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A list of alien ladybird (Coleoptera: Coccinellidae) species to Europe was prepared and

the history and circumstances of their introductions were determined. Currently there

are 12 alien ladybird species in Europe, originating from Australian, Oriental, Nearctic,

Palearctic and Afrotropical regions. All of the species were intentionally released as

biological control agents and most are coccidophagous species. The aphidophagous

Harmonia axyridis is the only ladybird regarded as invasive in Europe. The main factors

leading to successful establishment were food relationship, living in different habitats in

different geographical regions and geographic origin. We found that successful invaders,

in their native areas, showed adaptability to a wide range of conditions compared to

non-invasive species. Larger aphidophagous alien ladybirds were found to develop as

fast as native species. Characteristics that did not differ between native and alien species

are thermal requirements for development, fecundity and body size. However, unlike

other alien ladybirds, H. axyridis had higher potential dispersal ability.

Keywords: biological invasion, Europe, fecundity, invasiveness, ladybirds, rate of spread, thermal requirements

INTRODUCTION

Most species of ladybirds (Coleoptera: Coccinellidae) are carnivorous predators that feed on a
variety of phytophagous arthropods including aphids, coccids and mites (Giorgi et al., 2009;
Weber and Lundgren, 2009) and therefore render important services to agricultural and forest
ecosystems through biological control of those pests. As such, non-native coccinellid species
have been introduced around the world. Biological control using coccinellids started in the late
1800s with the successful introduction of Rodolia cardinalis Mulsant from Australia to control
populations of the coccid Icerya purchasi Maskell infesting citrus orchards in California. Since
then, several other ladybird species have been introduced to new regions for classical biological
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control (Roy andMigeon, 2010). The objective of the imports and
releases was the establishment of self-perpetuating populations in
order to exert natural control over specific pests (Michaud, 2012).
Besides the benefits, this process also bears risks, including the
spread and establishment of ladybirds in new geographic ranges.
The monetary costs of managing alien species once established
are often very high. The environmental costs (e.g., effects of
an alien biological control agent on species other than the pest
species) may also be high (van Lenteren et al., 2008). Thus
preventing invasion in the first place is highly desirable, and
in order to do this, knowledge of the pathways of invasion are
needed (Hulme, 2015).

Whilst there have been numerous intentional coccinellid
introductions since the end of the nineteenth century (Hokkanen
and Sailer, 1985), the negative impacts were only recently
acknowledged (van Lenteren et al., 2003, 2006). The need
for intensive study of the consequences of alien coccinellids
has been realized due to the negative effects of two species:
Coccinella septempunctata L. in the Nearctic and Harmonia
axyridis Pallas worldwide. However, initially there was little (or
no) concern that these species would have negative impacts
on “non-target” indigenous species, through species interactions
such as competition and/or intraguild predation.

Food Relationship
Apparently, coccidophagous ladybirds are more prone to thrive
in novel geographical areas than are aphidophagous ladybirds.
One reason underlying this could be related to the availability
of food resources in space and time. Generally, aphids are an
extremely abundant but time-limited food resource, whereas
coccids are scarcer but available for longer periods of time
(Evans, 2003; Borges et al., 2006, 2011). It is noteworthy that
aphidophagous and coccidophagous ladybirds’ paces of life
are a reflection of the respective prey’s lifestyle (Dixon et al.,
1997): in aphidophagous ladybirds the development is faster, the
fecunditie are higher and lifetimes shorter in comparison with
coccid-feeding species (Dixon, 2000; Borges et al., 2011, 2013).
Therefore evolution favored a higher reproductive investment in
aphidophagous ladybirds, which are suited to exploring highly
crowded and fast developing prey populations that are available
for limited periods of time. On the other hand, coccidophagous
ladybirds exploit a food resource that forms lots of colonies of
small size. In this case, more energy is required by ladybirds to
find enough prey colonies sufficient for egg-laying, and it would
be adaptative to store more fat in the soma than in the gonads
(Borges et al., 2011). This fact could confer to coccidophagous
ladybirds an advantage during the spread stage of the invasion
process.

Different Habitats in Different Geographical
Regions
The physical geography of the continents and specific climatic
patterns, in association with typical vegetation, are important
drivers of geographic distributions of ladybird prey species
(i.e., mainly Coccoidea and Aphididae), which in turn leads
to the geographical distribution of the Coccinellidae (Belicek,
1976; Honěk, 2012). According to Iperti (1999), the central

and southern part of tropical Africa, South America, India and
China (typically infested with Coccoidea) are rich in species
from the tribes Chilocorini (e.g., Chilocorus spp.), Scymnini
(e.g., Nephus spp., Cryptolaemus spp.), and Noviini (e.g., Rodolia
spp.). In theMediterranean basin, aphids, coccids andmealybugs
are common, and coccinellid species—especially Rhyzobius spp.
and Novius spp.—coming from temperate and tropical regions,
thrive. The predators of whiteflies from the coccinellid genera
Clitostethus and Serangium are particularly diverse in the Pacific
area. The temperate zones of both Europe and North America
are more prone to infestation by Aphididae: while grasslands and
crops are inhabited by coccinellids from the tribes Coccinellini
(e.g., Coccinella spp., Adalia spp., Harmonia spp., Propylea
spp.), Hippodamiini (e.g., Hippodamia spp.), Cheilomenini and
Scymnini (e.g., Pullus spp., Scymnus spp.), forests of deciduous
and coniferous trees are typically the habitat of other genera of
Coccinellini (e.g., Adalia spp., Anatis spp., Myrrha spp., Myzia
spp.) and Hippodamiini (e.g., Aphidecta spp., Hippodamia spp.).

