the chemical
defense molecule harmonine, or perhaps even both, contribute to
the control of microsporidian propagation in the host (Vilcinskas
et al., 2015). Although several mechanisms such as melanization,
phagocytosis and AMPs have been discussed, there is thus far
no clear evidence for any of the above being an effective defense
mechanism against microsporidia (Kurtz et al., 2000; Hoch et al.,
2004; Biron et al., 2005). However, the difference between being
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a pathogen, symbiont or mutualist can be gradual, and depends
on both the host species and the environmental conditions,
allowing for a remarkable degree of flexibility in host-parasite
interactions. This level of flexibility was recently substantiated by
identifying AMPs that maintain control over symbionts, which
could otherwise turn traitor and cause disease in the host (Login
et al., 2011).

CONCLUDING REMARKS

The comparative analysis of the invasive ladybird H. axyridis
with rather non-invasive coccinellid species enabled both to
test hypotheses explaining the invasive success of particular
species and to elucidate a considerable number of behavioral and
immunological trait differences. However, it remains debatable
which of these traits are important for the development of
invasive performance. From the empiric point of view, those
hypotheses appear more compelling which explain examples for
biological invasions by other animals or even plants (Amsellem
et al., 2017).H. axyridis has become a powerful model supporting
the bioweapon theory claiming that pathogens or parasites
co-introduced with invasive species can promote biological
invasions if they harm or kill indigenous competitors (Vilcinskas,
2015). There are accumulating examples for biological invasions
triggered by the same mechanism. The noble crayfish (Astacus
astacus) declined in Europe upon the spread of the fungal
pathogen Aphanomyces astaci which was co-introduced along
with the signal crayfish Pacifastacus leniusculus from Northern

America (Capinha et al., 2013). The replacement of native red

squirrels (Sciurus vulgaris) by gray squirrels (S. carolinensis) in
the United Kingdom has been attributed to Squirrel parapoxvirus
co-introduced with gray squirrels from Northern America but
killing only indigenous red squirrels (Collins et al., 2014).

The hypothesis that a superior immune system supports the
performance of successful invaders is also reflected by examples
from vertebrates. Invasive populations of the sparrows display
higher surveillance against pathogens and a better immune status
compared to non-invasive populations (Martin et al., 2014, 2017).
A superior immune system may represent a general attribute
of invasive species because it can confer resistance to both
pathogens and parasites encountered in newly colonized habitats
or carried and co-introduced as bioweapons against indigenous
competitors.
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