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From glacial reconstructions it is clear that Antarctic terrestrial life must have been

extremely limited throughout Quaternary glacial periods. In contrast, recent biological

studies provide clear evidence for long-term in situ persistence throughout glacial times

within most extant Antarctic faunal and several microbial groups. However, even now,

the evolutionary history of the Antarctic flora—despite playing major role in Antarctic

ecosystems—remains poorly studied. We assessed the diversity, richness and relative

age divergences within Schistidium (Grimmiaceae, Bryophyta), the most species-rich

plant genus in the Antarctic, as well as the plant genus containing most Antarctic

endemic species. We applied phylogenetic and molecular dating methods based on

nuclear ribosomal Internal Transcribed Spacer sequences, including all known Antarctic

Schistidium species with available sample material. We additionally investigated the

continent-wide genetic diversity within the most common Antarctic representative of

the genus—the endemic species Schistidium antarctici—and performed preliminary

phylogeographic analyses of the bipolar species Schistidium rivulare. Most previously

described Antarctic Schistidium species were genetically distinct, confirming their

specific status. Interspecific divergences of all species took place at least ∼1 Mya,

suggesting a likely in situ persistence in Antarctica for (at least) all endemic Schistidium

species. The widespread endemic species, Schistidium antarctici, diverged from other

Antarctic congeners in the late Miocene, thereby revealing the oldest extant plant species

currently known in Antarctica, and providing increasing support for the hypothesis of

vegetation survival through multiple glacial periods. Within S. antarctici we identified

several distinct clades dividing the eastern Antarctic Peninsula and Scotia Arc islands

from the western Antarctic Peninsula and all continental locations. This suggests that

the mountainous spine on the Antarctic Peninsula forms a strong barrier to gene flow in

this species, while increased genetic diversity in the northern Maritime Antarctic indicates

likely glacial refugia in this area. This study provides an important first step toward

assessing the diversity and evolutionary history of the most speciose moss genus in

the Antarctic. The multi-million year presence of several endemic species contributes

to studies on their adaptive potential to survive climate change over both historical and

contemporary timescales.
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INTRODUCTION

Climatic oscillations during the Quaternary have played a major
role in the occurrence and distribution of extant Antarctic
biodiversity. Whilst only ∼0.18% of Antarctica is ice-free today
(Burton-Johnson et al., 2016), reconstructions of Antarctica’s past
climate provide clear suggestions that, during the Last Glacial
Maximum (LGM;∼22–18 kya) as well as in previous glaciations,
nearly all terrestrial areas in Antarctica were covered by thick,
extensive ice sheets. Although terrestrial life must have been
extremely limited during these periods, recent biogeographic and
genetic studies find clear evidence for the occurrence of long-
term (hundreds of thousands to millions and tens of millions
of years) in situ persistence within most extant faunal and some
microbial groups (Convey et al., 2008, 2009; Chong et al., 2015;
Iakovenko et al., 2015; Bennett et al., 2016). Even with these
recent advances, the origin and age of the extant Antarctic flora
remain poorly studied, despite the flora playing a key role in
Antarctic terrestrial ecosystems (Pisa et al., 2014). An improved
understanding of the evolutionary history of Antarctica’s flora
is clearly needed, to gain a better picture of past and current
distributions as well as the adaptations of terrestrial life in the
Antarctic.

Apart from just two species of vascular plants, the extant
Antarctic flora is predominantly composed of bryophytes,
particularly mosses (Ochyra et al., 2008). Schistidium Bruch
and Schimp. (Grimmiaceae) is thought to be Antarctica’s most
speciose moss genus, and encompasses an estimated 13 species
in the Antarctic (11.6% of all currently accepted Antarctic moss
species; Ochyra et al., 2008). The seven Antarctic endemic
Schistidium species furthermore represent roughly two-thirds
(63.6%) of the total number of 11 presumed Antarctic endemic
moss species (Table 1). Unlike most moss species in the
Antarctic that are often sterile, most Schistidium species produce
sporophytes in profusion, making the genus particularly well-
suited for dispersal and potentially well-connected across the
continent (Ochyra et al., 2008).

