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Landscape genetics aims to quantify the effect of landscape on gene flow. Broadly, the

approach involves measuring genetic variation, quantifying landscape heterogeneity, and

statistically testing the link between both genetic variation and landscape heterogeneity.

This approach has been widely used by conservation biologists, for example to identify

barriers restricting movement in threatened populations. More recently, landscape

genetics has been used to study the epidemiology of infectious diseases, such as

chronic wasting disease, raccoon rabies, and malaria. This method can be useful

in identifying potential hotspot areas of disease movement for targeted public health

interventions and containment of disease and drug resistance. However, vector-borne

disease epidemiology is particularly complex, as it is affected by the movement of both

the vector and human or vertebrate host. This feature could potentially inhibit the ability

to detect the effect of landscape on gene flow, since the ecology of vectors and hosts

are likely different and potentially conflicting. Here, we provide a summary of the latest

innovations in the field of landscape genetics with a focus on those that could help

increase the power to detect landscape effects in vector-borne human disease studies.

We also provide a recommended framework for studying vector-borne diseases using

a landscape genetics approach. Landscape genetics has the potential to be a powerful

tool for the field of vector-borne disease epidemiology but has so far been underutilized.

The provided synthesis of tools and considerations for conducting a landscape genetics

study of a vector-borne disease aim to bridge the gap between the two disciplines.

Keywords: landscape genetics, vector-borne diseases, molecular epidemiology, population genetics, spatial

ecology, infectious diseases

INTRODUCTION

Broadly, landscape genetics aims to quantify the effects of landscape heterogeneity on
microevolutionary processes, such as gene flow, genetic drift, and/or natural selection (Balkenhol
et al., 2015). Landscape genetics has primarily and traditionally been used by conservation
biologists, such as to identify vulnerable populations and identify areas where corridors are needed
to promote gene flow (Storfer et al., 2010). More recently, landscape genetics has been used to
study various infectious diseases, such as chronic wasting disease (Blanchong et al., 2008; Robinson
et al., 2013), rabies in domestic dogs (Brunker et al., 2012), raccoon rabies (Rees et al., 2008, 2009;
Cullingham et al., 2009; Côté et al., 2012), hantavirus (Guivier et al., 2011; Dubois et al., 2017),
H5N1 avian influenza (Carrel et al., 2011), and malaria (Carrel et al., 2015; Lo et al., 2017a,b).
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This method can be useful to identifying potential hotspot areas
of disease movement for targeted public health interventions and
containment of disease and drug resistance. However, vector-
borne disease epidemiology is particularly complex, as it is
affected by the movement of both the vector and human or
vertebrate host. This feature could potentially inhibit the ability
to detect the effect of landscape on gene flow, since the ecology of
vectors and hosts are likely different and potentially conflicting.
The goal of this review is to provide a synopsis of the latest
innovations in landscape genetics research with an emphasis on
new tools thatmay be particularly useful to studying vector-borne
human diseases.

There are already a number of excellent review papers on
landscape genetics generally that provide an overall scope as well
as technical details in conducting such studies (Holderegger and
Wagner, 2006; Storfer et al., 2007, 2010; Manel and Holderegger,
2013; Hall and Beissinger, 2014). We suggest referencing these
more general review papers to gain additional background in
the field of landscape genetics if desired. In addition, conceptual
considerations of using landscape genetics to study infectious
diseases are discussed elsewhere (Biek and Real, 2010). We
will therefore focus this review on practical landscape genetics
resources that have high potential for improving understanding
of vector-borne human disease transmission. We will highlight
successes and synthesize lessons learned from these infectious
disease landscape genetic studies. In addition, we will discuss
tools from other fields that had yet to be used in the
aforementioned studies.

Landscape genetic analysis begins by developing hypotheses of
how landscape factors resist gene flow (Shirk et al., 2017). To test
isolation-by-resistance hypotheses, landscape genetics integrates
analytical tools across multiple disciplines, including landscape
ecology, population genetics, and spatial statistics. It requires the
use of molecular markers to measure genetic variation and to
infer gene flow. Other tools needed are geographic information
systems, remote sensing, population genetics, and statistical and
mathematical modeling techniques (Manel and Holderegger,
2013). Moreover, landscape genetics analysis of vector-borne
diseases is particularly complex and several factors must be
considered when designing a study, such as those related to
the environment, vector mobility, and human and pathogen
mobility (Figure 1). Further, additional considerations for such
a study must also be taken into account when measuring spatial
and genetic distances to ensure sufficient sensitivity, which
will be featured throughout the paper (Figure 1). Landscape
genetics can be an extremely useful approach to improve our
understanding of how vector-borne diseases spread (Biek and
Real, 2010). Careful planning will be critical to the success of
a landscape genetics study. With the advancement of molecular
population genetics, remote sensing and modeling tools, it is
possible to parse out the importance of key environmental
variables and human factors influencing dispersal and potential
spread of vector-borne diseases.

