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The importance of gene duplication in developmental body plan evolution is well-

established, but for many megadiverse clades such as true flies (Diptera), a

comprehensive understanding is still just emerging through comparative genomics. In

a survey of 377 developmental gene families, we found that in addition to the pea aphid,

which has been previously shown to be genome-wide enriched with gene duplicates

and was included as positive control, more than twice as many expanded developmental

gene families were observed in Drosophila (49) compared to mosquito (21), flour beetle

(20), and honeybee (14). Synonymous sequence divergence estimates and ortholog

conservation analyses in additional dipteran genomes revealed that most Drosophila

gene duplicates are ancient and accumulated during a time window that reaches back

to the origin of brachyceran flies, ∼180 million years ago. Further, available genetic data

suggest that more than half of the Drosophila developmental gene duplicates remained

partially or even fully redundant despite their ancient separation. We therefore speculate

that the exceptional accumulation of developmental gene duplicates in Drosophila

and the higher Diptera was proximally driven by the evolution of fast development,

benefiting from increased genetic robustness. At the same time, the concomitant

increase of opportunities for gene duplicate diversification appears to have been a source

for developmental and phenotypic innovation during the unparalleled diversification of

brachyceran Diptera.

Keywords: gene duplication, Brachycera, evolution of development, genetic redundancy, phenotypic robustness,

disconnected, spalt, Bar

BACKGROUND

The significance of gene duplication for generating large-scale genetic variation marks a keystone
insight in the field of molecular evolution (Ohno, 1970). The subsequent demonstration of high
gene duplicate birth rates in genome-wide studies (Lynch and Conery, 2000; Heger and Ponting,
2007) and of high levels of copy length polymorphisms in population genetic surveys corroborated
the evidence for an important role of gene duplication in the genetic evolution of species and body
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plans (Redon et al., 2006; Dopman and Hartl, 2007). It has
been argued that, more than any form of mutation, gene
duplications open innovative opportunities during the evolution
of gene regulatory networks that orchestrate development,
and, by extension, change the product of development: body
plans (Wagner, 2008). Textbook examples of a pivotal role of
developmental gene duplicates (DGDs) in body plan evolution
include the expansion of the Hox transcription factor family by
tandem gene duplications during the diversification of animal
body plans (Knoll and Carroll, 1999) and the expansion of
the MADS-box transcription factor family in plants, which
was functionally correlated with the diversification of flower
morphology (Wagner, 2008).

Genome-wide studies have begun to paint comprehensive
pictures of the relationship between gene duplication and
phenotypic diversification in the tree of life. This approach, of
instance, produced evidence that the gene duplication driven
expansion of the KLF/SP (Kruppel-like factor and specificity
protein) family of zinc finger transcription factors played an
important role in the increase of metazoan cell type diversity
(Presnell et al., 2015). The genome-wide surveys of gene
duplication events have also advanced our understanding of
the process of functional gene duplicate evolution and the
range of gene duplicate fates (Zhang, 2003; Hahn et al., 2007;
Quijano et al., 2008; Hahn, 2009; Innan and Kondrashov,
2010). One important recent insight concerns the significance
of genetically redundant gene duplicates. Originally considered
to represent a transient, early state of nascent gene duplicates,
large scale studies revealed that genetically redundant gene
paralogs are widespread and can remain conserved for hundreds
of millions of years (Gu et al., 2003; Conant and Wagner,
2004; Tischler et al., 2006; Hsiao and Vitkup, 2008; Vavouri
et al., 2008; Hanada et al., 2009). The notable abundance and
persistence of genetic redundancy between gene paralogs is
hypothesized to be maintained by purifying selection due to
the beneficial effect on biological robustness by mitigating the
effects of intrinsic, mutational, and environmental variation on
organismal development and function (Mestek Boukhibar and
Barkoulas, 2016). Moreover, case studies have revealed that
ancient DGDs can both maintain partial genetic redundancy
for critical developmental patterning junctures in parallel to
evolving paralog-specific functions (Bao et al., 2012; Friedrich,
2017).

In an earlier study, we noted the disproportionate number
of duplicated vision genes in Drosophila melanogaster in
comparison to other genomic insect model species including
the mosquito Anopheles gambiae, the red flour beetle Tribolium
castaneum, and the honeybee Apis mellifera (Bao and Friedrich,
2009), indicating the possibility of a genome-wide surge of gene
duplicate accumulation in the lineage to Drosophila. As a follow-
up test of this hypothesis, we here present the results from
investigating the molecular evolution of over 350 conserved
developmental gene families in the same species. In addition,
we included the pea aphid Acyrthosiphon pisum as reference
sample of a gene duplication-enriched insect genome (Huerta-
Cepas et al., 2010; International Aphid Genomics Consortium,
2010).

Our findings reveal a substantially higher numbers of DGDs
not only in the pea aphid, as expected, but also Drosophila
compared to Anopheles, Tribolium, and Apis. The Drosophila
DGDs, however, are heavily biased toward older origins in
contrast to the pea aphid, which is enriched in DGDs of distinctly
more recent origins. Surveying DGD sister-paralog conservation
in a wider range of dipteran species further reveals that the
exceptional rise of DGDs in the lineage to Drosophila may
be linked to the massive species expansions in two nested,
megadiverse subclades: the ∼180 million years old Brachycera,
which amount to over 100,000 species, and the∼65 million years
old Schizophora, which constitute 50% of brachyceran species
diversity (Wiegmann et al., 2011).