Despite their relative abundance and large contribution to
the endemic Antarctic moss flora, no studies to date have
focused on the phylogeny and genetic diversity of Schistidium
in Antarctica. Indeed, globally, Schistidium represents one of the
most taxonomically neglected moss genera, and the genus is
generally regarded as difficult to identify based on morphology
(Blom, 1996; Ochyra et al., 2008; Ignatova et al., 2009; Milyutina
et al., 2010). With about 110 species (Frey and Stech, 2009),
Schistidium is a very widespread and common genus worldwide,
particularly in high latitude, polar regions, and cool, high altitude
regions at lower latitudes. Most genetic work has focused on
the Northern Hemisphere, and then particularly on studies of
the Russian flora (e.g., Ignatova et al., 2009; Milyutina et al.,
2010). The genus is in urgent need of global revision, particularly
in the Southern Hemisphere (Ochyra et al., 2008). Many
Southern Hemisphere regions still await taxonomic assessment
and, judging from preliminary studies, it is likely that the species
diversity of Schistidiumwill increase to reach levels similar to that
of the Northern Hemisphere (Ochyra et al., 2008, and references
therein).

A particularly abundant Southern Hemisphere species within
the genus is the Antarctic endemic Schistidium antarctici
(Cardot) L.I.Savicz and Smirnova. This is one of the most
widespread and abundant moss species in Antarctica, within
the continent as well as on some maritime and sub-Antarctic
islands in the South Atlantic region, including the South
Shetland Islands, South Orkney Islands, South Georgia, the South
Sandwich Islands and Bouvetøya (Ochyra et al., 2008). In the
continental Antarctic it is found in nearly all ice-free coastal
regions of all generally accepted Antarctic sectors (generally
accepted regions in the Antarctic, namely Maud, Enderby,
Wilkes, Scott, Byrd and Ronne Sector; Pugh and Convey, 2008)
and present in at least 10 out of 16 currently recognized Antarctic
Conservation Biogeographic Regions (Terauds and Lee, 2016).
It is commonly found fruiting (i.e. with mature sporophytes)
in the maritime Antarctic (Convey and Smith, 1993; Smith
and Convey, 2002), however it is seldom fertile in the dryer
and colder continental Antarctic, where it primarily reproduces
asexually by means of protonemal gemmae (Ochyra et al., 2008).
An early isozyme study on this species revealed no genetic
variation between populations in an area spanning ∼25 km in
the Windmill Islands, in East Antarctica (Melick et al., 1994).
However, studies with much wider geographic sampling are
required to increase the resolution of genetic variation amongst
populations of S. antarctici on a continent-wide scale.

We here assessed the genetic variation between Antarctic
Schistidium species within the nuclear ribosomal Internal
Transcribed Spacer (ITS) region (ITS1-5.8S-ITS2), one of the
most variable genetic markers known in bryophytes (Stech
and Quandt, 2010), of which ITS2 is one of the most
widely used and promising barcode markers for mosses
(Hassel et al., 2013). The aims of this study were to: (i)
assess morphological species delimitations among Antarctic
Schistidium species from phylogenetic and Automatic Barcode
Gap Discovery (ABGD) analyses, (ii) investigate the timing
of divergences between putative Antarctic endemic and non-
endemic species in order to assess their relative age on the
continent; (iii) identify patterns of dispersal, diversity and gene
flow within S. antarctici, one of the most widespread and
common plant species in the Antarctic, and (iv) perform an initial
assessment of the genetic variation present between Southern
and Northern Hemisphere populations of the bipolar species
Schistidium rivulare (Brid.) Podp. The study catalyses assessment
of the phylogeny and genetic variability within and between
Antarctic Schistidium species, with importance for evaluating
the biogeography of the most speciose plant genus in the
Antarctic as well as their adaptive potential to respond to climate
change.

MATERIALS AND METHODS

Sampling and Molecular Methods
Herbarium and fresh samples of Schistidium species were
sampled from most available regions in the Antarctic (see S1
Table for herbarium and location details). All herbarium samples
were obtained from the herbaria based at the British Antarctic
Survey (BAS) (herbarium code AAS), the Botanic Garden, Meise
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TABLE 1 | Information on geographic range, endemic status and occurrence of Antarctic Schistidium species (based on Ochyra et al., 2008), and inclusion in the current

study.