STUDY DESIGN

Careful consideration for a sampling design is a critical first step
in conducting any landscape genetics study. For a vector-borne

disease study, it is especially critical due to the need for ultra-
sensitive methods to detect landscape effects in a complex system.
Important factors to consider include spatial and temporal
scale, sampling regime, population or individual-based approach,
sampling effort, and variables to test for isolation-by-resistance.

Spatial Scale
Propensity for dispersal is an important characteristic to consider
in determining the appropriate spatial scale for a given study
(Wright, 1943; Slatkin, 1987). For example, studies of organisms
with longer dispersal distances may require data collection
of larger spatial scales (Hall and Beissinger, 2014). Choosing
an appropriate spatial scale for vector transmitted diseases is
complicated in that one must consider the dispersal ranges of
both the vectors and the hosts. Therefore, it may be useful to
collect data at different transect widths, based on the dispersal
behaviors of vectors and hosts, and assess the effect of spatial-
scale variation (Murphy et al., 2010; Emaresi et al., 2011).
In addition, a multiscale approach can help to reveal scale-
dependent processes (Meentemeyer et al., 2012).

Temporal Scale
Temporal scale is an important factor to consider for a
study in a changing landscape. For example, when historically
high connectivity has recently declined, recent migration rates
are over-estimated, which may lead to inaccurate conclusions
(Samarasin et al., 2017). Since the ecology of vector-borne
diseases are likely tightly linked to human-related factors, genetic
connectivity is potentially changing with a high frequency. In this
case, data collection at multiple time periods can help account for
responses of genetic variation to a landscape change. This rate of
response change differs among organisms. For organisms with
short dispersal distances, such as mosquitoes, signals of a historic
barrier can be maintained for greater than 100 generations. Thus,
historic landscape traits may have a larger impact on genetic
variation than the contemporary landscape (Landguth et al.,
2010).

Spatial Sampling Regime
The chosen field sampling design can greatly impact the ability
to detect effects of landscape pattern on gene flow. Since sensitive
methods are needed to detect an effect of landscape on potentially
complex disease patterns, choosing an appropriate sampling
design is critical. Ideally, all populations should be sampled (van
Strien, 2017). However, if not all populations are sampled, tests
should be performed to assess inference sensitivity to missing
populations (van Strien, 2017). Other possible sampling designs
include: random, linear, systematic, and cluster. Random, linear,
and systematic sampling designs have been shown to outperform
a cluster design (Oyler-McCance et al., 2013). An alternative
to the aforementioned sampling designs may be to optimize a
sampling design based on a landscape feature that is hypothesized
to influence gene flow. This optimization function is available as
“opt.landgen” in the R package PopGenReport (Adamack and
Gruber, 2014). The function evaluates the ability of hundreds
of sampling designs to detect an effect of landscape for a given
landscape resistance layer. It then provides the sampling designs
that have the greatest power to detect a landscape effect if the
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FIGURE 1 | Framework for design and analysis of vector-borne disease landscape genetics study. Study system considerations that drive the sampling design are

described in the orange ovals. Outcome of the study is in the yellow oval.

landscape effect exists. This method may be particularly useful
when the ecology of vectors and hosts are more well understood
and the researcher is testing a specific hypothesis or a small set of
specific hypotheses.

Individual-Based Analysis
An alternative to the traditional population-based analysis is to
use an individual-based approach. This sampling method can
be especially useful when population boundaries are not clearly
defined or known (Richardson et al., 2016). This situation could
be common in infectious disease studies. In addition, individual-
based analysis can be more powerful in detecting fine-scale
genetic patterns (Prunier et al., 2013; Luximon et al., 2014). For
instance, this method has been used to study the variables that
drive H5N1 avian influenza molecular change in Vietnam (Carrel

et al., 2012). Carrel et al. (2012) found significant correlations
between genetic differentiation of H5N1 and several population-
environmental variables using individual-based analysis. Such
associations at a fine-level may not be easily achieved with the
population-based analysis.

