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Biotelemetry is increasingly used to study animal movement at high spatial and

temporal resolution and guide conservation and resource management. Yet, limited

sample sizes and variation in space and habitat use across regions and life stages

may compromise robustness of behavioral analyses and subsequent conservation

plans. Here, we assessed variation in (i) home range sizes, (ii) home range selection,

and (iii) fine-scale resource selection of white storks across breeding status and

regions and test model transferability. Three study areas were chosen within the

Central German breeding grounds ranging from agricultural to fluvial and marshland.

We monitored GPS-locations of 62 adult white storks equipped with solar-charged

GPS/3D-acceleration (ACC) transmitters in 2013–2014. Home range sizes were

estimated using minimum convex polygons. Generalized linear mixed models were

used to assess home range selection and fine-scale resource selection by relating the

home ranges and foraging sites to Corine habitat variables and normalized difference

vegetation index in a presence/pseudo-absence design. We found strong variation

in home range sizes across breeding stages with significantly larger home ranges in

non-breeding compared to breeding white storks, but no variation between regions.

Home range selection models had high explanatory power and well predicted overall

density of Central German white stork breeding pairs. Also, they showed good

transferability across regions and breeding status although variable importance varied

considerably. Fine-scale resource selection models showed low explanatory power.

Resource preferences differed both across breeding status and across regions, and

model transferability was poor. Our results indicate that habitat selection of wild

animals may vary considerably within and between populations, and is highly scale

dependent. Thereby, home range scale analyses show higher robustness whereas

fine-scale resource selection is not easily predictable and not transferable across
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life stages and regions. Such variation may compromise management decisions when

based on data of limited sample size or limited regional coverage. We thus recommend

home range scale analyses and sampling designs that cover diverse regional landscapes

and ensure robust estimates of habitat suitability to conserve wild animal populations.

Keywords: 3D-acceleration sensor, biotelemetry, Ciconia ciconia, home range selection, resource selection

INTRODUCTION

Land use change and increasing intensity of agriculture have
decreased biodiversity worldwide (Sala et al., 2000; Green, 2005;
Morán-Ordóñez et al., 2017), resulting in degraded habitats,
displacement of species and population declines (Chamberlain
and Fuller, 2000; Flynn et al., 2009; Ripple et al., 2014). Hence,
sustainable management of cultural landscapes, restoration of
landscapes and re-wilding are important topics in conservation
(Navarro and Pereira, 2012; Fischer et al., 2014) as are conflicts
between conservation and landscape planning, for example
because of wind farming (Reid et al., 2015; Vasilakis et al., 2016).
Often, management concepts focus on umbrella species such as
the white stork that need large areas of natural habitat and whose
protection will also benefit other less iconic species (Olsson
and Rogers, 2009). In recent years, technological advances in
telemetry and GPS bio-logging devices have facilitated studying
habitat and resource use of wildlife populations at high spatial
and temporal resolution (Kays et al., 2015), and results of these
efforts can help to design informedmanagement plans for various
species (Kaczensky et al., 2008; Wilson et al., 2015; Margalida
et al., 2016).

Habitat use by animals depends on intrinsic and extrinsic
factors, and home ranges and resource selection are strongly
driven by the quality and quantity of available resources (Börger
et al., 2008; Buchmann et al., 2011). In cultural landscapes,
these typically show patchy distributions (Kramer-Schadt et al.,
2004; Niebuhr et al., 2015). Hence, home ranges may show
marked between-individual differences within species specific
characteristics and depending on resources (Bastille-Rousseau
et al., 2015; Rotics et al., 2017), density effects (Chamberlain and
Fuller, 1999; Kjellander et al., 2004; Blix et al., 2014) and the
extent of landscape alterations by humans (Gurarie et al., 2011).
Similarly, habitat or resource preferences may vary depending on
these factors (Gadenne et al., 2014).