Schistidium species Occurrence Endemic Geographic range Included

S. amblyophyllum Occasional No SA and East African high mountains, high latitude SA, A+I sub-A, SSI, AP Yes

S. andinum Frequent No SA, A sub-A, SSI and AP as far south as Alexander Island. Yes

S. antarctici Common Yes Endemic to sub-A and AC; SG, SSW, Bouvet I., SOI, SSI, AP and in AC

in all sectors except for Enderby, Kemp and Mac. Robertson Land

Yes

S. cupulare Very rare No SA, A+I sub-A, few localities in SSI. Yes

S. deceptionense Very rare Yes Only known from one locality in Deception I., SSI No*

S. falcatum Very rare No SA, A+I sub-A, few localities in SSI. Yes

S. halinae Occasional Yes Only known from SSI and north-east AP No*

S. leptoneurum Rare Yes Only known from few localities in SSI Yes

S. lewis-smithii Very rare Yes Only known from two localities in SSI Yes

S. praemorsum Rare No SA, in Antarctic only known from three localities in SSI and AP

(southernmost in Danco coast)

No*

S. rivulare Frequent No Bipolar with intermediate high altitude populations in tropics; in Antarctic

only in SSI and northern AP

Yes

S. steerei Very rare Yes Only known from two localities in SSI No*

S. urnulaceum Occasional Yes SG, SSI, AP and Marie Byrd Land No**

*Due to a lack of available sample material these species were not included in the analyses of the current study. **We included the only available sample of S. urnulaceum (AAS 01946),

which subsequent genetic and taxonomic verification revealed to be S. antarctici. Endemic refers to whether the species is endemic in the sub-Antarctic or Antarctic. Geographic terms:

SA, South America; SSI, South Shetland Islands; sub-A, sub-Antarctic; A, Atlantic Ocean; I, Indian Ocean; SG, South Georgia; SSW, South Sandwich Islands; SOI, South Orkney

Islands; AP, Antarctic Peninsula; AC, Antarctic continent.

(BR), and the University of Wollongong (WOLL), and were
augmented by fresh collections made during expeditions of the
authors (EB, PC). The nine species included here (according
to the original identifications) were: Schistidium falcatum
(Hook.f. & Wilson) B.Bremer, Schistidium lewis-smithii Ochyra,
Schistidium rivulare, Schistidium andinum (Mitt.) Herzog,
Schistidium urnulaceum (Müll.Hal.) B. G. Bell, Schistidium
leptoneurum Ochyra, Schistidium amblyophyllum (Müll.Hal.)
Ochyra & Hertel, Schistidium cupulare (Müll.Hal.) Ochyra, and
S. antarctici. We attempted to include representatives of all
13 described Antarctic Schistidium species, however samples
of four species (S. deceptionense Ochyra, Bedn.-Ochyra &
R. I. L. Smith, S. halinae Ochyra, S. steerei Ochyra and
S. praemorsum (Müll.Hal.) Herzog) were not available due to
lack of material (see Table 1). Although not known to be
present in the Antarctic continent, we also included three
samples of Schistidium apocarpum (Hedw.) Bruch & Schimp.,
from southern Chile, and the sub-Antarctic locations of South
Georgia and Macquarie Island. All sequenced specimens were
morphologically identified based on Ochyra et al. (2008), using
light microscopy.

DNA extraction was performed using the DNeasy Plant Mini
Kit (QiagenGmbH,Hilden, Germany), grinding specimens using
a mortar and pestle and liquid nitrogen, following manufacturer’s
instructions. In most cases, only one gametophyte shoot was
included per sample. The ITS region was PCR-amplified in two
parts, using primer combinations ITS-A/ITS-C for ITS1 and ITS-
E/ITS-B for ITS2 (Blattner, 1999). We used the Taq PCR Core
Kit (Qiagen GmbH, Hilden, Germany), following manufacturer’s
instructions, with addition of 1 µl of Bovine Serum Albumin
(BSA) in all reactions, and using an annealing temperature
of 50◦C. Sequencing (forward and reverse) was executed by

LGC Genomics (Berlin, Germany), using the amplification
primers.

Sequence Editing and Alignment
As outgroup representatives we included GenBank sequences of
Schistidium sordidum I. Hagen, Schistidium sinensiapocarpum
(Müll. Hal.) Ochyra and Schistidium pulchrum H.H. Blom
(GenBank nos. HM053942, HM053940, and HQ890521,
respectively), given their basal position in the genus according
to molecular phylogenetic reconstructions (Ignatova et al.,
2009). For the bipolar species, S. rivulare, we also included
four herbarium samples from Europe, and four available
ITS sequences from GenBank from Russia (GenBank nos.
HM053934–HM053937; Ignatova et al., 2009). The sequence
dataset was aligned with PRANK v.140603 (Löytynoja and
Goldman, 2008), using default settings. Models of evolution were
selected using jModelTest v2.7.1 (Darriba et al., 2012) using the
SPR base tree search operation, G rate variation option and AICc
calculations, resulting in the model TPM1uf+G.

