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Megaherbivores fulfilled a number of important ecological functions in terrestrial

ecosystems and behaved as ecological engineers since 300 million years until around

12,000 years ago. These essential ecological functions include opening vegetation cover,

selective seed dispersal and nutrient recycling and spreading. Thanks to these effects,

megaherbivores change the vegetation structure where they live, with cascading effects

on smaller herbivores and also on climate. The late Pleistocene extinction strongly

impacted the megaherbivores almost all over the world and led to the loss of these

important ecological functions in terrestrial ecosystems. These functions were partially

restored by agriculturist humans through an ecological replacement that occurred

through an ecological shift within the species Homo sapiens. A better understanding of

the differences and similarities between the ecological impacts of megaherbivores and

those of agricultural humans should help to predict the future of terrestrial ecosystems.
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INTRODUCTION

Nowadays, very large terrestrial herbivores with adult body weights larger than 1,000 kg (the so-
called megaherbivores, in the sense of Owen-Smith, 1988) occur only in some tropical areas of
the world, in Africa and Asia, and they are counting only a handful of species (Owen-Smith,
1988). Even if one considers the historical distribution of these megaherbivores, before the recent
shrinkage of their distribution due to intensified encroachment of their habitat and active hunting
by humans, these very large terrestrial herbivores had still a relatively restricted distribution
on the continents before the invention of firearms. However, this restricted geographical and
climatic distribution of terrestrial very large herbivores is an exception when one looks at the
terrestrial biosphere during geological times. Since the successful colonization of emerged land
by vertebrates and the achievement of terrestrial herbivory in tetrapods, about 300 millions years
ago, megaherbivores have played a key role in the functioning of almost all types of terrestrial
ecosystems (e.g., Doughty, 2017; Mondanaro et al., 2017). This was the case almost everywhere
on emerged land (except for glaciated and desertic areas) until around 50,000 years ago. Since then,
most of the megaherbivores have disappeared, the exact causes and scenarios are still debated but
two main causes are recognized, climate change and human impact (e.g., Barnosky et al., 2004;
Stuart, 2015). The chronological coincidence between megaherbivore extinctions and the arrival
of modern humans in Australia, North and South America, as well as on large islands such as
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Madagascar and New Zealand tends to support the idea that
humans have something to do with these extinctions (e.g.,
Bunzel-Drüke, 2000; Barnosky et al., 2004; Crowley, 2010;
Holdaway et al., 2014; Perry et al., 2014; Saltré et al., 2016).
However, the hypothesis of an overkill by human hunters is not
the most favored scenario, but rather an additional predation
pressure of human hunter-gatherers on some keystone species
during a period of climatic instability that led to a collapse of the
trophic system, with some species, especially the megaherbivores,
declining so much that no ecological recovery was possible for
them (e.g., Ripple and Van Valkenburgh, 2010; Bartlett et al.,
2016; Araujo et al., 2017; Haynes, 2018).

In any case, this worldwide extinction led to a strong
decrease of mean body mass of terrestrial mammals, almost
symmetrical to the increase seen at the beginning of the Cenozoic
(Smith et al., 2016b), only much faster, occurring in a few
thousand years instead of a few million years. The ecological
consequences of these extinctions are increasingly investigated
(e.g., Bunzel-Drüke et al., 2001; Catling, 2001; Putshkov, 2003;
Brault et al., 2013; McClure, 2013; Gill, 2014; Bakker et al.,
2016; Doughty et al., 2016a). After the extinction of most
terrestrial megaherbivores around 12,000 years ago (Stuart,
2015), various human populations developed independently
in different parts of the world a new way of subsistence by
producing their food items instead of collecting them from
the surrounding environment (Crawford, 2009). An important
aspect of this occurrence of this “Neolithic revolution” is to
understand if there is only a chronological coincidence with
the extinction of megaherbivores or if both events are causally
related. This “neolithic revolution” and the subsequent historical
developments had dramatic ecological consequences that have
been extensively described (e.g., Köhler-Rollefson, 1988; Butzer
and Butzer, 1995; Blondel, 2006; Boivin et al., 2016). In contrast,
little consideration has been given to the similarity between the
ecological impact of the terrestrial megaherbivores and that of
the human agriculturists, raising the possibility of an ecological
replacement between both biological entities (Doughty, 2010).