Most of the non-native ladybirds released have not spread
and become invasive (see Richardson et al., 2000). Indeed, of the
ladybirds released in Europe, H. axyridis is the only species that
has become invasive. The causes of successful introductions by
other ladybirds without apparently any major negative impacts
to local fauna remain unknown. One way of clarifying this is to
undertake a comparison of the main biological, ecological and
behavioral traits supposed to mediate differences in the invasive
capacity of species.

To accomplish a successful invasion, alien species must pass
through several stages, which include arrival, establishment
and dispersal (Davis, 2009). The process depends on several
factors: the life-history traits of the non-native (invasiveness); the
characteristics of the new habitat that renders the area susceptible
to establishment and spread (invasibility); and interactions
among natives, non-natives, and the habitat (Marco et al.,
2002). The causes that may mediate high invasive capacity
(for example in H. axyridis), include high genetic diversity,
phenotypic plasticity, adaptation and genetic shift within newly
established colonies, the capability to thrive under different
physical environments, broad and flexible habitat use and diet,
high reproductive performance, large body size, genetically based
polymorphism and escape from natural enemies. For instance,
the size of the geographic area occupied by a species in its
native region can be an important proxy of its tolerance and
adaptability to environmental conditions and thus its potential
to become an invader. We expect that a species with a
large native area, which in turn is a proxy of climatic and
habitat diversity conditions, should cope with a broad range
of environmental conditions and is more likely to become
invasive. However, despite a number of studies, a comparative
dataset of geographical distribution and life-history of ladybirds
still does not provide a critical insight into the reasons why
certain species are more successful invaders than others. Traits
databases, as highlighted by Roy et al. (2016), can be very
useful as tools to analyze worldwide life-history traits patterns
in native and invaded regions. By combining and crossing traits
databases at a global scale, intriguing insights are likely to become
evident.
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Biological Characteristics
Body size and reproductive rate are important determinants of
invasiveness (Davis, 2009; Burton et al., 2010). The greater the
capacity of a species to produce propagules (which is closely
associated with body size), the greater is its capacity to increase
its population density and extend its geographic range (Davis,
2009). In ladybird species, body size seems to be a good surrogate
of invasiveness once it is positively associated with potential
reproductive rate and dispersal ability (Hemptinne et al., 2012).
These factors seem to explain why the larger aphidophagous
H. axyridis and C. septempunctata extended their geographic
ranges in North America by an order of magnitude faster
than their close relatives (Hemptinne et al., 2012). In Europe,
three aphidophagous species were released extensively for the
biological control of aphid populations; Hippodamia convergens
Guerin,Harmonia conformis (Boisduval) andH. axyridis (Dixon,
2000; Roy and Migeon, 2010; Gerber and Schaffner, 2016).
However, H. axyridis was the only species to become invasive.
To what extent can the success of H. axyridis be explained
by differences in dispersion rates between these three species?
Taxonomy is a fundamental determinant of body size and
the differences connected with phylogenetic constraints should
be taken into account when evaluating the importance of
characteristics determining invasiveness. The invasive coccinellid
species have a wide range of sizes. Aphidophagous species
(i.e., most Coccinellinae) are larger but also more variable in
size than are species eating non-aphid prey. It is therefore
appropriate to consider the characteristics of each group
separately.

The development times of exotherms depend on temperature
and food resources (quantity and quality). Species with lower
thermal requirements may potentially complete development
earlier and eventually produce more generations per year. In
that case, potential invasive ladybirds are expected to be in an
advantageous position in comparison with native species due to
their lower thermal requirements and the consequent increase
in their net reproductive rate and intrinsic rate of population
increase.

In this paper we: (i) review the current status of alien
ladybird species in Europe, highlighting the circumstances of
their introductions, geographic origins and food relationships;
(ii) establish some of the reasons why some species succeeded in
entering new geographic areas, using the case studies of Europe
and the USA; (iii) assess the characteristics that do not differ
between native and alien aphidophagous species. With respect
to the latter point we test the extent to which, (a) size of the
geographic area occupied by aphidophagous ladybird species
in their native regions and (b) some biological traits usually
referred to as being the bases of successful invasions (body size,
fecundity, and developmental time), differ between native and
alien species. To do this we test four predictions: (i) native species
occupying larger native areas will more likely become invasive
when moved to new areas than species occupying smaller native
geographic areas; (ii) larger invasive aphidophagous species
will exhibit higher reproductive potential compared to smaller
species; (iii) successful invasive aphidophagous ladybirds will
have faster developmental rates than native species; (iv) the rate

of spread of H. axyridis will be higher than that of the other alien
aphidophagous species released in Europe.

METHODS

The review of non-native ladybird species in Europe to 2008 was
provided by Roy and Migeon (2010) and updated to include the
data of the period 2009–2017.

The first prediction was tested with aphidophagous
species of the subfamily Coccinellinae originating in the
Palearctic that spread to the Nearctic. This is because of
the availability of information of species distribution in
the source area and presence in the recipient area. Seven
species that became established in the Nearctic were selected
for analysis: C. septempunctata, C. undecimpunctata L.,
H. axyridis, H. dimidiata (Fabricius), H. quadripunctata
(Pontoppidan), Hippodamia variegata (Goeze), and Propylea
quatuordecimpunctata (L.) (Hemptinne et al., 2012). The size
of native area in the Palearctic was determined using data for
Coccinellidae in the Catalog of Palearctic Coleoptera (Kovář,
2007). This catalog divides the Palearctic, mainly according to
political boundaries, to 51 districts of Europe and 85 districts
of Asia. The size of area occupied by a species was classed as
the total number of districts occupied in Europe and Asia. This
area size was determined for the above species that invaded the
Nearctic and for each of their non-invasive congener species
that occur only in the Palearctic. Within each genus the data on
species distribution were standardized as SAi= (MAg–Ai)/SDAg
where SAi is standardized area of the species i, MAg is mean
area of the genus, Ai is area of the species i and SdAg is standard
deviation of the mean area of the genus. After standardization,
data of all genera were tested for difference between size of
area of invasive species (N = 7) and their congeneric non-
invasive species (N = 40: Coccinella 27 spp., Harmonia 7 spp.,
Hippodamia 3 spp., Propylea 3 spp.) using the Mann-Whitney
test.