Phylogenetic Analyses
Bayesian analysis was performed in MrBayes v.3.2 (Ronquist
et al., 2012), running the analysis for 1.5 × 106 generations
(applying default settings of two runs with four chains),
with trees saved every 1.0 × 103 generations, and omitting
the first 25% of trees as burn-in. Convergence was assessed
by checking that split frequencies had an average standard
deviation below 0.01 and all parameters exceeded effective
sample sizes (ESS) of 200 using Tracer v.1.6 (Rambaut
et al., 2014). A maximum clade credibility tree with median
heights was visualized using Figtree v1.4.2 (http://tree.bio.
ed.ac.uk/software/figtree/). Maximum likelihood analyses were
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performed using RAxML-GUI v1.3.1 (Silvestro and Michalak,
2012), applying the ‘bootstrap + consensus’ option (1000
iterations) and the GTR+G model of evolution and default
settings.

We used the Automatic Barcode Gap Discovery (ABGD;
Puillandre et al., 2012) to examine species delimitations within
our ITS dataset, using the online web server, and applying
default settings. This automated species delimitation approach
uses a pairwise genetic distance-based method to find non-
overlapping intra- and interspecific genetic distance distributions
within the sequence dataset to construct hypothetical candidate
species.

Within-Species Variation in Schistidium

antarctici and Schistidium rivulare
We examined the phylogeographic structure within species with
a sufficient sample size (>10 samples; resulting in analyses of
S. antarctici and S. rivulare only, with n = 53 and n = 12,
respectively) by calculating statistical parsimony networks of
the ITS haplotypes using the TCS (Templeton et al., 1992)
method in the program Popart (Leigh and Bryant, 2015), using
default settings. We also calculated standard genetic diversity
indices using Arlequin v3.5.1.2 (Excoffier and Lischer, 2010)
[using Kimura 2P genetic distances, (Kimura, 1980)] within
these species. Within S. antarctici, we investigated population
structure in different regions of the maritime Antarctic (WAP:
West Antarctic Peninsula, including the South Shetland Islands;
NEAP: north-east Antarctic Peninsula; SOI: South Orkney
Islands) by calculating FST (using haplotype frequencies only)
and ΦST (Excoffier et al., 1992) (using Kimura 2P genetic
distances) in Arlequin, with 10,000 dataset permutations to assess
significance.

Molecular Dating
We assessed the relative divergence times within ITS between
different Antarctic Schistidium species, with a particular focus
on the relative divergence times between currently-recognized
Antarctic endemic and non-endemic species. Divergence times
were calculated in BEAST v2.4.1 (Bouckaert et al., 2014).
Because of a lack of fossil data suitable for our dataset, we
used two different nucleotide substitution rates. Firstly, we used
(a) a rate of 4.47 × 10−3 subst./site/my (with 95% highest
posterior density intervals (95HPD): 1.76 × 10−3 −8.34 ×

10−3 subst./site/my), corresponding to the evolutionary rate
estimated for ITS in Polytrichaceae mosses [Method I2a in
(Biersma et al., 2017)]. We performed an additional dating
analysis based on (b) a much slower nuclear substitution rate
(1.35× 10−3 subst./site/my) originally derived from angiosperms
(Les et al., 2003, and references therein), but previously used in
molecular studies on bryophytes (Hartmann et al., 2006; Lang
et al., 2015; Biersma et al., 2017). Apart from the differences
in rate, all settings in both analyses remained the same. We
applied a lognormal clock, most well supported jModelTest
model of evolution (GTR+G) and a coalescent tree prior, as
this was both an intra- and inter-species analysis. The MCMC
chains were run for a chain length of 4.0 × 107 generations,
logging parameters every 1.0 × 103 generations. Convergence

of the runs was assessed in Tracer v.1.6 (Rambaut et al.,
2014), to ensure all parameters had ESS > 200 with a burn-
in of 10%. A maximum clade credibility tree of the analysis
implementing the Polytrichaceae-based rate (a) (which was
phylogenetically closer to our species of interest) was constructed
using TreeAnnotator v1.8.2 (Drummond and Rambaut, 2007),
using median node heights and a 10% burn-in. The tree was
visualized using Figtree v1.4.2 (http://tree.bio.ed.ac.uk/software/
figtree/). All figures were edited in Illustrator CS5 software
(Adobe Systems, Inc.).