Megaherbivores in the Geological History
of Terrestrial Ecosystems
Megaherbivores have been present in terrestrial ecosystems since
the early Permian, around 300 Million years ago (Benton,
1979). The taxonomic composition of the megaherbivore guild
has changed through time. It was first occupied by primitive
reptiles and mammal-like reptiles from the late Palaeozoic
until the early Triassic about 200 million years ago, when
these groups were progressively replaced by sauropsids, i.e.,
reptiles of the dinosaur lineage (e.g., Crompton and Attridge,
1986; Weishampel and Norman, 1989). These replacements
took place either progressively or abruptly. They coincided
roughly with changes in the dominant plant groups, or with
mass extinction events, such as the Permian-Triassic and the
Triassic-Jurassic boundaries. The taxonomic replacements in
the megaherbivore groups seem to have occurred following
two mechanisms. In some cases, new megaherbivore groups
outcompeted previously dominant groups, while in other cases,

the extinction of previously dominant megaherbivore taxa left
an ecological vacuum that was filled by the evolution of a
new taxonomic group that did not belong originally to the
megaherbivores (e.g., Benton, 1979, 1996). Since the late Triassic,
all species of megaherbivores belonged to the dinosaurs, until
they became eradicated during the Cretaceous-Paleogene mass
extinction event, around 66 million years ago (Weishampel
and Norman, 1989). This is the best-known example of
megaherbivore replacement that led to the global extinction of
all late Cretaceous megaherbivores (dinosaurs) and the radiation
of large herbivorous mammals that derived from much smaller
species (e.g., vonKoenigswald et al., 1987; Halliday andGoswami,
2016). This replacement took place through the extinction
of the whole megaherbivore guild followed by the evolution
of new taxa from other guilds that filled the ecological gap
(Smith et al., 2010a). Therefore, there are several occurrences
of taxonomic replacements among the megaherbivores, the
previously dominant group of megaherbivores usually left its
niche to representatives of another tetrapod group.

During the last large-scale taxonomic replacement among
the megaherbivore guild that occurred 66 million years ago, it
took about 10 million years after the global extinction of non-
avian dinosaurs for some mammals to reach body weights of
megaherbivores, more or less simultaneously on all continents
(Smith et al., 2010a). During Cenozoic times, there was always
at least one species of megaherbivore on each continent and
in all climatic conditions, as well as during the Pleistocene
outside the range of modern humans Homo sapiens (Schüle,
1992). The taxonomic composition of the megaherbivore guild
during the Cenozoic was dynamic, with migrations, extinctions
and replacements of some groups by others (Putshkov, 2001).
However, except for short periods of time following mass
extinction events, terrestrial ecosystems have always included a
megaherbivore guild since 300 million years.

Ecological Functions of Megaherbivores
Megaherbivores are not only larger versions of their smaller
relatives, their large size allows them to perform different
ecological functions that are poorly performed by smaller
herbivores (e.g., Fritz, 1997; Owen-Smith, 2013), even when
these smaller herbivores are present in equivalent biomass
as the megaherbivores (Owen-Smith, 1988). The ecological
effects of megaherbivores can be observed in the modern
ecosystems where they still survive, as well as by monitoring
the ecological changes in areas where they were recently
extirpated, essentially in African and southern Asian forests
and savannas (e.g., Cowling et al., 2009; Bernard et al., 2014;
Cromsigt and Beest, 2014; Asner et al., 2016). They behave as
ecosystem engineers, thanks to their large size and strength.
Their main ecological functions include changing the structure of
vegetation through feeding behavior, destructive power and seed
dispersal, impacting on the recycling and spread of nutrients, as
well as impacting on the climate (e.g., Schüle, 1992; Doughty
et al., 2013, 2016a,b; Bernard et al., 2014; Cromsigt and
Beest, 2014; Asner et al., 2016; Malhi et al., 2016; Doughty,
2017).
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One of the most spectacular effects of megaherbivores is to
promote open landscapes at the expense of forested ones (e.g.,
Bakker et al., 2016; Doughty et al., 2016a), in a range of climatic
conditions that represents around 30% of the current Earth
surface (Bond, 2005). This impact reduces carbon storage in
wood but increases carbon storage in underground organs of
plants and also increases the amount of plant biomass suitable
for herbivore consumption (Retallack, 2001, 2013). Instead of
being trapped in woody plant tissues for decades or centuries,
as it is the case in forested ecosystems, organic carbon in the
form of grass blades, seeds and underground storage organs
can be easily consumed by different kinds of herbivores (e.g.,
Dominy et al., 2008), and the CO2 incorporated by the plants is
rapidly recycled as CO2 in the atmosphere, with an impact on
the greenhouse gas content and the temperature. On the other
hand, a significant amount of carbon is stored in the biomass of
the megaherbivores themselves, which are organisms with long
lifespans and essentially beyond the reach of animal predators
(Owen-Smith, 1989).