Sampling Effort
The statistical power of analyses increases with an increasing
number of samples. Simulations can help to estimate how power
is affected by sample size. Such simulations can be implemented
in programs, such as CDPOP (Landguth and Cushman, 2010).
Based on population genetic simulations, it was found that in
an individual-based landscape genetic approach, it may be more
efficient to increase the number of loci rather than to increase
sample size (Landguth et al., 2012).
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Selecting Landscape Variables
Selecting appropriate landscape variables to test will determine
whether a meaningful landscape effect will be able to be detected.
It is important to carefully consider the biology of the study
system when choosing variables. For example, unsuitable habitat
may restrict dispersal, but this may not necessarily be the
case. Moreover, since pathogen movement is affected by both
the movement of vectors and hosts, it is essential to consider
landscape variables that reflect the distribution of both vectors
and hosts across space (Biek and Real, 2010).

Human Mobility Variables
Vector-borne disease landscape models can be improved by
including measurements of human mobility. Human movement
can affect disease outbreaks by introducing pathogens to a
new population or by increasing the contact between infected
and healthy individuals (Wesolowski et al., 2016). Monitoring
human mobility and infectious disease dynamics is essential
for predicting areas with high risks of outbreak. Roads and
air travel patterns (at a larger scale) may be used as a
method of estimating population movement. However, these
features may not reveal the complexity of human migration
patterns. For example, during the 1950 and 1960’s, malaria
eradication campaigns failed to take into account population
patterns, which allowed for the resurgence of malaria in
places that had already been eradicated (Martens and Hall,
2000). Therefore, it is important to take into account factors
that contribute to mobility and disease transmission, such
as increase in travel, population redistributions in developing
worlds, natural disasters, and conflicts that account for the
displacement of large amounts of people (Martens and Hall,
2000). In addition, seasonal migration, such as for agricultural
work, may significantly influence pathogen spread. For instance,
in Ethiopia, men who travel away from home were more
likely to transmit malaria to high altitude villages due to
traveling for seasonal jobs (Alemu et al., 2014). Therefore,
new methods of measuring human mobility can be used
to more accurately define migration patterns, as opposed to
transportation features, such as roads. In this section, we discuss
several forms of technology that can be utilized to capture
spatial and temporal fluctuations in human mobility that affect
disease dynamics such as anthropogenic light, mobile phone data,
social media networks, and Global positioning Systems. We also
address the advantages and limitations of using these forms of
technology.

Anthropogenic light
Seasonal fluctuations of human populations can be measured
by using remote sensing data for anthropogenic light (Bharti
et al., 2011). For example, Bharti et al. (2011) found fluctuations
in brightness and measle transmission to be strongly positively
correlated in Niger. An important consideration for using
anthropogenic light to assess human mobility is that nighttime
light is associated with economic activity (Doll et al., 2006),
and so important populations of people may be underestimated
or missed in this measure. Nighttime light satellite imagery

is available from the Defense Meteorological Satellite Program
(DMSP) Operational Linescan System (OLS).

Mobile phone data
Mobile Phone Data can be used to predict the spread of infectious
disease. A study conducted during the cholera epidemic in
Haiti utilized phone data, created gravity models of population
mobility, and compared the results to the reported cases of
cholera (Bengtsson et al., 2015). It was assumed that the
movement of mobile phone signals was proportional to the
movement of individuals infected. Using this information, the
infectious pressure was then calculated. Estimates showed a
relationship with the risk of an area having an outbreak within
7 days (Bengtsson et al., 2015). The study found that the amount
of local outbreaks could be predicted at early stages of the cholera
epidemic (Bengtsson et al., 2015). A minor bias was found due to
socio-economic group differences in mobile phone ownership.

Another study also suggested that mobile phone data could
be used to study human mobility across spatial and temporal
scales in many countries and pathogens to understand infectious
epidemiology (Wesolowski et al., 2016). The study analyzed
the dynamics of malaria and rubella in Kenya, where the
mobile phone data was combined with the pathogen’s life
cycle, transmission and epidemiological inoculation rate to
predict future outbreaks of disease (Wesolowski et al., 2016). By
utilizing this information, it helped pinpoint high risk locations
and helped to understand spatial transmission of disease.
Some limitations in this study were that some information,
such as seasonal fluctuation, was not available and cases
were underreported (Wesolowski et al., 2016). The study also
possessed a bias since children were underrepresented. However,
these limitations did not significantly affect mobility predictions
(Wesolowski et al., 2016). Since mobile phone data has been
found to have predictive power of disease spread and outbreaks,
it could therefore be useful to includemobile phonemobility data
as a predictive variable in a landscape genetics study.