Mining Drosophila gene expression and gene function
data, we further find evidence that redundancy buffering of
development was the likely proximate cause for the long-term
conservation of over 50% of the Drosophila-specific DGDs.
We therefore propose that gene duplication introduced an
exceptional amount of genetic redundancy into the regulation
of Drosophila development potentially fueled by or fueling the
acceleration of development in Brachycera and Schizophora.
We further propose that, as a secondary effect, the resulting
increase in DGDs expanded opportunities for developmental
and phenotypic innovation consistent with conclusions from
theoretical studies that examined the relation between genetic
redundancy, phenotypic robustness, and evolutionary novelty
(Wagner, 2008; Wei and Zhang, 2017).

MATERIALS AND METHODS

Genome and Sequence Databases
The D. melanogaster query genes were retrieved from the
compilations of insect developmental genes published by the
Tribolium Genome Sequencing Consortium (Supplementary
Tables 11, 13 in Richards et al., 2008).D. melanogaster amino acid
sequences were retrieved from GenBank. The genome databases
used in this study included Drosophila melanogaster genome
database version 5.2 (Adams et al., 2000), Anopheles gambiae
str. PEST genome database version 2.2 (Sharakhova et al., 2007),
Tribolium castaneum Georgia GA2 genome database version 3.0
(Richards et al., 2008), Apis mellifera DH4 genome database
version 4.0 (Honeybee-Genome-Sequencing-Consortium, 2006),
and Acyrthosiphon pisum genome assembly 1.0 (International
Aphid Genomics Consortium, 2010).

The expanded searches for conserved D. melanogaster
DGDs in other dipteran genomes were conducted in Mayetiola
destructor genome assembly 1.0 (Zhao et al., 2015), Lutzomyia
longipalpis genome assembly 0.1 (Sand-Fly-Sequencing-
Consortium, 2011), Drosophila virilis genome assembly
dvir_caf1 (Drosophila 12 Genomes Consortium et al., 2007),
Musca domestica genome assembly MdomA1 (Scott et al.,
2014), Stomoxys calcitrans genome assembly ScalU1, Glossina
morsitans genome assembly GmorY1 (International Glossina
Genome Initiative, 2014), Ceratitis capitata genome assembly
Ccap_1.1 (Papanicolaou et al., 2016), Lutzomyia longipalpis
assembly LlonJ1 (Sand-Fly-Sequencing-Consortium, 2011),
Phlebotomus papatasi genome assembly PpapI1, Aedes aegypti
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genome assembly AaegL3, and the Rhodnius prolixus genome
assembly (RproC3). In the cases where the developmental gene
duplication occurred within the Drosophila genus, we searched
further species from the Drosophila and Sophophora subgenera
(Drosophila 12 Genomes Consortium et al., 2007). All of these
ortholog searches for were conducted either in the VectorBase
or the NCBI genome databases (Pruitt et al., 2005; Lawson et al.,
2009). Complementary BLAST searches were carried out in the
Episyrphus balteatus transcriptomes SRX042197, SRX042231,
and SRX1131533 (Lemke et al., 2011).

Gene Family Definition and Compilation
The gene families investigated in this study were defined as
monophyletic groups of closely related paralogs in theDrosophila
genome, as inferred by a 6-step procedure: 1. Each developmental
gene compiled in Richards et al. (2008) served as query seed
to collect candidate gene family members by BLASTP (Altschul
et al., 1997) against the Drosophila protein sequence database.
2. A maximum e-value of 1.0e−11 and a minimal sequence
identity D value of 30% were implemented as combinatorial cut-
off filter in a first collection of candidate gene family members.
3. Core paralog clusters were extracted from the expansive
e-value structured list of candidate gene family members by
removing all paralogs below the highest ranked candidate
paralog whose the e-value value was smaller than five orders of
magnitude than that of the next ranked paralog. 4. To reduce
the chance of excluding highly diverged gene family members,
the core paralog clusters were retroactively expanded by re-
adding the best ranked candidate paralogs from the preliminarily
excluded genes until the e-value differed less than five orders
of magnitude from the next best hit, indicating saturation of
sequence divergence. 5. The gene family membership of each
candidate paralog was then assessed by reciprocal BLAST against
the Drosophila protein sequence database. Candidate paralogs
which returned the Drosophila query seed sequence as top hit
were accepted as confirmed gene family members. 6. Candidate
gene families with shared members were merged to form non-
redundant gene families. This procedure resulted in a total of 377
gene families comprising 661 individual D. melanogaster genes
(Supplementary Data File 1).

Ortholog Search and Inference of Gene
Duplication Events
All members of the Drosophila developmental gene families were
used as queries to search the genome databases of mosquito,
flour beetle, honeybee, and pea aphid with BLASTP or TBLASTN
(Altschul et al., 1997). Putative homologs with an e-value equal or
lower than 1.0e−04 were tested for orthology by reciprocal BLAST
against the D. melanogaster RefSeq protein database. Orthology
relationships between recovered homologs for a given gene
family were further assessed by gene tree analysis. To this end,
multiple sequence alignments were generated with ClustalW2
(Larkin et al., 2007) or MUSCLE (Edgar, 2004). Ambiguously
aligned positions and divergent regions were removed with
Gblocks (Castresana, 2000) at default settings. Tree-Puzzle was
used for maximum likelihood tree search (Strimmer and Von
Haeseler, 1999; Néron et al., 2009), applying the JTT model

of protein sequence evolution and accommodating for rate
heterogeneity between sites with four gamma rate categories
(Whelan and Goldman, 2001). The majority of these analyses
were performed in the now retired Mobyle Project environment
(Néron et al., 2009). For a s selection of gene families, maximum
likelihood gene trees were generated with MEGA7 (Kumar et al.,
2008).