RESULTS

Phylogenetic Analyses
Nine out of the 13 Antarctic Schistidium species were
sampled from most regions in the Antarctic (see Figure 1

for sample locations of specimens representing different clades
of the phylogenetic analysis). No material was available
from the remaining four species. The phylogenetic analysis
of ITS (Figure 2) revealed at least eight strongly-supported
clades matchingmorphologically delimited Antarctic Schistidium
species: S. antarctici, S. rivulare, S. andinum, S. falcatum, S. lewis-
smithii, S. amblyophyllum, S. leptoneurum, and specimens likely
to represent S. cupulare (see below).

The species delimitation method ABGD revealed a clear
“barcode gap” at Pmax = 0.0046, delimiting nine putative species
clusters, while a conservative partition of ABGD was reached at
Pmax = 0.0077, with eight putative species clusters (Figure 2).
In the latter partition (Pmax = 0.0077), specimens originally
identified as S. apocarpum and S. andinum were grouped
together as one cluster.

Several specimens were initially misidentified according to
their position in the molecular phylogenetic reconstructions as
well as BLAST searches and/or reexamination of morphological
characters. Three specimens from Alexander Island originally
identified as S. antarctici (AAS 00508, AAS 09322, AAS 09346; cf.
(Ochyra et al., 2008) formed a clade that was separated from all
three Schistidium species so far reported from the southernmost
Antarctic Peninsula (Ochyra et al., 2008), viz. S. amblyophyllum,
S. andinum, and S. antarctici. Morphologically, these specimens
clearly differ from the former two species in their leaf
areolation, but resemble both S. antarctici and S. cupulare.
According to the molecular results, but considering the small
number of analyzed collections and morphological variability
observed between them, they are indicated as “S. sp.a/cf.
S. cupulare” in Figure 2. Additionally, the single representative
of the rare S. urnulaceum (AAS 1946) proved to belong to
S. antarctici, both genetically and morphologically. The three
specimens originally identified as S. apocarpum (AAS 00494,
AAS 00123A, AAS 03299) likely represent a different species
(named “S. sp.b” in Figure 2), as none obtained a high BLAST
hit to other S. apocarpum on GenBank; the highest hit was
S. sinensiapocarpum (KX443490; coverage 92%, identity 92%)
and the first hit with a sequence of S. apocarpum (JQ040700;
coverage 82%, identity 91%) was approximately 40th in line of
all BLAST results.
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FIGURE 1 | Sampling locations of the different Antarctic Schistidium species. Species names are based on morphological identifications and phylogenetic analysis

(Figure 2).

Population Genetic Analyses of
Schistidium antarctici and Schistidium

rivulare
A total of 53 samples of S. antarctici were included throughout

the species’ geographic range. Figure 3 shows a TCS haplotype

network and map of the different haplotypes within S. antarctici.

Although the total nucleotide diversity within S. antarctici was

low (π = 0.002 ± 0.001), five genetically- and geographically-

distinct haplotypes were present within the species (Figure 3).
The most common haplotype (haplotype 2; see Figures 2,

3) falls in a basal position within the S. antarctici phylogeny

(Figure 2) and is present in the west Antarctic Peninsula

and associated islands (including the South Shetland Islands)

and in East Antarctica, including the Byrd, Ross and Wilkes
Sectors. The more phylogenetically derived S. antarctici group
(haplotypes 3–5, see Figures 2, 3) were predominantly present
in the eastern Antarctic Peninsula (including James Ross I.
and Vega I.) and more northern Scotia Arc archipelagoes
(South Orkney Islands, South Georgia). Three samples
within haplotypes 3–4 were obtained from the western
side of the Antarctic Peninsula and the South Shetland Is.
(AAS herbarium nos. 649, 1880, and 1771). The different
regions in the maritime Antarctic (WAP, NEAP, SOI, see
Figure 3B) exhibited highly significant genetic differentiation
in S. antarctici, with all FST and ΦST values being highly
significant.

The 12 sequences of the bipolar S. rivulare revealed
higher genetic variation throughout its geographic range
(π = 0.007 ± 0.004). Specimens from Russia were placed at
the base of the clade, followed by more recent clades with
samples of European and sub-Antarctic/Antarctic specimens,
respectively. The sub-Antarctic and Antarctic specimens formed
a distinct clade with high support (PP = 0.98; Figure 2).
The haplotype network (Figure 4) revealed higher genetic

variation in specimens from the Northern Hemisphere, with
all Southern Hemisphere specimens represented by the same
haplotype. Specimens from Eurasia were split into several
branches but considerably enlarged sample sizes would be
required to draw robust conclusions of the structure within these
branches.