Social media
Social Media can also be used as a method of tracking human
mobility. For instance, Tizzoni et al. (2015) used twitter geotags to
scale human contact and epidemic processes in Metapopulations
Networks. Twomaps were created: one used the geotags to create
census maps of areas with major transportation hubs; the other
separated geotags into metropolitan areas located in the U.S and
across European countries (Tizzoni et al., 2015). Using this data,
it was evident that online telecommunication social networks can
be used to map physical contact networks, and can indirectly be
used as a tool to show real social ties for contagion processes
(Tizzoni et al., 2015). They found that contact rates promoted
epidemic spreading and increased based on the distribution of
mobility flow between subpopulations (Tizzoni et al., 2015).

Similarly, in another study conducted in Australia, six million
geotagged tweets were analyzed and provided evidence that
twitter is useful for tracking and predicting human movement
(Jurdak et al., 2015). In addition, they compared the Twitter
data to data collected with mobile phone records. Although the
results were similar, the Twitter data had higher resolution and
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was able to map different movements in intra-site, metropolitan,
and inter-city movement (Jurdak et al., 2015). The Twitter data
captured mobility patterns, and found that people who traveled
long distances spend most of their time in metropolitan areas
in comparison to those who only traveled intermediately (Jurdak
et al., 2015). The study also identified two types of Twitter users,
one had highly predictable tweeting locations while the other
was less predictable (Jurdak et al., 2015). Those who tweeted
from home were more likely to return in comparison to long
distance movers who were less likely to return (Jurdak et al.,
2015). The study concluded that geotagged tweets is a useful
tool for identifying population-level patterns, however individual
patterns were more sensitive to contextual factors (Jurdak et al.,
2015). Twitter-based mobility-patterns can be a useful proxy for
characterizing the risk of disease by creating movement profiles
across a landscape. With that said, Twitter data may not be as
effective at measuring human mobility in low-income settings.

GPS systems
Global Positioning Systems (GPS) were used to track the
mobility patterns of 582 participants from two neighborhoods
in Iquitos, Peru (Vazquez-Prokopec et al., 2013). The study
aimed to consider social interactions in environments that
are resource-poor and have rapid growth when studying
the dynamics of infectious disease spread (Vazquez-Prokopec
et al., 2013). Vazquez-Prokopec et al. (2013) measured age-
specific mobility and changes in colocation networks in all
the participants. It was found that geographic space greatly
influenced human mobility (Vazquez-Prokopec et al., 2013).
Approximately 80% of movements were 1 km away from the
person’s home (Vazquez-Prokopec et al., 2013). About 38% of
participants had a predictable routine showing contrasting results
to more developed countries (Vazquez-Prokopec et al., 2013).
As a result, the researchers conducted a case study to determine
how unstructured routines would impact the transmission of
infectious diseases. It was determined that unstructured routines
increase disease outbreak in comparison to more structured
routines (Vazquez-Prokopec et al., 2013). This result displayed
the complexity in analyzing human mobility and its effects
on infectious diseases in developing countries, revealing that
further studies need to be developed to create a more reliable
infectious disease model (Vazquez-Prokopec et al., 2013). In
another study, Paz-Soldan et al. (2010) utilized GPS systems to
study dengue virus transmission and possible barriers in Peru.
They determined that using GPS to track human movement
has many benefits. For instance, they are affordable and help
determine rates of exposure in a population and the dynamics
of vector-borne pathogens (Paz-Soldan et al., 2010). However,
it is important to address participant concerns when using GPS
in order to avoid participant associated errors (Ikanovic and
Mollgaard, 2017).

Vector Mobility Variables
Landscape variables related to vector movement may vary greatly
among study systems. A starting point for selecting variables
of interest may be to reference habitat suitability models or
previous field observations for important variables associated
with vector habitats. For example, the population structure

of Aedes mcintoshi, the primary vector for Rift Valley fever
virus in Kenya, was found to correlate with mean precipitation
values, a variable selected based on previous field observations
(Campbell and Alexander, 2017). Notably, this approach assumes
that unsuitable habitat impedes movement, which may not
necessarily be the case. It is therefore critical to carefully
consider the biology of your study system. Some variables of
interest may include elevation, land cover type, temperature,
and/or precipitation. Data for these variables are often publicly
available by remotely-sensed data. For instance, global elevation
data is available by NASA’s Shuttle Radar Topographic Mission
(SRTM). Global land cover data along with several other land
products are available by NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS). Temperature and precipitation
data is available by WorldClim (Hijmans et al., 2005).