Orthologs of D. melanogaster lineage-specific DGDs in other
dipteran species were searched by reciprocal BLAST followed
by gene tree analyses. Supplementary Data File 2 contains the
sequences of all compiled homologs of Drosophila DGDs.

Sequence Evolution Analysis
Non-synonymous (dN) and synonymous substitution (dS)
divergences were estimated with the yn00 algorithm of PAML
version 3.15 (Yang, 1997). In the case of multiple duplications
per gene family, dS and dN of duplicated descendants were
averaged.

Relative rate tests were conducted with PHYLTEST 2.0
(Kumar, 1996), applying the Benjamini & Hochberg False
Discovery Rate (FDR) correction (Benjamini and Hochberg,
1995) and using singleton homologs from T. castaneum or A.
mellifera for outgroup comparison.

Gene Expression and Gene Function
Database Mining
Information on gene function was retrieved from FlyBase and
the primary literature (Tweedie et al., 2009). Expression patterns
were explored in literature compiled through FlyBase and by
examining gene specific entries in the FlyExpress image database
when available (Kumar et al., 2011).

RESULTS

High Numbers of Lineage-Specific
Developmental Gene Duplicates in
Drosophila and Pea Aphid
To explore the impact of gene duplication on the genetic
architecture of Drosophila development compared to those
of other insects, we explored the duplication histories of
377 conserved developmental gene families. These were
represented by 661, 642, 622, 620, and 696 individual genes
in Drosophila, Anopheles, Tribolium, Apis, and Acyrthosiphon,
respectively (Supplementary Data Files 1, 2). For ∼10%
of the investigated gene families, reciprocal BLAST results
produced evidence of duplications in more than one lineage.
In these cases, the phylogenetic relationships between
homologs were further examined by gene tree estimation
and analysis.

Consistent with the previously reported overall genome
duplicate richness of the pea aphid (International Aphid
Genomics Consortium, 2010; Shigenobu et al., 2010), the
highest number of lineage-specific DGDs was found in
the pea aphid, where a total of 93 gene duplications were
distributed over 61 gene families (Figure 1). More surprisingly,
Drosophila stood out with the second highest number of
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lineage-specific duplicates, estimated at 62 duplication events
in 49 gene families. Considerably fewer lineage-specific
DGDs were detected in the remaining three species with
20 duplications in 14 gene families in the honeybee, 22
duplications in 20 gene families in the red flour beetle,
and 26 duplications in 21 gene families of the mosquito
(Figure 1, Supplementary Data Files 1, 3). Taken together,
these results revealed an exceptionally high number of
DGDs not only in the pea aphid, but also in the lineage to
D. melanogaster.

Evidence That Tandem Gene Duplication Is
the Major Generator of Insect Gene
Duplicates
Previous studies have shown that tandem gene duplication
is the major contributor of duplicated genes (∼80% of
evolutionarily very young duplicates) in Drosophila species
followed by retrotransposition (∼10%) (Zhou et al., 2008).
Consistent with this, all of the Drosophila lineage-specific
gene duplicates identified in our previous study of vision-
related genes represented tandem duplicated paralogs (Bao
and Friedrich, 2009). To further probe the generality of these
findings, we explored the frequency of physical linkage among
the DGDs sampled from Drosophila, Anopheles, Tribolium, and
the honeybee. The pea aphid was not included in this analysis due
to the preliminary state of chromosome scaffolds at the time of
analysis. In the examined species, over 65% of the sampled sister
paralogs were on the same contig. Moreover, between 40 and
60% of DGDs, depending on the species, were physically linked
within less than 500 kb (Figure 2, Supplementary Data File 4).
Factoring in the expected breakdown of physical linkage over

FIGURE 1 | Bar chart comparison of lineage-specific developmental gene

duplicate numbers. Y-axis represents absolute numbers of gene families in

Drosophila melanogaster (Dmel), Anopheles gambiae (Agam), Tribolium
castaneum (Tcas), Apis mellifera (Amel), and Acyrthosiphon pisum (Aphis). Bar

areas with black, dark gray, and light gray shading represent gene families with

two, three and four or more lineage-specific duplications, respectively.

time, these numbers identified tandem gene duplication as the
generally predominant source of gene duplicates in insects.