Divergence Time Analysis
The divergence time analysis (Figure 5) revealed multi-million
year divergences between all Antarctic Schistidium species, with
either rate [(a) or (b)] applied. Using the moss-defined rate
(a), the Schistidium outgroup representatives and ingroup were
estimated to have diverged ∼10.77 (HPD95: 20.51–5.34) Mya.
The split of S. antarctici from other Antarctic species was
estimated at about 7.71 (HPD95: 13.06–4.21) Mya in the late
Miocene. Divergences between different S. antarctici haplotypes
(1–5; see Figures 2–3, 5) occurred around 1.18 (HPD95: 2.69–
0.43) Mya. Within the specimens of S. rivulare examined,
populations from the Northern and Southern Hemisphere
were estimated to have separated ∼0.63 (HPD95: 1.16–0.22)
Mya. The endemic and rare to very rare S. leptoneurum and
S. lewis-smithii diverged from their closest Antarctic relatives
approximately 1.27 (HPD95: 2.61–0.37) and 1.07 (HPD95: 2.23–
0.22) Mya, respectively. Moreover, S. cupulare diverged from
its nearest Antarctic relative approximately 2.92 (HPD95: 5.30–
1.08) Mya. Based on this moss-derived rate, all Antarctic
species diverged between the end of the Miocene (split between
S. antarctici and the remaining species) and the Pliocene and
Quaternary, a time when the global climate started to cool (see
Figure 5). Applying a slower nuclear rate originally derived from
angiosperms [rate (b); see section Materials and Methods], all
clades diverged much earlier in time (∼3× earlier), resulting
in divergences during the Pliocene and Miocene for most
species, as well as possibly even a late Oligocene divergence for
S. antarctici.
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FIGURE 2 | Bayesian phylogeny for Antarctic Schistidium species constructed using the ITS marker. Posterior probabilities and maximum likelihood bootstrap values

are shown below each node. The scale bar represents the mean number of nucleotide substitutions per site. Currently recognized endemic species are marked with a

star. ABGD species clusters with different Pmax-values are shown on the right. a = these specimens likely represent S. cupulare (see notes in S1 Table). b = these

specimens originally identified as S. apocarpum likely represent a different species (see discussion and notes in S1 Table). Different haplotypes (1–5) within

S. antarctici as shown in Figure 3 are provided next to the relevant samples.

DISCUSSION

Phylogenetic Analyses and Species
Delimitations
This is the first molecular phylogenetic study of Antarctic species

of Schistidium, the most speciose moss genus in the Antarctic.

Our data confirm the validity of at least seven of the 13 currently

recognized Antarctic species (S. rivulare, S. andinum, S. falcatum,
S. amblyophyllum and the endemic species; S. antarctici, S. lewis-
smithii, and S. leptoneurum). In general, the molecular data
thus seem to support the morphological species concept for
Antarctic Schistidium species. However, further morphological
and molecular studies will be required to assess the status of
S. urnulaceum, S. cupulare, and the four remaining Antarctic
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FIGURE 3 | Map showing locations of different haplotypes within Schistidium antarctici in the Antarctic and sub-Antarctic (A) with a more detailed map of the northern

maritime Antarctic (B). The TCS haplotype network is presented in (C), including haplotype numbers (see also Figure 2) and the number of individuals per haplotype.

Section (B) also presents FST (below diagonal) and ΦST (above diagonal) of regions of the maritime Antarctic (WAP: West Antarctic Peninsula, including the South

Shetland Islands; NEAP: north-east Antarctic Peninsula; SOI: South Orkney Islands). P-values are represented by * for P < 0.05, and ** for P < 0.01. Specimens from

overlapping locations are disentangled in (A,B) for better visibility of their haplotypes, and have lines pointing at their original location.

Schistidium species not included in this study through lack
of available material (S. deceptionense, S. halinae, S. steerei,
S. praemorsum).