Concerning the second prediction, the relationship between
body-length and the number of ovarioles (representing
reproductive potential) was tested using morphological and
biological data published in Nedvěd and Honěk (2012), using
linear regression y = a + bx, where x is body length (mm) and y
is ovariole number. The differences in the number of ovarioles
were tested using the Mann-Whitney test.

To test the third prediction, we focused on aphidophagous
species that invaded from the Palearctic to the Nearctic, and that
are widely distributed in the new area (Hemptinne et al., 2012)
and for which the relevant thermal characteristics are available.
Thermal constants, lower development threshold (LDT) and sum
of effective temperatures (SET), were established for a number of
coccinellid species. The constants were calculated from published
data (Supplementary Material) using linear regression R = a +

bT of development rate (R) on temperature (T) as LDT = −a/b
and SET = 1/b. Differences in either characteristic were not
useful for comparison. This is because LDT and SET are
dependent, which means that errors of estimation of LDT are
paralleled by errors in estimating SET (high estimates of LDT
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are compensated by lower estimates of SET and vice versa).
Using LDT and SET for eggs, pupae, and total development,
we calculated development duration at a range of ecologically
relevant temperatures (16, 18, 20, 22, 24, 26 and 28◦C) and
tested for differences between invasive and non-invasive species.
For each stage and temperature the differences between invasive
and native species were compared using the Mann-Whitney
test.

Regarding the fourth prediction, native and exotic species
were characterized in terms of their dry body mass. The power
functionW= 0.032 L2.62 was used to calculate dry bodymass (W;
mg) where L is the body length (mm) (Rogers et al., 1976; Sabo
et al., 2002); the median body length data for particular species
were retrieved from the literature (Dobrzhansky, 1926; Bielawski,
1959; Leeper, 1976, 2015; Gordon, 1985; Raimundo and Alves,
1986; Rathour and Singh, 1991; Stathas et al., 2002). The potential
reproductive rate was expressed as half the number of ovarioles,
with data retrieved from the literature (e.g., Hemptinne et al.,
2012; Nedvěd and Honěk, 2012; and personal observations).
Predicted dispersal abilities of native and alien aphidophagous
ladybirds were estimated from the values of dry body mass
raised to the power of 0.5618, the sum of individual effect
of potential reproductive rate (0.3718) and dispersal ability
(0.19). We found a significant positive correlation between the
logarithm to base e of adult biomass (lnAM) and that of the
potential reproductive rate (half the number of ovarioles–lnPRR)
and this was expressed as lnPRR = 0.3718 lnAM + 2.6085
(r = 0.50 p = 0.013). The value of the power of dispersal ability
takes into account the maximum rate of oxygen consumption,
which increases with body mass raised to the power 0.85, and
the cost of running, which increases with the exponent 0.67
(Schmidt-Nielsen, 1984) (for further methodological details, see
Hemptinne et al., 2012).

Finally, we tested the significance of the values of potential
dispersal ability of the aphidophagous alien species (H. axyridis,
H. conformis, and H. convergens) against the average potential
dispersal ability of native species (one sample t-test; p = 0.05)
(SPSS, v. 24).

RESULTS

The Current Status of Alien Ladybird
Species in Europe
A total of 24 new alien species-country records were found
(i.e., since Roy and Migeon, 2010), taking the total known alien
species-country records to 131 (Table 1). Harmonia axyridis
is the most widespread ladybird species (Figure 1). From the
early 2000s the number of countries where this species was
found increased steadily, seemingly reaching a plateau in 2013
(Figure 2). Harmonia axyridis was the species that invaded the
most countries, followed by Cryptolaemus montrouzieriMulsant
with only a third of the newly reported records (Table 2). The
alien ladybird species present in Europe (12) introduced to
control coccids, aphids, psyllids and whitefly, are summarized in
Table 3.

TABLE 1 | Numbers of newly reported (i.e., in literature from 2009 to 2017) and

total alien ladybird species in European countries.

Country New 2009–2017 Total old (from Roy and

Migeon, 2010) and new data

Albania 9

Austria 1

Belarus 1

Belgium 2

Bosnia and Herzegovina 1 1

Bulgaria 1

Croatia 3 3

Cyprus 2 3

Czech Republic 2

Denmark 3

Finland 1 1

France (Corsica) 5

France (Mainland) 1 9

Germany (Mainland) 1 5

Great Britain 2 6

Greece (Crete) 4

Greece (Ionian Islands) 1

Greece (Mainland) 6

Greece (South Aegean) 1

Hungary 1

Ireland 1 1

Italy (Mainland) 7

Italy (Sardinia) 4

Italy (Sicily) 4

Latvia 1 1

Lichtenstein 1

Lithuania 1 1

Luxembourg 1

Macedonia 1 1

Malta 2

Moldova 1 1

Montenegro 1 1

Netherlands 2

Norway (Mainland) 1

Poland 2 2

Portugal (Azores) 1 3

Portugal (Madeira) 3

Portugal (Mainland) 5

Romania 1

Russia 2

San Marino 1 1

Serbia 1 1

Slovakia 1

Slovenia 2 2

Spain (Balearic Islands) 2

Spain (Canary Islands) 3

Spain (Mainland) 5

Sweden 3

Switzerland 2

Ukraine 2

Grand total 24 131
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FIGURE 1 | Number of European countries with specified alien ladybird species recorded as present. (Data combined from Roy and Migeon (2010) and 2009–2017

literature searches. Island territories included separately, N = 131).