In addition, humans can facilitate vector spread, such as an
aircraft carrying insect vectors (Tatem et al., 2006). Therefore,
some of the previously mentioned variables related to human
mobility, such as roads and airfreight, may also apply to vector
movement. For example, human-aided dispersal (highways)
was found to reflect gene flow at a broad spatial scale for
the Asian tiger mosquito, Aedes albopictus, whereas natural
dispersal (forests) was more dominant at smaller spatial scales
(Medley et al., 2015).Moreover, vector distributionmay be tightly
correlated with host distribution due to their dependence on host
blood meals (Leo et al., 2016). Thus, factors related to vector
mobility may closely reflect those of human mobility especially
for study systems in which alternative hosts are absent or
negligible, for instance in areas where the highly anthropophilic
vector An. gambiae s.s. is the primary vector of the malaria
parasite Plasmodium falciparum.

SPATIAL MEASUREMENT

Creating Landscape Resistance Surfaces
A resistance surface is a spatial layer where each grid cell
is represented by the extent to which conditions at that
cell constrain movement or gene flow (Balkenhol et al.,
2015). Some knowledge of GIS software is necessary to
create resistance surfaces, such as ArcMap or DIVA-GIS,
a free computer program, though many other softwares
exist.

Multicollinearity
It is important to avoid introducing multicollinearity when
evaluating landscape variables. Multicollinearity, a general
problem in modeling, is when there is a high degree of linear
correlation among predictor variables, such as elevation and
temperature. This issue can be addressed by checking a matrix
of pairwise correlations among predictor variables. Generally,
correlations above 0.7 are considered problematic (Dormann
et al., 2013). If multicollinearity is present among two or more
variables, then it is suggested to remove one or more of those
variables.

Spatial Grain
When creating landscape resistance surfaces, choosing an
appropriate spatial grain is critical because landscape genetic
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analysis is highly sensitive to grain size (Turner, 1989; Wu,
2004). Generally, the scale of how the landscape is connected
should correspond to the scale of how organisms move and
disperse (Galpern and Manseau, 2013). Anderson et al. (2010)
recommends using a spatial grain size smaller than that of the
organism’s average dispersal range. However, too small of a grain
can lead to unnecessary noise that may mask coarser patterns
influencing connectivity (Anderson et al., 2010). In vector-borne
disease studies, the parasite’s dispersal range is complicated by
having multiple dispersal mechanisms at potentially divergent
spatial scales. Therefore, a method described by Galpern and
Manseau (2013) using multi-scaled analysis to match the analysis
grain to the functional grain may be especially useful for such
studies and can help to improve the accuracy of identifying the
contribution of landscape features to connectivity.

Assigning Resistance Values
After having decided on landscape variables and creating
landscape resistance surfaces, it is necessary to assign features a
landscape resistance to gene flow value. For continuous variables,
such as elevation, it is possible to simply assign the raw elevation
values as the landscape resistance value. However, this approach
assumes a linear and positive relationship between elevation
and landscape resistance to gene flow. For discrete variables,
such as land cover type, it is necessary to assign each land
cover type a landscape resistance value. Assigning appropriate
landscape resistance values is essential to being able to detect
landscape effects. Moreover, in vector-borne disease studies,
parasite movement is particularly complex, and so precise
landscape resistance values are especially important to have
sufficient sensitivity toward to detect landscape effects.

Expert Opinion
Expert Opinion is the most common method to assign landscape
resistance values (Shirk et al., 2010; Zeller et al., 2012). However, a
major pitfall of expert opinion is that it is subjective (Zeller et al.,
2012; Trainor et al., 2013; Dudaniec et al., 2016). In addition,
expert-derived landscape resistance values have been found to
perform worse than a null model (Charney, 2012). While expert
opinion may be a useful starting point, it is suggested that if used,
to further parameterize expert-derived values as discussed below
in the optimization section (Shirk et al., 2010).

Habitat Suitability Models
Habitat Suitability Models can be used in assigning resistance
values by directly converting the suitability value for a species
to a resistance value. For instance, if a suitability scale is 0–
100, the resistance value can be transformed by subtracting the
habitat suitability value from 100 (Spear et al., 2010). Wang et al.
(2008) found significant correlations between genetic distance
and a resistance surface based on habitat suitability for the
spiny rat, Niviventer coninga. Another study on wolves (Canis
lupus) compared habitat suitability models to expert opinion
and found the habitat suitability based models to have higher
coefficient values than those based on expert opinion (Milanesi
et al., 2017). However, it is important to note that habitat
suitability models are based on presence and absence data and

do not incorporate information on movement behavior (Spear
et al., 2010). In addition, using habitat suitability models to
assign resistance values would likely not be readily accessible for
resistance surfaces based on human mobility.