Our initial results suggest that the endemic S. urnulaceum
may not be a distinct species, but possibly represents a
phenotypic variant of S. antarctici. However, mis-identifications
concerning S. antarctici and S. urnulaceum have been reported
previously (Ochyra et al., 2008), and we found that the
sequenced specimen was misidentified as well, and matches the
morphological characters of S. antarctici. Schistidium cupulare
has long remained a poorly known species (Ochyra et al., 2008). It
is primarily distinguished by its leaf areolation, but considerable
variation in the basal laminal cells was observed even in the
three putative S. cupulare specimens included here. Since all
three were originally identified as S. antarctici, the delimitation
of S. antarctici and S. cupulare needs further study. Schistidium
apocarpum is generally regarded as a problematic taxon due to
its phenotypic variability (Ochyra et al., 2008), which has led
to the grouping together (e.g., Bremer, 1980a,b) and subsequent

differentiation (e.g., Blom, 1996) of various species within an
“S. apocarpum complex” [see (Blom, 1996; Ochyra et al., 2008)].
While this complex has been well-studied in Scandinavia (Blom,
1996), its taxonomy in the Southern Hemisphere is still in need
of revision. Consequently, the identity of the three samples
originally identified as S. apocarpum in the present study remains
ambiguous, although the BLAST indicate that they most likely
do not belong to S. apocarpum s.str. nor to other Northern
Hemisphere species of the S. apocarpum complex (sensu Blom,
1996).

Molecular relationships of the Antarctic Schistidium species
partly agree with the intrageneric classification adopted in
Ochyra et al. (2008). The Antarctic species of subg. Canalicularia,
S. falcatum and S. lewis-smithii, form a well-supported clade,
which is, however, nested inside subg. Apocarpa, to which all
other Antarctic species belong. Within the latter subgenus, the
species of sect. Conferta (except S. antarctici), sect. Rivularia
(S. rivulare), and sect. Apocarpiformia form well-supported
clades, too. Schistidium antarcticimay be distinguished at section
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FIGURE 4 | Map and haplotype network of haplotypes within Schistidium rivulare. Map showing locations of different haplotypes within Schistidium rivulare. A TCS

haplotype network is provided (see box) with corresponding colors to the haplotypes in the map. A legend with the number of individuals per haplotype is provided

next to the haplotype network.

level as well, however, the low support for the clade comprising
all other included species may not exclude the possibility
of sect. Conferta being monophyletic. As acknowledged
in Ochyra et al. (2008), the intrageneric classification
of Schistidium will need refinement based on increased
taxonomic study, which is supported by the present molecular
results.

Support for Long-Term Antarctic
Persistence of Several Schistidium Species
Our data suggest the presence of several distinct and old (∼1Mya
or older) Antarctic endemic species within Schistidium (namely
S. antarctici, S. leptoneurum and S. lewis-smithii), indicating
a long (certainly well before LGM) persistence of some of
these species on the continent. Although other explanations
like periodic recolonizations cannot be ruled out completely,
the present data complement the recently-recognized and
recurring pattern of long-term (pre-LGM) Antarctic presence
across a range of terrestrial Antarctic biota, suggested from
both molecular and classical biogeographic studies of all major
extant faunal, floral and even microbial groups (Stevens and
Hogg, 2003; Convey and Stevens, 2007; Convey et al., 2008,
2009; De Wever et al., 2009; Vyverman et al., 2010; Fraser
et al., 2014; Pisa et al., 2014; Chong et al., 2015; Iakovenko
et al., 2015; Bennett et al., 2016). These findings combine to
overturn a long-held but largely untested view that all Antarctic
terrestrial life is of recent, post-LGM origin, derived from
previous glaciological reconstructions suggesting extensive ice-
sheets covered nearly all terrestrial areas and extended far onto
the Antarctic continental shelf throughout the LGM and previous
glaciations. In part, this divergence of interpretation across
different disciplines has been driven by a lack of spatial resolution
in earlier glaciological models. However, recent modeling studies
reconstructing Antarctica’s past climate suggest considerably

greater dynamism in Antarctica’s ice sheets throughout the
Pliocene and Quaternary than previously thought (Pollard and
DeConto, 2009; DeConto and Pollard, 2016). Although at present
precise locations of glacial refugia, where terrestrial life may
have persisted in situ, remain unknown (Pugh and Convey,
2008; Convey et al., 2009), the biological evidence requiring
such refugia, and at various regional scales, is increasingly
clear (Convey et al., 2008). Our results here may suggest
the presence of a refugial area in the northern Antarctic
Peninsula/South Shetland Islands region of Maritime Antarctic,
where the diversity of S. antarctici is highest. A separate study
of the Antarctic Peninsula/South Shetland Islands endemic fly,
Belgica antarctica Jacobs, 1900, implies a similar conclusion
(Allegrucci et al., 2006). Most recently, Carapelli et al. (2017)
report evidence in three springtail (Collembola) species native
to the same region of persistence in situ on parts of the South
Shetland Islands dating from at least the last interglacial (c.
150,000 years, two species), or the previous (c. 500,000 years, one
species). The age (>1Mya) of the endemicmosses S. leptoneurum
and S. lewis-smithii documented here, whose geographic range
is currently restricted to the South Shetland Islands, provides
further support for a regional refugial area to have been present
in this archipelago.