FIGURE 2 | Cumulative number of European countries with H. axyridis recorded as present. (Island territories included with their country, e.g., Corsica is included with

France).

The regions of origin of the alien coccinellid species to
Europe are as follows: Australian (5 species: C. montrouzieri;
H. conformis (Boisduval) R. forestieri, R. lophanthae
and R. cardinalis); Oriental (2 species: C. nigritus, and
S. parcesetosum); Nearctic (2 species: H. convergens and
H. pantherina); Palearctic (2 species: C. kuwanae andH. axyridis)
and Afrotropical (1 species: N. reunioni) regions.

Food Relationships of European Alien
Species
The majority of the alien coccinellid species in Europe
are coccidophagous (7 species: 58%), followed by those
which are aphidophagous (4 species: 33%), with a
single specialized predator of whiteflies (Hemiptera;
Aleyrodidae).
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TABLE 2 | Number of European countries with specified alien ladybird species

newly reported (i.e., in literature from 2009 to 2017).

Species No. European countries with new records of

species

Harmonia axyridis 13

Cryptolaemus montrouzieri 4

Rhyzobius forestieri 2

Rodolia cardinalis 2

Rhyzobius lophanthae 1

Harmonia conformis 1

Nephus reunioni 1

Grand total 24

Characteristics of Invasive and Native
Species
In their native Palearctic region, invasive species occupied a
significantly larger geographic area than the species that did
not invade the Nearctic (Mann-Whitney P < 0.001; U = 6.000;
Figure 3). In terms of numbers of geographic districts, the
average native area of invasive species (N = 7) was 57.7 ± 11.80
districts, while the area of non-invasive species (N = 40) was only
12.2±2.35 districts.

We found that the number of ovarioles increased with
body size; both in species feeding on aphids as well as non-
aphidophagous species (Figure 4). Larger aphidophagous species
had significantly (Mann-Whitney P < 0.001, U = 675.5) more
ovarioles (43.6± 3.56) than did non-aphidophagous species (15.9
± 6.48).

The potential dispersal ability of H. axyridis was significantly
higher than that of the native species, whilst the dispersal abilities
of H. conformis and H. convergens did not significantly differ
from native species (Table 4). The rate of spread of H. axyridis
in Europe was high, as it was in the USA.

In both native and invasive species there were no significant
differences in development length at any development stage
under any temperature (Mann-Whitney P > 0.05) (Table 5),
with similar constants of linear regressions obtained from the
development rate (R) and temperature (T) (Table 6) and similar
values of lower development threshold (LDT) and sum of
effective temperatures (SET) (Table 7).

DISCUSSION

The 12 alien ladybird species recorded in Europe were introduced
to control coccids, aphids, psyllids and whitefly, with themajority
of the species being coccidophagous. In 104 species-country
records a ladybird species was released in a country as a
biological control agent (further called “direct” cases), whereas
in 25 species-country records a ladybird species spread from
a country in which it was released to a neighboring country
(“indirect” cases). In two cases the source of the alien ladybirds is
unknown. These figures include species-country records in which
the ladybird did not establish, and non-target effects are not

evident in many further cases. Hence, only in a relatively small
proportion of cases did the alien coccinellid have widespread
non-target effects (and these mostly involve H. axyridis). Within
the “indirect” biological control cases, the exact mechanisms of
spread are often unclear, and for each case of an alien arriving in
a particular country, it may do so by various means. For example,
in Great Britain some H. axyridis arrived by natural dispersal
from mainland Europe, but others are known to have been
introduced with products (e.g., imported cut flowers, vegetables
and fruits), and yet others arrived with people, transported
inadvertently in cars, trains and ships (Roy and Brown, 2015).
Additionally, the source populations were not restricted to
Europe: some H. axyridis arrived in Great Britain in packages
originating from Canada (Majerus et al., 2006). The examples
for which the exact pathway is known are rare: in most cases
the mechanisms by which a particular insect or group of insects
arrived to a particular place is unknown. As such, the best
that we can do is to classify all such arrivals under a broad
banner such as “introduced as an indirect result of biological
control.”

Perhaps as would be expected, food relationship seems
to be a good indirect predictor of a successful coccinellid
introduction: worldwide, from the total attempts to control
aphids (155) and coccids (613) using classical biological control
approaches, only one case (0.65%) of aphid control turned
out to be satisfactorily successful and complete success has
never been achieved (Dixon, 2000). On the contrary, the
control of coccids has been considered complete in 23 cases
(3.75%) and substantially successful in 30 attempts (4.89%)
(Dixon, 2000).

According to our initial prediction, invasive ladybirds tend
to be more dispersed geographically in their native areas. An
ideal picture of coccinellid distributions would be via high
resolution digital maps in which each pixel represents a small
area of the Palearctic marked by the presence or absence
of the species. However, reaching this goal seems impossible
in the near future because of the difficulties associated with
recording species presence in most parts of the world. In this
study, we have chosen a compromise solution of dividing the
Palearctic into political districts and using data on species
presence within these districts. This approach has some pitfalls,
particularly since the districts are of unequal landscape diversity
and size. Small districts with e.g., great altitudinal differences may
provide an array of diverse local conditions greater than large
districts comprised of flat landscapes. Consequently a species
living in a small district with a diversified landscape may be
adapted to a wider range of environmental conditions than
a species living in an extensive area with uniform landscape
conditions. However, the correlation between landscape diversity
and range of species adaptation to environmental conditions
is not as important as it may seem. Regardless of the range
of available options of habitat choice, coccinellid species prefer
particular habitats determined by hostplant, microclimate, prey
and seasonality (Honěk, 1985; Nedvěd, 1999; Honěk et al.,
2015). A consequence of this habitat specialization is a limited
choice of utilizable sites, even in areas of high landscape
diversity. However, some variation in environment cannot be
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TABLE 3 | First introduction attempts of ladybirds species as biocontrol agents in Europe.