Contrasting Gene Duplicate Age
Distributions in Pea Aphid vs. Drosophila
To gain insight into the time course of DGD accumulation in
the five examined insect lineages, we calculated evolutionary
distances at synonymous sites (dS) between sister duplicates
as proxies of DGD ages (Lynch and Conery, 2000)
(Supplementary Data File 5). dS distributions were compared
after binning into 7 age classes (Figure 3). Again consistent with
previous studies (International Aphid Genomics Consortium,
2010), there was a marked peak of gene duplicates in the
youngest age class (0 < dS < 1) for the pea aphid, amounting
to 93 duplications (55%). This number was seven times higher
than the maximum number of DGDs in this age class in any
of the other species (A. mellifera: 7) and at least 2.5 times
higher than the maximum number of duplications in any other
age class across species. Of note, the second highest number
in the youngest dS duplicate age class was detected in the
honeybee. This, however, was largely due to six rounds of gene
duplication in a single gene family (farnesyl pyrophosphate
synthases) (Supplementary Data File 1), thus not reflecting a
broader trend. Further, consistent with the predicted outcomes
of birth-death models of gene duplicate evolution (Lynch and
Conery, 2000), the pea aphid gene duplicate number dropped to
15 in the next oldest age class (1 ≤ dS < 2), followed by a milder
but consistent decrease over the remaining older age classes,
except for a mild secondary peak in the 4 ≤ dS < 5 age bin.

Contrasting with the pea aphid DGD age profile, DGD ages
did not peak in the youngest gene duplicate group for any
of the other four species. Instead, the numbers of Drosophila,
Tribolium, and Anopheles DGDs in older age classes invariably
exceeded that in the 0 < dS < 1 class (Figure 3). This trend
was most pronounced inDrosophila where the majority of DGDs
(88%) were captured in the age class range 2≤ dS< 5. Moreover,
the number of Drosophila DGDs in this age range exceeded

FIGURE 2 | Proportions of physical linkage among sampled lineage-specific

gene duplicates. Results shown for Drosophila melanogaster (Dmel),

Anopheles gambiae (Agam), Tribolium castaneum (Tcas), and Apis mellifera
(Amel). Dark and light gray chart areas represent physical linkages within less

than or exceeding 500 kb, respectively.
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FIGURE 3 | Age distribution of lineage-specific gene duplicates. Bar graphs

show numbers of lineage-specific paralog pairs (Y-axis) binned by their dS

distances as an estimate of gene duplicate ages (X-axis). Species name

abbreviations same as in Figure 1.

that of any other species, including the pea aphid. This finding
suggested that the exceptional number of the Drosophila lineage-
specific DGDs had accumulated substantially deeper back in time
than in the pea aphid and, as a corollary, represented distinctly
more long-term preserved DGDs.

Ortholog Conservation in Dipteran
Genomes Corroborates the Ancientness of
Drosophila Lineage-Specific Gene
Duplicates
The accuracy of dS divergences as proxies of gene duplicate age
decreases with time depth due to substitution saturation and
limited sequence sample size in terms of alignable conserved
sequence regions. Therefore, to scrutinize the antiquity of the
Drosophila DGDs further, we investigated their conservation
in nine additional dipteran genomes by reciprocal BLAST

searches and gene tree analysis (Supplementary Data File 6).
This approach sorted the D. melanogaster DGDs into five age
groups (Figure 3):

0–30 Million Years

The most recent age range of 0–30 million years was inferred for
a given D. melanogaster DGD paralog pair (or triplet) if only
a singleton, i.e., n:1, ortholog could be detected in any of the
additionally sampled dipteran genomes, including the fruit fly
species D. virilis, which has been estimated to have split from D.
melanogaster ∼32 million years ago (Obbard et al., 2012).

For the 11 gene families where we failed to detect 1:1
orthologs even in D. virilis, we expanded our search to further
drosophilid species to control for genome sequence coverage
artifacts. In five cases, this approach uncovered 1:1 orthologs in
other species of the Drosophila subgroup (Drosophila grimshawi,
Drosophila mojavensis) or even outside the family Drosophilidae.
In five other cases, however, 1:1 orthologs were only found
in drosophilid species more closely related to D. melanogaster
(Supplementary Data File 5), documenting their origin in the
Sophophora subgroup after its split from the lineage to D. virilis
in the Drosophila subgroup (Figure 4) (Obbard et al., 2012).

For the transcription factor gene giant (gt) and its sister
paralog CG457563, finally, we failed to detect CG457563
orthologs in any other drosophilid species consistent with its
diagnosis as expressed pseudogene (Drysdale et al., 2005).

30–65 Million Years

This age range defined 14 D. melanogaster DGDs with 1:1
orthologs in D. virilis but singleton, i.e., n:1, orthologs in other
dipteran genomes based on the upper speciation time point of
D. melanogaster and D. virilis and the slightly deeper divergence
time point between D. melanogaster and calyptrate Diptera as
estimated by Wiegmann et al. (2011) (Figure 4).

65–80 Million Years

This age range, which applied to 12 DGDs, was based on the
presence of 1:1 orthologs in at least one of the three examined
calyptrate genomes (Musca domestica, Stomoxys calcitrans,
Glossina morsitans) but not in more distantly related Diptera
including the most closely related tephritid fly species Ceratitis
capitata, the Mediterranean fruit fly. The deeper divergence
time point between calyptrate and tephritid Diptera has been
estimated to have occurred approximately 80 million years ago
(Wiegmann et al., 2011) (Figure 4).

80–230 Million Years

This long age range classified 20 DGD paralog pairs and 2 DGD
paralog triplets with 1:1 orthologs in C. capitata (Figure 3) but
not in more distantly related Diptera. The large number of DGDs
correlated with the long branch to the last common ancestor
with the next distantly related genome that could be probed:
the Hessian fly Mayetiola destructor, a representative of the
Bibionomorpha, the sister taxon to the Brachycera (Wiegmann
et al., 2011) (Figure 4).
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FIGURE 4 | Drosophila lineage-specific gene duplications mapped onto dipteran phylogeny based on ortholog conservation analysis. Asterisk denotes pseudogene

not included in redundancy analysis. Scale at bottom indicates evolutionary time span in millions of years ago (mya). See Supplementary Data File 6 for details.