In addition, megaherbivores promote the dispersal of plants
with very large seeds and fleshy fruits compared to frugivores
of smaller size (e.g., Janzen and Martin, 1982; Guix, 2009;
Beaune et al., 2013; Corlett, 2013). Moreover, they disperse
more seeds and on larger distances than smaller frugivores,
leading to changes in the structure of forested ecosystems (e.g.,
Campos-Arceiz and Blake, 2011; Bueno et al., 2013; Bunney et al.,
2017). Therefore, they have a significant impact on the species
composition of the ecosystems where they live (e.g., Bernard
et al., 2014), with consequences on the carbon storage by the plant
communities (e.g., Bello et al., 2015).

Megaherbivores recycle and spread nutrients far away from
nutrients hotspots and counteract the effects of gravity that
tend to move nutrients from high areas where erosion takes
place to low altitude areas and ultimately to oceanic basins
(Doughty et al., 2013, 2016b). In the absence of megaherbivores,
large trees tend to trap for long periods in unpalatable woody
tissues precious nutrients that are removed from the nutrient
cycles (Owen-Smith, 1988). As a consequence, these nutrients

are not any more available for the growth of other plants, which
are more accessible for small and large herbivores. Therefore,
megaherbivores promote a higher biodiversity where they are
present (Owen-Smith, 1988; Catling, 2001).

Indirectly, megaherbivores have an impact on climate through
the changes they produce on the landscape and vegetation cover,
modifying the albedo (e.g., Doughty et al., 2010) and the local
humidity level (e.g., Brault et al., 2013), as well as through indirect
changes in carbon storage by plants (Doughty et al., 2016c).
Moreover, emissions of methane by megaherbivores may have
had an effect on greenhouse gas concentration in the atmosphere
and therefore on climate (Smith et al., 2010b, 2016a; Brook and
Severinghaus, 2011).

Ecological Functions of Agricultural
Humans
The start of food production by humans coinciding with the
adoption of agriculture was a major step in the expansion of
the anthroposphere, leading to a qualitative and quantitative
increase of environmental changes due to human activities.
When human populations shifted their subsistence strategy from
foraging to producing their own food resources using essentially
domesticated plant and animal species under their control, they
also changed dramatically the ecological functions the human
species had on the ecosystems they belonged to Owen-Smith
(1987), Boivin et al. (2016). These changes are quite similar to
those attributed to megaherbivores (Table 1).

To provide enough territories for allowing their crop plants
to grow and their livestock to feed, agriculturalist humans have
cleared originally forested areas (e.g., Godwin, 1944; Iversen,
1956; Williams, 2000, 2008; Smith et al., 2010c; Alenius et al.,
2013), in many cases with the help of fire (e.g., Iversen, 1956;
Bennett et al., 1990; Moore, 2000). Improving the recycling of
soil nutrients through plowing or adding animal organic waste
(manuring) modified the local nutrient balance to increase the
productivity and yield of the planted crops (e.g., Bogaard, 2005;
Bogaard et al., 2013; Lauer et al., 2014).

TABLE 1 | Main ecological functions fulfilled by terrestrial megaherbivores and subsequently by humans as agriculturists.

Ecological functions Terrestrial megaherbivores Homo sapiens as agriculturist

Converting closed forest into more open

landscape

Elephant and rhinoceros damage trees

(Schüle, 1992; Omeja et al., 2014;

Terborgh et al., 2016)

Large scale deforestation to gain forage

areas for domestic herbivores and crop

fields (Godwin, 1944; Williams, 2008)

Nutrient cycling and fertilization Recycling and spreading of nutrients away

from hotspots and counteracting gravity

Doughty et al., 2013, 2016b

Active fertilization of agricultural areas:

manuring, plowing, cultivation of legumes

in rotation (Galloway et al., 2013); recycling

human and animal waste (Melillo, 2012);

increasing P export (Boyle et al., 2015)

Megafruit and seed dispersal Promoting dispersal of plants with

megaseeds (Guix, 2009; Corlett, 2013)

Domestication of megafruit plant species

(e.g., avocado, chocolate, squashes

Kistler et al., 2015)

Emissions of greenhouse gas Methane emissions through digestive

fermentation (Smith et al., 2016a)

CO2 emissions through forest clearing

(Ruddiman and Ellis, 2009). Methane

emissions by domestic ruminants, rice

paddies (Fuller et al., 2011)

Frontiers in Ecology and Evolution | www.frontiersin.org 3 January 2018 | Volume 6 | Article 3

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Bocherens Megaherbivores Ecological Replacement by Humans

In some cases, humans have limited the negative impact of
the loss of megaherbivores for the plant species producing very
large fruits and they behaved as a partial replacement of large
fruits dispersers (Guimarães et al., 2008). For plant species such
as gourds and squashes, chocolate and avocado that became
cultivated by humans, changing fruit and seed disperser led
probably to an increase of the range of the species (Landon, 2009;
Kistler et al., 2015).