Biocontrol

target

group

Biocontrol target species Biocontrol agent Introduction

year

Source

country

Introduction country References

Coccid Icerya purchasi Rodolia cardinalis 1898 USA

(California)

South Africa

Portugal Amaro, 1994

Saissetia oleae

(Olivier)

Rhyzobius forestieri

(Mulsant)

1892 Australia USA Duverger, 1997

1980’ Israel, Cyprus, Greece,

Italy, and France

Katsoyannos, 1984; EPPO,

20161

Rhyzobius lophanthae

(Blaisdell)

Throughout

the twentieth

century

Australia Worldwide Yus, 1973; Raimundo and Alves,

1986; Roy and Migeon, 2010;

Roy et al., 2011

Orthezia insignis Browne Hyperaspis pantherina

Fürsch

Fowler, 2004

Planococcus citri Cryptolaemus

montrouzieri

Mulsant

1907–1908 California Italy Hamid and Michelakis, 1994;

Roy and Migeon, 2010; Kairo

et al., 2013
1926 France Spain

1929 Spain Portugal

Chilocorus nigritus

(Fabricius)

1985 Asian

continent

several European

countries

Roy and Migeon, 2010

P. citri

Nipaecoccus viridis (Newstead)

Pseudococcus viburni (Signoret)

Nephus reunioni

Fürsch

1974 La Réunion Mainland France

Former USSR Israel Gerber and Schaffner, 2016

1982 South Africa France Italy (Sicily) Cavalloro and Di Martino, 1986

in Gerber and Schaffner, 2016

After 1982 La Réunion Italy (Sardinia) Gerber and Schaffner, 2016

Chilocorus kuwanae

Silvestri

1924–1925 Japan Italy Gerber and Schaffner, 2016

1989 Asia Albania and Italy Roy and Migeon, 2010

Aphid Corn aphids Harmonia axyridis 1980s Portugal (Azores

islands)

Portugal (Algarve)

Garcia, 1986; Schanderl et al.,

1991; Schanderl and Almeida,

1992

Hippodamia

convergens

Guérin-Méneville

North

America

Italy Gerber and Schaffner, 2016

1990s

early 2000s

Belgium, Sweden,

Denmark, Albania,

Czech Republic

Psyllid Acizzia uncatoides (Ferris &

Klyver)

Harmonia conformis

(Boisduval)

1998

2000

France Malausa et al., 2008 in Gerber

and Schaffner, 2016

Whitefly Dialeurodes citri

Ashmead

Serangium

parcesetosum

Sicard

1974 Georgia Malausa et al., 1988

1985 France

1http://www.eppo.int (Accessed October 1, 2016).

eliminated even by a strong individual habitat choice: this is
the variation associated with climatic differences among districts
that fill a large geographic area. Thus a species distributed in
a large geographic area, despite its narrow habitat selection, is
likely to meet, cope with and be adapted to a greater range
of environmental conditions than a species distributed in a

small geographic area and this adaptation may be, in our
opinion, a basis of its success in colonization of new geographic
areas. Our results thus confirm that invasive species are, in
their native areas, more prone to adapt to a wide range of
conditions compared to non-invasive species in their native
ranges.
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TABLE 4 | Potential dispersal ability (average±SE; N= 13) of native and alien

aphidophagous ladybird species in Europe.

Potential dispersal ability One sample t-test

Native Alien

1.602 ± 0.19 H. axyridis (2.274) t = −3.541, P = 0.004

H. conformis (1.947) t = −1.821, P = 0.094

H. convergens (1.898) t = −1.562, P = 0.144

For generalist predators, flexibility and breadth of habitat use
and diet are direct underlying factors of a successful invasion. In
general, successful invaders in their new ranges tend to occupy
the same habitats as in their native ranges. This is the case with
C. septempunctata and H. axyridis, which are most abundant in
herbaceous and arboreal habitats, respectively. However, despite
occurring in many semi-natural and natural habitats in their
invaded ranges, C. septempunctata and H. axyridis, as well as the
successful A. bipunctata and P. quatuordecimpunctata, tend to
be abundant in agricultural habitats and urban landscapes (e.g.,
Lucas et al., 2007; Brown et al., 2008; Roy and Migeon, 2010;
Evans et al., 2011). In the USA, H. axyridis became a dominant
species in agricultural landscapes, thriving in disturbed andman-
made habitats such as orchards and urban gardens, feeding on a
wide range of aphid species (Koch, 2003; Evans, 2004). In Europe,
H. axyridis is more common in northern and central countries,
where it can be found in trees, shrubs and herbs (Brown and
Roy, 2017; Honěk et al., 2017; Soares et al., 2017). Coccinella
septempunctata, H. axyridis and A. bipunctata have a broad and
flexible diet range, being quite responsive to new prey species
(Evans and Toler, 2007). However, the mechanism by which
integration of a new prey species into the diet of a generalist
predator is able to drive adaptation to a new geographic range,
is unclear. To explore this, it is important to evaluate whether
life-history traits of organisms are responsive to selection, and
what constraints and trade-offs may limit the overall possible set
of traits. However, there are only three studies addressing prey
adaptation, two using the generalistH. axyridis as amodel (Ueno,
2003; Fukunaga and Akimoto, 2007), and one usingA. bipunctata
(Rana et al., 2002). Over the course of several generations the
aphidophagous species were able to improve their fitness when
fed on a single diet of lower prey quality. However, the genetic
and epigenetic mechanisms that promote this difference remain
to be studied.