230–240 Million Years

The oldest age range of 230–240 million years was
defined by the presence of 1:1 orthologs in the genome
of the Hessian fly but not in any of the four additional
more distantly related examined species: the sand fly
(Psychodomorpha) species Lutzomyia longipalpis and
Phlebotomus papatasi, and a second sampled mosquito
genome, Aedes aegypti, in addition to Anopheles gambiae
(Culicomorpha) (Figure 4). Only two D. melanogaster
DGDs mapped into this deep age group: The zinc
finger transcription factor paralog pair disconnected
(disco) and disconnected-related (discor) and the
transmembrane leucine-rich repeat and immunoglobulin-like

domain-containing genes kekkon4 (kek4) and kekkon5 (kek5)
(Figure 4).

In one case, finally, the sister paralog pair CG1582/CG8915,
did the homolog searches uncover 1:1 orthologs in
one of the more distantly related dipteran species, the
mosquito Aedes aegypti, suggesting a potentially pre-
dipteran origin (Supplementary Data File 6). In addition,
plotting dS values against the ortholog-conservation inferred
DGD age ranges indicated, as expected, little correlation
(Supplementary Data File 7). Overall, however, the two lines
of evidence converged on documenting the ancientness of
all Drosophila lineage-specific DGDs except for gt and its
pseudogene sister paralog CG4575 (Figure 4).
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Many Drosophila Lineage DGDs Preserved
Partial or Complete Genetic Redundancy
To explore the functional impact of DGD accumulation in the
Drosophila lineage, we capitalized on the rich documentation
of gene function in Drosophila, which allowed us to parse the
Drosophila lineage DGDs into three functionalization groups
(Supplementary Data File 8): (I) Fully redundant defined by
the lack of detectable differences in spatiotemporal expression
between sister paralogs, restriction of detectable phenotypic
abnormalities to animals doubly mutant for both gene family
members, or both; (II) Partially redundant defined by partial
overlap of expression patterns, phenotypic abnormalities unique
to Markus both double-mutant and paralog-specific mutant
animals, or both; (III) Functionally independent as evidenced by
the lack of overlapping expression patterns, lack of evidence of
compensatory genetic interactions in the literature, or both.

Sufficient information on gene expression, function or both
was accessible for 48 of theDrosophila lineage DGDparalog pairs,
representing 37 gene families due to multiple duplications in 10
gene families (Supplementary Data File 8). Of these, 4 (8%) were
characterized as fully redundant, 25 (50%) as partially redundant,
and 20 (42%) as fully non-redundant. Proportions, however,
varied when the categories were parsed by gene family age groups
(Figure 5).

All three functionally characterized maximally 30 million
years old DGDs were non-redundant. In the 10 functionally
characterized 30–65 million years old DGDs, however, only 6
were documented as non-redundant while 4 were documented
as partially redundant and 1 as fully redundant. The proportion

of fully non-redundant paralogs was even lower in the 65–80
million years age group with only 2 non-redundant paralogs,
compared to 8 redundant paralogs. The large 80–230 million
years age group contained 8 non-redundant paralogs, 8 partially
redundant paralogs, 2 partially redundant paralog triplets, and,
most notably, 3 fully non-redundant paralog pairs. Finally,
one example each of partial redundancy and non-redundancy
was found in the group of 230–240 million years old DGDs
(Figure 5).

Overall, thus, functional evidence from Drosophila genetics
suggests a substantial amount of long-term conserved genetic
redundancy in the Drosophila DGDs, which did not decline
over time. Instead, a substantial and consistent number of
the Drosophila lineage DGDs maintained their likely ancestral
genetic redundancy for up to 200 million years, resulting in an
approximate balance of diverged vs. redundant DGD paralog
fates.

Stronger Protein Sequence Divergence in
Younger Drosophila Lineage DGDs
Finally, to gauge the impact of non-redundant DGDs in
the Drosophila lineage, we determined the proportion of
significantly asymmetrically sequence diverged sister paralog
pairs in the Drosophila lineage DGDs via relative rate
tests (Supplementary Data File 9). Following gene duplication,
loss of genetic redundancy may occur due to complete
subfunctionalization with little or no phenotypic consequences,
and hence a conservative, trajectory, or neofunctionalization,
a gene regulatory and potentially phenotypically innovative

FIGURE 5 | Relationship between gene duplicate ages, functionalization trajectories, and asymmetric paralog evolution in the Drosophila lineage-specific gene

duplicates. X-axis: Sister paralog age classes based on Figure 4. Y-axis: Extent of relative sequence divergence of sister paralogs as reflected by relative rate test

z-values obtained from relative rate tests with PHYLTEST 2.0 (Kumar, 1996). Hatched horizontal line indicates p < 0.05 significance threshold level after correction for

multiple testing applying the Benjamini & Hochberg False Discovery Rate (FDR) correction (Benjamini and Hochberg, 1995).
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trajectory. As a rule of thumb, neofunctionalization is often
associated with a transient, yet dramatic and significant,
acceleration of protein sequence change compared to the
ancestrally functioning paralog. Relative rate tests therefore serve
as an efficient approach to identify candidate neofunctionalized
paralogs (Conant and Wagner, 2003).