Movement Studies
Movement studies, such as mark-recapture studies, radio
telemetry, GPS, or track or fecal surveys, may also be used to
assign resistance values (Spear et al., 2010). Resistance values may
be similarly assigned as in the case of suitability models, where if
for example, the highest traveled corridor had an average of 10
crossings per day, the resistance value for every corridor would
be calculated by subtracting the average number of crossings
per day from 10. However, movement data can be difficult and
time-intensive to obtain. Collecting this type of data may also be
somewhat paradoxical since a major motivation for conducting
landscape genetic studies is because this data is difficult to obtain
(Spear et al., 2010).

Optimization
Optimization may help to improve the accuracy of resistance
values derived from expert opinion. For example, Shirk et al.
(2010) refined a model optimization approach introduced by
Cushman et al. (2006) and demonstrated its utility on a
population of mountain goats in the Cascade Range. The
approach began with an expert opinion-derived parametrization
of landscape features, such as distance to escape terrain, roads,
land cover type, and elevation. Each variable was related to
landscape resistance with a simple mathematical function. Then,
expert opinion parameter values were systematically varied for
each variable to find the model with the highest correlation
to genetic distance. The resulted optimized parameter values
differed from expert opinion values for all variables and the
elevation and land cover models were found to have a modest
correlation with gene flow (Shirk et al., 2010). Moreover,
Gharehaghaji et al. (2017) also implemented this optimization
approach and found significant associations between elevation
and gene flow of valley oaks. Thus, this optimization approach
may help to improve the ability to detect landscape effects over
expert opinion only models.

An alternative optimization approach devoid of expert
opinion is to optimize landscape resistance surfaces based on
a genetic algorithm, which has been used to study salamander
species (Peterman et al., 2014, 2015). This method can be
implemented using the R package ResistanceGA (Peterman,
2014). ResistanceGA uses a genetic algorithm to optimize
landscape resistance surfaces based on pairwise genetic distances
and resistance distances and can optimize both categorical and
continuous resistance surfaces. This approach may provide an
unbiased optimization of resistance surfaces.

Landscape Connectivity
It is difficult to directly correlate a landscape resistance surface
to pairwise genetic data. Therefore, it is necessary to convert
the data in a landscape resistance surface to a pairwise number
of “landscape distance” between populations or individuals.
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There are two common methods outlined below for making this
translation to pairwise measures.

Least Cost Path
Least Cost Path has been the most popular approach in landscape
genetics (Storfer et al., 2007). This approach simply involves
drawing a line between two populations or individuals that
minimizes the cumulative movement cost across the landscape
resistance surface. For the pairwise distance measure, the
researcher can either use the Euclidean length of the least-cost
path (Spear et al., 2005) or calculate the weighted resistance
cost across the path (Cushman et al., 2006; Shafer et al., 2012).
However, both methods of calculating “landscape distance”
assume that the organism possesses enough knowledge to follow
the optimal path between points in the landscape. In addition, the
weighted resistance cost path is particularly sensitive to relative
costs, and so it may not be ideal for situations in which the
resistance parameterization is uncertain (Balkenhol et al., 2015).
Least cost paths can be calculated using the R package gdistance
(van Etten, 2017).

Circuit Theory
Circuit Theory can be used to model dispersal through
a resistance surface between populations. In this approach,
landscapes are represented as grids of regularly-spaced nodes
that are connected by resistors. The provided landscape
resistance surface determines the level of resistance among the
adjacent nodes. This method incorporates all possible pathways
between populations and provides summary pairwise “landscape
distance” values. This approach may be especially beneficial in
landscapes where there are multiple paths between populations
or individuals of similar total cost, so that a least-cost path would
only represent a fraction of realized connectivity. This approach
can be implemented using Circuitscape software (McRae and
Beier, 2007).

GENETIC MEASUREMENT

Genotyping
Molecular Markers
The majority of molecular markers used in landscape
genetic studies include microsatellites, single nucleotide
polymorphisms (SNPs), allozymes, and amplified fragment
length polymorphisms (AFLPs). Statistical power increases with
the number of loci, as well as the number of alleles per loci.
Power related to the number of loci evaluated can be estimated
prior to the study using simulations in CDPOP (Landguth and
Cushman, 2010; Landguth et al., 2012). While microsatellites are
the most commonly used marker in landscape genetic studies,
high coverage SNP markers may provide a better ability to
detect population differences than traditional microsatellites.
For example, Campos et al. (2017) found that by using a
ddRADseq-derived SNP dataset, they were able to differentiate
Anopheles darlingi populations that were missed when using a
nine microsatellite loci dataset.