The absence of significant differences between developmental
rates among aphidophagous ladybirds agrees with previous
results from laboratory experiments. For instance, in some
studies the overall pre-imaginal development time of H. axyridis
and C. maculata were similar (Labrie et al., 2006) with
other studies demonstrating a slower developmental time of
H. axyridis in comparison to other species (Adalia bipunctata
L., H. variegata, Lanzoni et al., 2004; P. quatuordecimpunctata,
Mignault et al., 2006; Olla v-nigrum Mulsant, Michaud and
Olsen, 2004). An expected consequence of faster developmental
rate is the possibility of the invasive species achieving more
generations per year. However, this does not occur even
with successful ladybirds spreading into novel ranges, partly

FIGURE 3 | The standardized areas of species of the genera Coccinella,

Harmonia, Hippodamia, and Propylea that remained limited to their native

areas in the Palearctic (non-invasive species) and seven species of these

genera that spread after they invaded the Nearctic (invasive species).

FIGURE 4 | Body-length (mm) and average number of ovarioles in species

(A) feeding on non-aphid prey (N = 18, R = 0.821, a = 0.900, b = 5.482,

P < 0.001) and species (B) feeding on aphids (N = 40, R = 0.567, a = 8.521,

b = 6.203, P < 0.001). Dark symbols: species that invaded the Nearctic from

the Palearctic. Data from Nedvěd and Honěk (2012).
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TABLE 5 | The duration of egg, pupa and total development (measured in days) at seven constant temperatures in species invasive to the Nearctic (C. septempunctata,

C. undecimpunctata, H. axyridis, H. variegata, P. quatuordecimpunctata), and native to the Nearctic (A. bipunctata, Calvia quatuordecimguttata, Cheilomenes sulphurea,

C. californica, C. novemnotata, C. transversoguttata, C. trifasciata, C. maculata, Cycloneda polita, H. parenthesis, H. convergens, H. quinquesignata, H. sinuata, Lemnia

biplagiata, O. v-nigrum).

Temperature (◦C) Egg Pupa Total

Invasive Native Invasive Native Invasive Native

16 8.1 ± 0.45 6.6 ± 0.36 17.1 ± 9.12 13.6 ± 4.82 48.1 ± 5.33 52.0 ± 3.54

18 5.8 ± 0.19 5.1 ± 0.18 10.1 ± 2.14 9.0 ± 1.72 33.1 ± 2.25 35.4 ± 1.24

20 4.5 ± 0.14 4.2 ± 0.11 7.4 ± 1.18 6.9 ± 1.06 25.6 ± 1.29 27.3 ± 0.63

22 3.7 ± 0.12 3.6 ± 0.07 5.8 ± 0.91 5.6 ± 0.81 21.0 ± 0.88 22.3 ± 0.40

24 3.2 ± 0.11 3.1 ± 0.06 4.8 ± 0.78 4.7 ± 0.68 17.9 ± 0.69 18.9 ± 0.30

26 2.8 ± 0.10 2.7 ± 0.05 4.1 ± 0.70 4.1 ± 0.60 15.6 ± 0.59 16.4 ± 0.25

28 2.5 ± 0.10 2.4 ± 0.04 3.6 ± 0.63 3.6 ± 0.54 13.8 ± 0.54 14.5 ± 0.23

Number of species 5 13 3 13 3 11

Number of populations 14 32 11 25 10 28

There is no significant difference between alien and native species at any development stage or temperature.

TABLE 6 | Thermal constants at seven constant temperatures in species invasive

to the Nearctic (C. septempunctata, C. undecimpunctata, H. axyridis,

H. variegata, P. quatuordecimpunctata), and native to the Nearctic (A. bipunctata,

C. quatuordeciguttata, C. sulphurea, C. californica, C. novemnotata,

C. transversoguttata, C. trifasciata, C. maculata, C. polita, H. parenthesis,

H. convergens, H. quinquesignata, H. sinuata, Lemnia biplagiata, O. v-nigrum).

Developmental

stages

R = a + bT

Native Invasive

a b R2 a b R2

Eggs 0.2008 0.0219 0.99 0.241 0.023 0.99

Pupa 0.1942 0.0169 0.99 0.2303 0.0182 0.99

Total 0.0462 0.0041 0.99 0.047 0.0043 0.99

because of lower average temperatures. For instance, within
much of the invaded range, H. axyridis only achieves two
generations per year (Roy et al., 2016), whereas in the native
range up to eight generations have been observed (Osawa,
2011), this difference being associated with environmental
temperatures. In conclusion, our results do not corroborate
our initial prediction because the invasive species may not
have an advantage against natives in using the thermal
environment.

Although fecundity is influenced by abiotic (e.g., temperature)
and biotic (e.g., prey quantity and quality) factors, plus factors
such as age and life-history (Nedvěd and Honěk, 2012), body size
is a primary determinant of the number of ovarioles (Hemptinne
et al., 2012). The scatter of data for large aphidophagous species
was greater than for small non-aphidophagous species. This may
lead to invasive species having higher potential fecundity than
non-invasive species. In fact, whilst large invasive species have,
in some cases, more ovarioles than predicted by the overall
relationship, this was not strongly evident in our results. In the
case of H. axyridis fecundity seems to be similar to that of some

TABLE 7 | Lower development threshold (LDT) and sum of effective temperatures

(SET) at seven constant temperatures in species invasive to the Nearctic

(C. septempunctata, C. undecimpunctata, H. axyridis, H. variegata,

P. quatuordecimpunctata), and native to the Nearctic (A. bipunctata,

C. quatuordecimguttata, C. sulphurea, C. californica, C. novemnotata,

C. transversoguttata, C. trifasciata, C. maculata, C. polita, H. parenthesis,

H. convergens, H. quinquesignata, H. sinuata, L. biplagiata, O. v-nigrum).

Developmental stages LDT (◦C) SET (Degree days)