Moreover, early agricultural humans contributed to CO2

emissions through forest clearance (Ruddiman and Ellis, 2009)
and to methane emissions through the expansion of methane-
producing livestock and rice paddies (Fuller et al., 2011),
increasing the amount of this powerful greenhouse gas in
the atmosphere and therefore contributing to climate warming
(Ruddiman, 2003). These effects mimic those of megaherbivores
respiring and fermenting large amounts of vegetation that also
contributed to the the greenhouse gas composition of the
atmosphere (e.g., Smith et al., 2010b, 2016a).

The ecological functions fulfilled by agricultural humans
that partially replaced the ecological role of megaherbivores
were performed by the humans rather than through domestic
herbivores. Livestock species are smaller than the extinct
megaherbivores and their biomass until 1800 AD was much
lower than the biomass of the megaherbivores before the end-
Pleistocene megafauna extinction (Doughty, 2013). Their impact
on nutrient recycling and dispersal is much more limited than
for free ranging megaherbivores (Doughty et al., 2016b). The
partial restoration of the ecological functions of the extinct
megaherbivores was therefore essentially a consequence of the
diversity of human impacts on their surrounding environment
through the whole range of their activities.

In areas where climatic conditions were too extreme for
human agriculture due to too cold temperatures (arctic and
periarctic regions) or with too much or too little humidity
(flooded and desertic regions), the ecological functions of
megaherbivores were not restored by human activities. One of
the most spectacular examples of the ecological consequences
of this lack of ecological replacement is the disappearance of
the mammoth steppe biome. This biome was a productive cold
ecosystem and the largest terrestrial biome during the cold
periods of the late Pleistocene, and it disappeared at the expense
of low productivity biomes such as tundra and boreal forests that
cover the periarctic regions today (Zimov et al., 2012).

The Transition Phase
The ecological shift of humans from foragers to agriculturalists
(the so-called “neolithic revolution”) took place independently
in different areas of the world at different times, but always
after the functional extinction of the local megaherbivores
(Doughty, 2010). The earliest evidence for agriculture dates to
the Pleistocene-Holocene transition, in Southwest Asia, North
China, Mexico and South America (Crawford, 2009). Therefore,
the shift of the ecological niche of humans from omnivorous
predators into omnivorous herbivores with megaherbivore-like
ecological functionality occurred after the functional extinction
of the megaherbivores. This ecological replacement did not take
place through competitive exclusion but through the occupation

of a niche left empty by the extinction of the previous occupants
of this niche. An investigation of the timing of independent origin
of agriculture in comparison with the timing and percentage
of megaherbivore extinction in different regions of the world
suggested that agriculture could develop only after the extinction
of megaherbivores, removing the competitive pressure of the
later and allowing the occupation of the empty ecological niche
by agricultural humans (Doughty, 2010).

Interestingly, this extinction of the megaherbivores that seems
to have been necessary for the change of the human ecological
niche was, at least partially, caused by the impact of humans
as they were still ecologically behaving as omnivorous predators
with the ability to actively hunt and consume megaherbivores
that were until then virtually immune from predation (e.g., Brook
and Bowman, 2004; Sandom et al., 2014b; Bartlett et al., 2016).
This predation pressure may have contributed significantly to the
local decline of megaherbivore populations (e.g., Owen-Smith,
1999; Pushkina and Raia, 2008; Surovell and Waguespack, 2009;
Drucker et al., 2015), even if climate change also played a role in
fragmenting the range of megaherbivores andmaking themmore
vulnerable to human impact (e.g., Araujo et al., 2017; Haynes,
2018). Therefore, the same species, Homo sapiens, with two
different ecological modes could (1) contribute to the extinction
of a guild (megaherbivores) probably through predation pressure
and then (2) occupy a large part of the ecological niche of the
extinct guild by shifting its own ecological niche. In contrast to
previous ecological replacements among megaherbivores during
the geological times in terrestrial ecosystems, the last one did not
involve the biological evolution of new species that takes millions
of years, but rather a phenotypic and behavioral change of an
already existing species and took only a few thousand years.