After correcting for multiple testing, close to 50% of
all Drosophila DGD paralog pairs were found significantly
asymmetrically diverged. The same was true for the subcohort
of functionally characterized DGDs, in which case 24 out of 49
were diagnosed to have significantly asymmetrically diverged.
As expected, non-redundant duplicates were characterized by
the highest proportion of asymmetrically diversified sister
paralogs, i.e., 60%, followed by partially redundant paralogs
with 44%. Only one of the four fully redundant sister
paralogs was marginally significantly asymmetrically diverged
(Supplementary Data File 9).

Parsed by age groups, the proportion of significantly
asymmetrically diverged DGDs varied from 30% (80–230 million
years old) to 100% (230–240 million years old) between DGD age
groups (Figure 5). The most strongly diverged DGD paralogs,
however, were contained in the youngest age groups of 0–35
and 30–65 million years old DGDs (Figure 5). The analysis of
relative sequence divergence between Drosophila DGD sister
paralogs thus uncovered tentative evidence of a higher rate of
neofunctionalization, and hence phenotypically innovative DGD
trajectories, in the past ∼60 million years of Drosophila lineage
evolution, contrasting with the pronounced degree of functional
redundancy among the more ancient Drosophila lineage DGDs
reaching back to up to 200 million years.

DISCUSSION

Whole genome-duplication generated gene family expansions
have played a pivotal role in the diversification of the largest taxon
of plants: Themegadiverse angiosperms (De Bodt et al., 2005; Jiao
et al., 2011; Proost et al., 2011). In part through coevolutionary
relationships with angiosperms, four insect orders accomplished
equally exceptional species expansions. Besides Diptera, this
includes Lepidoptera, Coleoptera, and Hymenoptera. Recent
analyses suggest that, in contrast to the angiosperms, whole
genome duplications occurred during only one of these massive
diversifications of insect clades, i.e., in the Lepidoptera (Li
et al., 2018). Our pilot comparison of DGD numbers detected
an exceptional role of localized tandem gene duplication
in the Diptera (Figure 6). Taken together, these findings
reveal that the expansions of angiosperms and megadiverse
insect clades were associated with different genome evolution
trajectories.

In the following, we focus on how the time course of
pronounced DGD accumulation in the lineage to Drosophila
relates to major radiations in the Dipteran tree of life (Figure 6).
With the backdrop of this phylogenetic framework, we elaborate
on the role of DGDs in the emergence of new regulatory pathways
and adaptive trait changes we conclude with a discussion of the
significance of the long-term conserved genetic redundancy that

is documented for a large number of the Drosophila lineage-
specific DGDs.

Enhanced Accumulation of Developmental
Gene Duplicates During Brachyceran
Evolution
For the over 350 developmental gene families investigated in this
study, Drosophila and the pea aphid stand out with substantially
higher percentages of lineage-specific duplications (13.5 and
16.2%, respectively) compared to Anopheles (5.57%), Tribolium
(5.31%), and Apis (3.71%). As noted, this result is consistent
with the known genome-wide preponderance of duplicated genes
in the pea aphid (International Aphid Genomics Consortium,
2010). For Drosophila, however, previous genome-wide studies
did not report evidence of notable differences in duplicate
numbers compared to other insect genome models (Zdobnov
et al., 2002; Honeybee-Genome-Sequencing-Consortium, 2006;
Richards et al., 2008; International Aphid Genomics Consortium,
2010). One possible explanation is that this difference is specific
for developmental genes and not a genome-wide phenomenon
in Drosophila and related Diptera. A notably higher number of
duplicated genes, however, has also been found for structural
vision genes (Bao and Friedrich, 2009), raising the possibility
of a more general scope. Genome-wide surveys of lineage-
specific gene duplication will provide an ultimate answer to this
question.

Further confidence in the accuracy of our comparative gene
family analysis comes from consistent findings in earlier, gene-
specific studies. In total, 14 (∼30%) of the Drosophila lineage-
specific expanded developmental gene families covered here have
been previously identified as such (Supplementary Data File 6).
Also the taxonomic distribution of recently identified whole
genome duplication events in the insect tree of life is consistent
with our findings (Li et al., 2018).

While the overall evidence is compelling that DGDs played
an exceptional role during the evolution of brachyceran
Diptera, resolving its timeline to a satisfactory degree will
require substantial further work. Based on the relatively
high number of DGDs associated with the basal-most
branch in the schizophoran Diptera covered in our analysis
(Figure 4), it is, for instance, tempting to speculate that
DGD accumulation may have spiked in conjunction with the
origin of cyclorrhaphan Diptera (Figure 6). This inference,
however, will require analyses of DGD conservation in the
cyclorrhaphan family cluster Platypezoidea and ancient
cyclorrhaphan key families such as the Syrphidae (hoverflies)
(Figure 6).

In preliminary studies, we searched embryonic and adult
transcriptome data of the hoverfly Episyrphus balteatus
(Supplementary Data File 5) (Lemke et al., 2011). The
results from this exercise suggest that at least 8 of the 22
gene families in the 80–230 million years time window
duplicated prior to the diversification of the Cyclorrhapha,
implying that 14 families might have expanded specifically
in the cyclorrhaphan stem lineage after its separation from
the ancestor of modern Syrphidae (Figure 6). However, in
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FIGURE 6 | Inferred developmental gene duplicate accumulation in relation to the dipteran tree life. Phylogenetic framework adapted from Wiegmann et al. (2011) and

Caravas and Friedrich (2013). Clades in which gene family evolution could be studied using genomic sequence data sets are indicated by dark gray or black shade.