Invasive Native Invasive Native

Eggs 10.5 9.2 43.5 34.5

Pupa 12.7 11.5 54.9 59.1

Total 10.9 11.3 232.6 243.9

other aphidophagous species (Soares et al., 2001, 2004, 2008;
Bazzochi et al., 2004; Lanzoni et al., 2004; Michaud and Olsen,
2004). For instance, Italian specimens of H. axyridis presented
a mean fecundity of 783.8 eggs per female, only slightly higher
than that of the indigenous species A. bipunctata (720.2 eggs per
female) (Bazzochi et al., 2004). Additionally, fewer eggs were laid
byH. axyridis (560.5 eggs per female) than byH. variegata (841.7
eggs per female) in a laboratory study by Lanzoni et al. (2004).
Soares et al. (2004) reported an even lower fecundity of 314
eggs per female for the aulica phenotype of H. axyridis. Michaud
and Olsen (2004), using psyllids as a food source, showed that
H. axyridis laid as many eggs as O. v-nigrum (242.8 vs. 224.5 eggs
per female). Despite these similarities in fecundity, the differences
in ovariole number do not always mirror clutch size or fecundity.
This is because daily and lifetime egg production are influenced
by other environmental factors. However, we predicted that
H. axyridis has higher dispersal ability than H. conformis and
H. variegata. To test this prediction, we compared the potential
rate of spread of the three species based on their potential
reproductive rates and adult body sizes. In short, invasiveness in
aphidophagous ladybirds is associated with their large body size,
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a good surrogate of reproductive potential and dispersal ability,
which determines their efficacy in exploiting aphid outbreaks
in extensive forestry and agro-ecosystems (Honěk et al., 2008;
Kajita and Evans, 2010; Hemptinne et al., 2012; Soares et al.,
2017).

Our data point out trait differences between native/alien
and invader/established aphidophagous ladybirds and some
traits seem to explain successful establishment. However,
data of species that have been introduced from the same
region but have not become established in the new region
would be important in order to better understand invasion
processes.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This study was financed by Portuguese National Funds, through
FCT–Fundação para a Ciência e a Tecnologia, within the project
UID/BIA/00329/2013.

IB was funded by a grant from Fundo Regional da Ciência,
Regional Government of the Azores. Ref: M3.1.7/F/012/2011.

PB was supported by the Anglia Ruskin University sabbatical
fund and by EU COST Action TD1209: Alien Challenge.

AH and ZM were supported by grant 17-06763S of the Czech
Science Foundation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2018.00057/full#supplementary-material

REFERENCES

Amaro, P. (1994). “Portugal pioneiro da luta biológica na Europa através do
combate à Icéria com Vedália,” in 1◦ Congresso de Citricultura. Simpósio

Protecção Integrada de Citrinos. 20 a 22 de Janeiro de 1993. (Silves) 393–402.
Bazzochi, G. G., Lanzoni, G., Accinelli, G., and Burgio, G. (2004).

Overwintering, phenology and fecundity of Harmonia axyridis in
comparison with native coccinellid species in Italy. BioControl 49, 245–260.
doi: 10.1023/B:BICO.0000025382.07841.b4

Belicek, J. (1976). Coccinellidae of Western Canada and Alaska with analyses of
the transmontane zoogeographic relationship between the fauna of British
Columbia and Alberta. Questiones Entomol. 12, 283–409.

Bielawski, R. (1959). “Biedronki – Coccinellidae,” in Wróblewski. Klucze

do Oznaczania Owadów Polski, Czesc XIX Chrzaszcze – Coleoptera,

Zeszyt 7, eds A. Goljan, T. Jaczewski, M. Mroczkowski, J. Nast, J.
Noskiewicz, M. Nunberg, J. Pruffer, S. Smreczynski, J. Stach, K.
Strawinski, J. Urbanski, and A. Wróblewski (Warszawa: Panstwowe
Wydawnictwo Naukowe), 1–92.

Borges, I., Soares, A. O., and Hemptinne, J.-L. (2006). Abundance and
spatial distributions of aphids and scales select for different life
histories in ladybeetle predators. J. Appl. Entomol. 130, 461–464.
doi: 10.1111/j.1439-0418.2006.01071.x

Borges, I., Soares, A. O., and Hemptinne, J.-L. (2013). Contrasting
population growth parameters of the aphidophagous Scymnus nubilus

and the coccidophagous Nephus reunioni. BioControl 58, 351–357.
doi: 10.1007/s10526-012-9490-y

Borges, I., Soares, A. O., Magro, A., and Hemptinne, J.-L.
(2011). Prey availability in time and space is a driving force
in life history evolution of predatory insects. Evol. Ecol. 25,
1307–1319. doi: 10.1007/s10682-011-9481-y

Brown, P. M. J., and Roy, H. E. (2017). Decline in native ladybird species caused
by the invasive harlequin ladybird Harmonia axyridis: evidence from a long
term field study. Insect Conserv. Divers. doi: 10.1111/icad.12266. [Epub ahead
of print].

Brown, P. M. J., Roy, H. E., Rothery, P., Roy, D. B., Ware, R. L., and
Majerus, M. E. N. (2008). Harmonia axyridis in Great Britain: analysis of
spread and distribution of a non-native coccinellid. BioControl 53, 55–67.
doi: 10.1007/s10526-007-9124-y

Burton, O. J., Phillips, B. L., and Travis, J. M. (2010). Trade-offs and the
evolution of life-histories during range expansion. Ecol. Lett. 13, 1210–1220.
doi: 10.1111/j.1461-0248.2010.01505.x

Cavalloro, R., and Di Martino, E. (eds.). (1986). “Integrated pest control in
citrus-groves,” Proceedings of the Experts’ Meeting, 26–29March (Acireale), 600.

Davis, M. A. (2009). Invasion Biology. Oxford: Oxford University Press.