Measure Pairwise Genetic Distance
Using genotype data, a metric of genetic distance among all
pairs of populations or individuals is calculated. Population-level
metrics, such as F-statistics, chord, and Nei’s standard distance
assume mutation-drift equilibrium (Hall and Beissinger, 2014).
Therefore, in study systems where there has been a recent habitat
disturbance, which may be common in human disease systems,
these statistics may not be ideal. Rather, alternative statistics such
as those described below may be better-suited for such a study.

Principle coordinate analysis (PCA)-based
In a comparison of individual-based genetic distance metrics,
simulations demonstrated that PCA-based metrics performed
best under the most challenging conditions, when sample
sizes are limited and dispersal is high (Shirk et al., 2017).
Therefore, using PCA-based metrics may maximize model
selection accuracy and improve the reliability of landscape
genetic analysis.

Identity by descent
FST has been shown to be less reliable at descriminating
population structure at small spatial scales (Miotto et al., 2013).
Identity by descent (IBD), which relates ancestry to variability
due to recombination can provide insight into more recent
demographic events than FST, since recombination works on
shorter time scales than mutation and genetic drift (Thompson,
2013). In a malaria parasite study where samples were collected
from four clinics with an area spanning approximately 120 km,
there was no relationship between clinic distance and FST genetic
distance. However, a significant decline in IBD-based relatedness
was found with increasing inter-clinic distance (Taylor et al.,
2017). Thus, at small spatial scales, using IBD as the genetic
distance metric can increase sensitivity in detecting population
differentiation.

Spatially explicit summary statistics
Spatially explicit summary statistics (SSS), such as Euclidean
distances in spatial-PCA space or Monmonier’s identification
of genetic breaks, can improve the ability to discriminate
between complex evolutionary histories (Alvarado-Serrano and
Hickerson, 2016). These methods can capture spatial distribution
patterns underlying the genetic samples, and so SSS can be useful
for investigating demographic histories across a landscape.

INTEGRATE GENETIC AND SPATIAL
MEASUREMENTS

We will outline link-based analysis statistical methods to
integrate genetic and spatial measurement data. The link-based
approach relates neutral variation between sites to between-
site landscape factors to test hypotheses related to isolation-
by-environment, which we anticipate to be the most common
scenario in a vector-borne disease study. For information on
link-, neighborhood-, and boundary-based methods, we suggest
referencing Hall and Beissinger (2014). For link-based analysis,
there are several statistical analysis options that may be employed
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to test the correlation of spatial and genetic distance. Here, we
briefly discuss common statistical tests.

Link-Based Statistical Analyses
Partial Mantel Tests
Partial Mantel tests are the most common analytical method
in landscape genetics. Mantel tests examine the correlation
between a matrix of pairwise genetic distances and a matrix
of spatial distances. While common, Mantel tests have been
heavily criticized for having an inflated type I error rate and low
statistical power caused by the non-independence in response
and predictor variables (Balkenhol et al., 2009; Cushman and
Landguth, 2010; Graves et al., 2013). It is therefore advised to
avoid the use of Mantel tests in landscape genetic studies (Manel
andHolderegger, 2013). Multiple regression on distance matrices
are similar to Mantel tests and should likewise be avoided (Manel
and Holderegger, 2013).

Multiple Matrix Regression With Randomizations

(MMRR)
Multiple matrix regression with randomizations (MMRR) is a
regression on the pairwise distance matrices that assesses the
significance of regression parameters by special randomizations
(Wang, 2013). This method accounts for the non-independence
of variables and provides a regression coefficient and significance
test for each cost matrix. This test can be done using the function
“lgrMMRR” in the R package PopGenReport (Adamack and
Gruber, 2014).

Linear Mixed Effects Model With a Maximum

Likelihood Population Effects Parameterization

(MLPE)
Linear mixed effects model with a maximum likelihood
population effects parameterization (MLPE) is another method
that accounts for non-independence among pairwise data. This
method does so by including a random or population effect based
on covariate structure (Clarke et al., 2002; van Strien et al., 2012).
This test can be done using the “lmer” function in the R package
lme4 (Bates et al., 2015).