Numbers below select branches indicate sum of branch-specific shared derived character states based on (Lambkin et al., 2013). Terminal clade widths represent

relative species numbers with Schizophora counting over 50,000 described species. Nodes with question marks highlight high priority groups to be sampled in future

work. Numbers of Drosophila lineage-specific expanded gene families during early cyclorrhaphan and schizorrhaphan diversification given at respective node

branches. Scale at bottom indicates evolutionary time span in millions of years ago (mya).

the absence of whole genome coverage, the latter number
may be an overestimate and we therefore abstained from
including these findings in our current gene duplication tree
(Figure 4).

Innovative Effect of DGD Accumulation on
Brachyceran Diptera Diversification
The exceptional accumulation of DGDs in the brachyceran
clade of the Dipteran tree of life prompts questions regarding
its impact on the genetic control of development and, by
extension, body plan evolution. The proximate effect to
be expected from DGD accumulation is the emergence of
novel gene regulatory network components, a prediction that
has been documented for select Drosophila lineage DGDs.
The cyclorrhaphan-specific Hox3 transcription factor paralog
bicoid (bcd), for instance, is a paradigm example of an
extremely asymmetrically evolved, neofunctionalized DGD. As
novel regulator of early anterior patterning in the Drosophila
embryo, bcd interacts with a rich array of ancient, pre-
dipteran regulators. These interactions include the RNA-
binding protein Exuperantia, which predates Brachycera and
insects (MacDonald et al., 1995; de Oliveira et al., 2017) and
direct target genes as ancient as Orthodenticle (Finklstein and
Perrimon, 1990), hunchback (Driever and Nüsslein-Volhard,
1989; Finklstein and Perrimon, 1990), and caudal (Wolff et al.,
1998).

The emergence of new gene regulatory network components
in turn is predicted to facilitate, or to be driven by, advantageous
phenotypic change. In the case of developmental regulators,
this can come in the form of changes in body plan traits or
in their development. Likewise consistent with this prediction,
DGD-associated patterning innovations are well-documented for
brachyceran DGDs. The neofunctionalization of bcd, as a case in
point, occurred in the context of the dramatic compaction of two
ancestral extraembryonic membranes, amnion and serosa, into
a single one, the amnioserosa, in the lineage to cyclorrhaphan
Diptera (Stauber et al., 1999; Rafiqi et al., 2008). Similarly timed
expansions of signaling pathway-related gene families likewise
contributed to the regulatory evolution of the amnioserosa
(Richards et al., 2008; Fritsch et al., 2010; Lemke et al., 2011).
The expansion of the achaete-scute complex, which predates the
schizophoran radiation (Negre and Simpson, 2009), affected the
evolution of thoracic bristle patterns (Skaer et al., 2002). The
same holds for the expansion of the Drosophila lineage-specific
expansion of the enhancer of split gene complex (not included in
this analysis) (Baker et al., 2011).

Altogether, our analyses identified close to 30 brachyceran
DGDs with asymmetrically diverged protein sequences, which
thus potentially produced novel functionalities. While even
dramatically asymmetrically diverged DGDs can maintain
genetically redundant ancestral functions (Bao et al., 2012), it is
reasonable to conclude from the large number of asymmetrically
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diverged DGDs that developmental gene family expansions
did play a innovative roles at specific stages of brachyceran
body plan evolution. Our data further indicate a higher
proportion of phenotypically innovative DGD trajectories in the
past ∼60 million years of the brachyceran lineage leading to
Drosophila (Figure 4). This combines with tentative evidence
of peaking DGD accumulation in the basal Cyclorrhapha
and Schizorrhapha, which gave rise to over 40% of extant
dipteran diversity (Yeates and Wiegmann, 1999, 2007) and
acquired an exceptionally large number of body plan changes
(McAlpine, 1989; Lambkin et al., 2013) (Figure 6). The same
can be stated for two younger expansive subclades nested
within the Cyclorrhapha: the Schizophora and the Calyptratae
(Figure 6). The exceptional accumulation of DGDs preceding
the diversification of cyclorrhaphan Diptera may thus be
functionally related to the dramatic changes of this clade
with regards to embryonic and postembryonic development
as well as overall developmental speed. Intriguingly, an
acceleration of development could at the same time explain the
long-term conserved genetic redundancy of many Drosophila
DGDs.