Dixon, A. F. G. (2000). Insect Predator-Prey Dynamics: Ladybeetles and Biological

Control. Cambridge: Cambridge University Press.
Dixon, A. F. G., Hemptinne, J.-L., and Kindlmann, P. (1997). Effectiveness of

ladybirds as biological control agents: patterns and processes. Entomophaga 42,
71–83. doi: 10.1007/BF02769882

Dobrzhansky, F. G. (1926). Genital apparatus of ladybirds as individual and group
character. Trans. Acad. Sci. USSR 6, Series 20, 1385–1393.

Duverger, C. (1997). Premiére mention de Rhyzobius forestieri (Mulsant) 1853 en
France. (Coleoptera Coccinellidae). Bulletin de la Société linnéenne de Bordeaux

25, 81–83.
Evans, E. W. (2003). Searching and reproductive behavior of female

aphidophagous ladybirds (Coleoptera: Coccinellidae): a review. Eur. J.

Entomol. 100, 1–10. doi: 10.14411/eje.2003.001
Evans, E. W. (2004). Habitat displacement of North American ladybirds by an

introduced species. Ecology 85, 637–647. doi: 10.1890/03-0230
Evans, E. W., Soares, A. O., and Yasuda, H. (2011). Invasions by ladybugs,

ladybirds, and other predatory beetles. BioControl 56, 597–611.
doi: 10.1007/s10526-011-9374-6

Evans, E. W., and Toler, T. (2007). Aggregation of polyphagous predators
in response to multiple prey species: ladybirds (Coleoptera:Coccinellidae)
foraging in alfalfa. Popul. Ecol. 49, 29–36. doi: 10.1007/s10144-006-
0022-4

Fowler, S. V. (2004). Biological control of an exotic scale, Orthezia insignis Browne
(Homoptera: Ortheziidae), saves the endemic gumwood tree, Commidendrum
robustum (Roxb.) DC. (Asteraceae) on the island of St. Helena. Biol. Control
29, 367–374. doi: 10.1016/j.biocontrol.2003.06.002

Fukunaga, Y., and Akimoto, S. (2007). Toxicity of the aphid Aulacorthum

magnoliae to the predator Harmonia axyridis (Coleoptera: Coccinellidae) and
genetic variance in the assimilation of the toxic aphids in H. axyridis larvae.
Entomol. Sci. 10, 45–53. doi: 10.1111/j.1479-8298.2006.00197.x

Garcia, V. (1986). “Approaches to integrated control of some citrus pests in the
Azores and Algarve (Portugal),” in Integrated Pest Control in Citrus Groves.

Proceedings of the CEC Experts Meeting, eds R. Cavalloro and E. Di Martino
(Acireale), 557–559.

Gerber, E., and Schaffner, U. (2016). “Exotic insect biocontrol agents released in
europe,” in Review of Invertebrate Biological Control Agents Introduced into

Europe, eds E. Gerber and U. Schaffner (Wallingford, VT: CABI), 9–117.
Giorgi, J. A., Vandenberg, N. J., McHugh, J. V., Forrester, J. A., Slipinski, S. A.,

Miller, K. B., et al. (2009). The evolution of food preferences in Coccinellidae.
Biol. Control 51, 215–231. doi: 10.1016/j.biocontrol.2009.05.019

Gordon, R. D. (1985). The Coccinellidae (Coleoptera) of America North ofMexico.
J. New York Entomol. S. 93, 741–743.

Hamid, H. A., and Michelakis, S. (1994). The importance of Cryptolaemus

montrouzieri Mulsant (Col., Coccinellidae) in the control of the citrus

Frontiers in Ecology and Evolution | www.frontiersin.org 10 May 2018 | Volume 6 | Article 57

https://www.frontiersin.org/articles/10.3389/fevo.2018.00057/full#supplementary-material
https://doi.org/10.1023/B:BICO.0000025382.07841.b4
https://doi.org/10.1111/j.1439-0418.2006.01071.x
https://doi.org/10.1007/s10526-012-9490-y
https://doi.org/10.1007/s10682-011-9481-y
https://doi.org/10.1111/icad.12266
https://doi.org/10.1007/s10526-007-9124-y
https://doi.org/10.1111/j.1461-0248.2010.01505.x
https://doi.org/10.1007/BF02769882
https://doi.org/10.14411/eje.2003.001
https://doi.org/10.1890/03-0230
https://doi.org/10.1007/s10526-011-9374-6
https://doi.org/10.1007/s10144-006-0022-4
https://doi.org/10.1016/j.biocontrol.2003.06.002
https://doi.org/10.1111/j.1479-8298.2006.00197.x
https://doi.org/10.1016/j.biocontrol.2009.05.019
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Soares et al. Successful Establishment of Alien Ladybird

mealybug Planococcus citri (Hom., Coccoidea) under specific conditions. J.
Appl. Entomol. 118, 17–22. doi: 10.1111/j.1439-0418.1994.tb00773.x

Hemptinne, J.-L., Magro, A., Evans, E. W., and Dixon, A. F. G. (2012). Body size
and the rate of spread of invasive ladybird beetles in North America. Biol.
Invasions 14, 595–605. doi: 10.1007/s10530-011-0101-0

Hokkanen, H. M. T., and Sailer, R. I. (1985). Success in classical biological control.
Crit. Rev. Plant Sci. 3, 35–72. doi: 10.1080/07352688509382203
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Honěk, A., Dixon, A. F. G., Soares, A. O., Skuhrovec, J., andMartinkova, Z. (2017).
Spatial and temporal changes in the abundance and composition of ladybird
(Coleoptera: Coccinellidae) communities. Curr. Opin. Insect Sci. 20, 61–67.
doi: 10.1016/j.cois.2017.04.001
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