BEDASSLE
BEDASSLE is a package available in R that implements a
bayesian approach and Markov chain Monte Carlo algorithm
(Bradburd et al., 2013). This method is different from Mantel
tests, MMRR, and linear mixed effect models with MLPE in that
BEDASSLE models the covariance in allele frequencies between
populations as a decreasing function of ecological and geographic
distance (Wang and Bradburd, 2014). The coefficients are then
estimated for the pairwise distance measures and compared. The
resulted method is able to quantify the relative contributions of
geographic and ecological distance to genetic differentiation.

Machine Learning
Machine learning has been used in the analysis of landscape
genetic studies, which investigated the landscape factors
associated with resistance to gene flow in amphibian populations
(Murphy et al., 2010; Hether and Hoffman, 2012). Random forest
(RF), the machine learning algorithm used, is based on regression

tree analysis and can be useful in landscape genetic analysis
because it can be used for data sets with many redundant or
irrelevant predictors (Hether and Hoffman, 2012). The method
involves first combining genetic and landscape data, running the
RFmodel using the R package “RandomForest” for all predictors,
and then converting the result into model improvement ratios
(MIR) (Hether and Hoffman, 2012). Using this method, RF was
able to identify habitats associated with genetic differentiation
(Hether and Hoffman, 2012).

Model Selection
Finally, it is important to note that a priori selection of a
single landscape resistance model will likely lead to a high
but false correlation (Cushman and Landguth, 2010; Cushman
et al., 2013). Thus, it is important to test a set of realistic
models involving several landscape variables, as well as multiple
functional responses to each variable, such as by using methods
previously mentioned in the optimization sub-section (Shirk
et al., 2010; Peterman, 2014). Alternatively, an approach that
does not rely on iterative optimization algorithms may be used
by simply assessing landscape variables at varying relative costs,
i.e., creating and testing many hypothetical resistance surfaces
and selecting the highest ranked models according to values
such as the Akaike information criterion (AIC) (Cushman et al.,
2006;Wang et al., 2009). Moreover, multivariate models may also
be similarly evaluated, potentially by creating several candidate
combinations of top univariate models or simply testing all
possible combinations of variables.

Landscape Genomics
The previous sections have assumed that the objective of a
given landscape genetics study is to understand how gene
flows between populations. To understand how landscape and
environmental factors influence selection and local adaptation,
a landscape genomics approach may be used. Landscape
genomics offers the potential for researchers to fine-tune
molecular variation underlying the changing environments
and landscapes within a region. In landscape genomics, we
seek to identify which genes influence a trait or confer an
environmental preference, which alleles in those genes are most
desirable for the conditions observed, and how much each gene
contributes to the adaptation to those conditions (Schwartz
et al., 2010). Different from landscape genetics that evaluates
genetic relatedness among individuals/populations using multi-
locus markers such as microsatellites and AFLPs, the first
step in landscape genomics is to characterize the genome of
the organisms of interest. This includes the identification of
genetic variants, their putative function, and their genic or
allelic diversity. The advent of next generation sequencing
technology has made this process increasingly feasible and
affordable, both technically and financially. Bioinformatics
and correlation analyses (such as categorical tests, logistic
regressions, matrix correlations, general linear models andmixed
effects models) of next generation genome data will allow the
identification of key genes or variants under selection from
environmental factors (Rellstab et al., 2015). The next step is to
characterize the spatial distribution of allelic diversity across the
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landscape. Landscape genomics approach is useful when sampled
populations have weak or unknown structure (Jones et al.,
2013) because correlated allele frequencies between populations
have been shown to substantially increase type I errors in
certain landscape genomics approaches (Bradburd et al., 2013;
De Mita et al., 2013). By identifying the associations between
genotypes and environmental traits/phenotypes, the genetic
architecture of selection can be investigated at the individual,
population, or species levels while incorporating the effect of
spatial heterogeneity of the landscape on patterns of allelic
variation (Schoville et al., 2012). The results of these analyses may
be used to predict or model which populations are best adapted
to the studied areas.

CONCLUSIONS

Despite that landscape genetics can provide useful insights into
variables influencing pathogen spread, the approach has been
underutilized in studying vector-borne disease epidemiology.
As countries approach disease elimination and drug resistance
increases in prevalence, knowledge of how pathogens spread
becomes even more critical to informing targeted interventions.
Careful planning of a study design is essential to being able
to detect landscape effects, especially in a system as complex
as a vector-borne disease. We have provided a summary of

important landscape genetics resources and considerations for
designing and carrying out an effective vector-borne disease
study (see Supplementary Table for a summary of resources
discussed in the text). With the provided recommendations and
resources, we aim to close the gap between the two disciplines
to better understand the underlying factors influencing pathogen
spread.
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