Increased Developmental Genetic
Redundancy in the Brachyceran Lineage:
The Outcome of Life History Acceleration?
Besides likely or known neo- or subfunctionalization DGD
trajectories, our analyses uncovered a fairly balanced mix of
partially or fully redundant vs. functionally completely diverged
Drosophila DGDs despite their overall antiquity. As a case
in point, one of the two oldest Drosophila DGDs sampled
in this study, the zinc finger gene sister paralog pair disco
and discor, constitutes an exceptionally well-studied example of
genetic redundancy (Heilig et al., 1991; Mahaffey et al., 2001).
The Drosophila disco paralog has been found to function in
the developing visual system (Steller et al., 1987; Lee et al.,
1991; Campos et al., 1995), early embryonic segment identity
specification (Robertson et al., 2004), and leg development (Dey
et al., 2009). Comparative analyses of the disco/discor singleton
ortholog in Tribolium have led to the conclusion that the leg
and visual system patterning functions of Drosophila disco are
ancestral for higher insects while the embryonic segment identity
specification originated at a later point in time (Patel et al., 2007).
In the context of embryonic gnathal head segment development,
disco and discor are fully redundant (Mahaffey et al., 2001). In
the context of leg development, disco and discor are hypothesized
to be partially redundant (Dey et al., 2009), consistent with their
precisely overlapping expression patterns in the leg imaginal
disks (Mahaffey et al., 2001). Of further note is the apparently
conserved linkage of the two genes, which are separated by
less than 100 kb on the Drosophila X-chromosome (Mahaffey
et al., 2001) and less than 200 kb on scaffold NW_004523853 in
C. capitata. Combined with the conservation of both paralogs
in the Hessian fly (Figure 4), these data point at potentially
over 200 million years of preserved redundant regulation of
head segmentation and leg patterning by disco and discor in
brachyceran Diptera.

The large number of early Brachycera-specific DGDs
includes three additional examples of long-term conserved
genetic redundancy: The homeobox transcription factor duo
Bar-H1 and Bar-H2 (Higashijima et al., 1992a,b), the zinc
finger transcription factor pair spalt major and spalt related
(Barrio et al., 1999; Elstob et al., 2001; Cantera et al.,
2002; Dong et al., 2003), and the Dorsocross 1-3 T-box
transcription factor paralogs (Reim et al., 2003). These fully
redundant DGD paralogs are joined by 12 partially redundant
paralogs that originated prior to the diversification of the
Schizophoran clade (Figures 4, 5). Moreover, partially redundant
paralogs continue to represent the majority of DGDs that
originated during early schizophoran diversification 65–80
million years ago. They also represent a considerable fraction
of the DGDs that originated before the origin of drosophilid
Diptera (Figure 4). Even though the exact proportion of
genetically redundant vs. non-redundant interactions is likely
overestimated due to the usually focused and therefore inherently
incomplete nature of gene function studies, the substantial
proportion of long-term conserved genetic redundancy in the
brachyceran DGDs raises the question of possible adaptive
aspects.

The fitness benefits of long-term conserved genetic
redundancy have been studied for considerable time (Krakauer
and Nowak, 1999; Bessa et al., 2009; Payne and Wagner, 2015).
Neutral models predict that gene paralogs eventually diverge by
differential loss of functionalities, which has found support in
large-scale analyses of expression domain evolution in duplicated
genes (Lynch and Conery, 2000; Oakley et al., 2006; Mendonca
et al., 2011). Recent gene-specific and genome-wide studies,
however, produced evidence for a role of genetic redundancy in
securing developmental, genetic, and environmental robustness
over hundreds of millions of years in part through conservation
of genetically redundant gene paralogs (Celniker et al., 2002;
Maslov et al., 2004; Pasek et al., 2006; Dean et al., 2008; Vavouri
et al., 2008; Yang et al., 2009; Bao et al., 2012; Buscà et al.,
2015). As an example, the recent discovery of partially, yet long-
term conserved redundant roles of paralogs of the Drosophila
lineage expanded MADF-BESS transcription factor family in
the development of the wing hinge has been proposed to be
explained by the benefit of developmental robustness (Shukla
et al., 2014).

An attractive explanation for the apparent gene duplication
facilitated increase of genetic robustness in brachyceran lineages
is the previously noted trend toward increased developmental
speed in the higher Diptera, as reflected, for instance, by
the transformation from short to long germband development
during early cyclorrhaphan evolution (Tautz et al., 1994).
An acceleration of complex pattern formation processes can
be envisioned to impose increased demands on regulatory
precision and robustness. Further consistent with the notion
of accelerated development in the higher Diptera are the
aforementioned compaction of extraembryonic membranes and
the prevalent expression of short, intron-free transcripts during
early embryonic development in Drosophila (Nunes da Fonseca
et al., 2010). As a specific example, the zinc finger transcription
factor paralogs knirps (kni) and knirps-related gene (knrl)
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are coexpressed in the early Drosophila embryo. Remarkably,
however, only kni can execute the correlated gap gene patterning
function because the ∼20-fold longer intronic sequence of
knrl prevents the on-time completion of transcript formation
imposed by the fast cell cycle succession during early Drosophila
embryogenesis (Rothe et al., 1992; Swinburne and Silver, 2008).
In this light, it becomes tempting to speculate that the widespread
presence of redundant enhancer elements may represent a
lineage-specific corollary of accelerated development in the
higher Diptera (Hong et al., 2008; Frankel et al., 2010; Perry
et al., 2010; Wunderlich et al., 2016). From a practical point
of view, this conjecture predicts that other genomic models
of insect development might less replete with redundant gene
functionality compared to Drosophila, which would be good
news for ongoing large scale gene knockdown projects in
non-dipteran insect species such as Tribolium (Dönitz et al.,
2015).

Finally, while providing developmental robustness as a
proximate benefit, genetic redundancy has been found to serve
as critical source for new gene regulatory opportunities in species
diversification and body plan evolution (Wagner, 2008; Melzer
and Theißen, 2016; Wei and Zhang, 2017). It therefore seems
reasonable to hypothesize that the interplay of gene duplication,
developmental robustness, and adaptive opportunities played an
important role during the vast diversification of brachyceran
Diptera.
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