Some Perspectives for Future Research
So far, the ecological impact of megaherbivores as well as
that of agricultural humans has been considered globally
and in general terms. However, since megaherbivore species,
despite their common biological features, belonged to different
mammal groups, some diversity in their impacts is to be
expected. Such diversity is already observed in modern
ecosystems, where the ecological impacts of megaherbivores are
not homogeneous. Indeed, the ecological effects are species-
dependent and also differ according to the abiotic context,
such as temperature, local precipitations and soil characteristics
(e.g., Fritz and Loison, 2006). Even closely related species,
such as African and Asian elephants, have different impacts
on the rainforests they live in Terborgh et al. (2018). When
considering extinct groups without any modern equivalent
among the latest surviving megaherbivore species of the Late
Pleistocene, such as giant rhinoceroses (e.g., Elasmotherium) in
Asia, giant ground sloths (e.g., Megatherium, Scelidotherium,
Paramylodon and many others) and mastodons (e.g., Mammut,
Cuvieronius, Stegomastodon) in North and South America, giant
meriungulates (e.g., Toxodon, Macrauchenia) in South America
or giant wombats (e.g., Diprotodon) in Australia, the exact
impact that they could have had on their respective ecosystems
is still under evaluation (e.g., Gill, 2014; Bakker et al., 2016;
Doughty et al., 2016c; Malhi et al., 2016). Their respective
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ecological impact would depend on many factors, such as their
foraging habits, i.e., grazing, browsing, or mix-feeding (e.g.,
Owen-Smith, 1988), their digestive physiology (e.g., McDonald
and Pelikan, 2006; Clauss et al., 2007), their dependence upon
the availability of surface water (Owen-Smith, 1988), if they
used to dig burrows or not (e.g., Dondas et al., 2009), and the
extant of their mobility pattern (e.g., McDonald and Pelikan,
2006; Price et al., 2017). Therefore, further investigations of
the palaeobiology of these extinct taxa, as individual taxa
but also as a community, should be necessary to quantify
more accurately the possible ecological effects in different
contexts.

Some works are already providing interesting possible
directions for future research. For instance, it is possible to
quantify differences in vegetation openness and composition
during previous interglacial periods in Europe. Investigations
using different approaches, such as pollen analysis, beetle
assemblages and carbon isotopic abundances in large mammal
teeth, suggest more open conditions than during the early
Holocene (e.g., Cheddadi et al., 2005; Pushkina et al., 2014;
Sandom et al., 2014a). In a completely different context,
the Pleistocene savannas from South America, more open
vegetation covers have been predicted by modelization when
megaherbivores are included rather than excluded (Doughty
et al., 2016a). Such a prediction might be tested using carbon
stable isotopes of large herbivores from the abundant fossil
records from these regions (e.g., Domingo et al., 2012; Dantas
et al., 2017).

In the same way that different megaherbivores under different
abiotic conditions may have variable ecological impacts, it is
expected that different agricultural human societies of the past,
using different domestic species, using different agricultural
practices and living under different climatic and soil conditions,
would certainly have a variety of ecological impacts on their
respective environments. Moreover, depending on the history
of megaherbivore impact in the same area, the ecological
consequences might be different. All these factors should be

investigated to document the changes in terrestrial ecosystems
from different key regions of the world across the transition from
the ecological dominance of megaherbivores to the ecological
dominance of agricultural humans to evaluate the respective roles
of abiotic, biotic and anthropic factors in the different ways this
transition took place and provide a test for the generalization of
the model suggested here.

In areas where the transition to agriculture did not take place,
it seems that the ecological functions previously performed by
the megaherbivores were not restored, such as in the case of
the mammoth steppe (Zimov et al., 1995; Zimov, 2005), or to
a lesser degree for temperate deciduous forests Bunzel-Drüke
et al., 2001; Borkowski, 2011. In such contexts a megafauna
rewilding strategy could restore some ecological functions,
especially increase the nutrient cycling and therefore productivity
and possibly the climatic impact of vegetation structure and
landscape changes (Kintisch, 2015).

CONCLUSION

Understanding the transition that the terrestrial biosphere has
experienced during the last thousand years is essential to
anticipate the current and future changes relevant for human
societies. These transformations did not just start with the
Neolithic revolution, but earlier, when most terrestrial biomes
lost the ecological impact of their respective megaherbivores.
The “natural” baseline for terrestrial ecosystems is not that
of environments shortly before the adoption of agriculture by
prehistoric societies, it is the time whenmegaherbivores were still
around and contributed significantly in shaping the terrestrial
biomes and impacted on the biotic and abiotic components of
the Earth System.
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