Our results suggest the ancestors of the sub-Antarctic and

Antarctic populations of S. rivulare dispersed from the Northern

Hemisphere to the sub-Antarctic and Antarctic. As Northern and
Southern Hemisphere populations were estimated to have been

separated for∼0.63 (HPD95: 1.16–0.22) Mya, sub-Antarctic and
Antarctic populations may have been present at their current
locations prior to the Last GlacialMaximum (LGM;∼20–18 kya).
However, further geographic sampling is required to identify
the source location from which the current sub-Antarctic and
Antarctic populations are derived, as well as the age of the
Antarctic populations.
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FIGURE 5 | Maximum clade credibility tree presenting median divergence time estimates between and within different Antarctic Schistidium species as estimated

from ITS sequences. Information on global surface temperature estimates reproduced from Hansen et al. (2013) is provided below (blue lines represent global surface

temperature variations, and the black line represents a 500 kyr smoothed resolution). Timescales for different rates are shown and are based on previously calculated

nuclear substitution rate in (a) Polytrichaceae mosses, and (b) in angiosperms (see Methods). The phylogeny and global surface temperature are based on rate (a).

Posterior probability (PP) is shown below nodes, with PP < 0.5 indicated as *. Node bars represent age estimate 95% height posterior distributions.

Diversity Patterns Within Schistidium

antarctici and Conservation Implications
Our data provide novel and valuable indications of where
and when the Antarctic endemic species S. antarctici may
have persisted through repeated glacial periods, and of patterns
of dispersal and gene flow across the continent. We found
significant genetic differentiation in the northern Maritime
Antarctic and sub-Antarctic, dividing the regions east of the
mountainous spine of the Antarctic Peninsula (eastern Antarctic
Peninsula), the South Orkney Islands, and South Georgia from
regions on the west of the Peninsula and the rest of the
continent (Figure 3B). This suggests that connectivity between
the Antarctic Peninsula and Wilkes Land might be stronger
than between the two regions on either side of the spine
of the Antarctic Peninsula. It also indicates that S. antarctici
populations in the majority of the sectors of the Antarctic
continent are genetically very similar and appear to have

been derived from only one haplotype (haplotype 2). The
highest genetic variation was found in the northern Antarctic
Peninsula region, suggesting as noted above that this is likely a
region where the species survived the LGM in situ. Haplotypes
1–5 (see Figures 2–3,5) were estimated to have diverged
around 1.18 (HPD95: 2.69–0.43) Mya (Figure 5), revealing
S. antarctici to be an enduring and old species on the continent,
originating and persisting there on at least a million-year
timescale.

Implications of a pattern of distinct genotypes east of the

mountainous spine of the Antarctic Peninsula, are also seen
in other taxa including rotifers (Iakovenko et al., 2015) and

diatoms (Kociolek et al., 2017), possibly providing further

evidence supporting distinct bioregions on either side. The

north-east and north-west Antarctic Peninsula have also been

differentiated as distinct Antarctic Conservation Biogeographic

Regions (ACBRs), based on multivariate analyses of regional
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biodiversity patterns (Terauds et al., 2012; Terauds and Lee,
2016). However, at present, the north-east Antarctic Peninsula
(ACBR1) is much less well protected in terms of conservation
measures than the north-west Antarctic Peninsula (ACBR3).
While the latter has 21 Antarctic Specially Protected Areas
(ASPAs), covering 1.99% of the region, the eastern side has
just one ASPA, covering just 0.03%. Furthermore, no ASPAs
in the north-east Antarctic Peninsula have been declared for
the purposes of protecting biodiversity (compared to 17 in
the north-west Antarctic Peninsula), even though it is the
second most visited ACBR by tourists in the Antarctic (Terauds
and Lee, 2016). Such observations highlight the conclusion
of Hughes et al. (2016) about the overall lack of protection
afforded to vegetation in the ASPA system. Given the growing
evidence that this area supports unique lineages of multiple
terrestrial species we suggest that priority is required toward area
protection within the north-east Antarctic Peninsula (ACBR1)
region.
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