In addition to habitat use, the behavioral and social aspects
of the animals may play an important role in shaping their home
ranges. Animalsmay show differentmovementmodes depending
on the individual life cycle stage. For example, non-breeding
birds (or floaters) have been reported to move larger distances or
show more nomadic behavior than breeding birds while utilizing
the same types of habitats (Penteriani et al., 2011; Tanferna et al.,
2013; Margalida et al., 2016). This behavioral change could be
interpreted as avoidance of competition with breeding adults
that must provide sufficient resources to their young, thereby
increasing reproductive success at the population-level and long-
term population persistence (Penteriani et al., 2011). Clearly, a
more composite understanding of such environmental, biotic

and behavioral effects on home range sizes and resource use
is required in order to guide conservation actions in the face
of ever-increasing land use changes and other human-related
environmental alterations.

Here, we analyze variation of home range sizes and habitat
use in white storks across space as well as life stages. Knowledge
about such variation and, thus, about the transferability of
habitat selection models across populations is important for
individual and population-based analyses that may serve as basis
for meaningful conservation management plans. Specifically, we
assessed variation in (i) home range sizes, in (ii) home range
selection, and in (iii) within-home range resource selection
depending on breeding status and across regions. To this end,
we quantified home range sizes and resource selection in white
storks (Ciconia ciconia) from GPS telemetry and analyzed these
with respect to breeding status and for three different study areas
along a land use gradient. Habitat selection was evaluated at
multiple scales (McGarigal et al., 2016), and we assessed variation
in habitat configuration both at the level of bird home range
and within the home range by studying fine-scale resource use
(Tanferna et al., 2013; Kaczensky et al., 2014). For the latter,
we ensured that fine-scale movements are indicative of resource
utilization and not confounded with other activities (Kie et al.,
2010) by filtering the GPS data to feeding events using ACC-
derived behavioral classification (Nathan et al., 2012; Resheff
et al., 2014; Rotics et al., 2016).

White storks are large, iconic birds of general conservation
concern in Europe that often serve as umbrella species for
restoring wetlands. They are long-distance soaring migrants that
usually breed in Central and East Europe and spend the winter
in Africa. During the nestling-rearing phase in May-July, they
exhibit typical central-place foraging within ca. 5 km radius from
the nest (Zurell et al., 2015). White storks are opportunistic
foragers feeding on insects, earthworms, amphibians, and small
rodents (Alonso et al., 1991; Antczak et al., 2002). Although
they preferably feed in wet open landscapes with low vegetation,
they increasingly rely on agricultural landscapes (Tryjanowski
et al., 2009) such as agricultural meadows (Johst et al., 2001)
where monocultures and herbicide use have a negative effect on
food resources (Kosicki, 2010). We chose three different sites
along a land use gradient ranging from agriculturally dominated
to fluvial and marshland landscapes with increasing amounts
of pastures. We hypothesize variation in white stork space and
resource use depending (i) on breeding status as has been shown
in black kites (Tanferna et al., 2013) and (ii) on region because
of regional differences in resource availability and distribution,
for example due to different proportions of vertebrate and
invertebrate prey.
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MATERIALS AND METHODS

Study Area and Data
The study sites are situated in the Central German breeding
grounds in the vicinity of Loburg (52.118◦ N, 12.087◦ E), Beuster
(52.939◦ N, 11.787◦ E), and the Drömling Nature Park (52.489◦

N, 11.022◦ E; Supplementary Figure S1). While all sites show a
large amount of arable land (47–56%), they exhibit a land use
gradient from low amounts of pastures in Loburg (6%) to high
amounts in the fluvial area of Beuster (25%) and in themarshland
landscape of Dromling (31%). At the same time, the amount of
forested area decreases from Loburg (27%) to Beuster (15%) and
Dromling (7%; Supplementary Figure S2).

From 2011 to 2014, we fitted solar-charged GPS/ACC
transmitters (E-Obs GmbH;Munich, Germany) to 62 adult white
storks in Germany. Transmitter plus mounting harness weight
was about 2% of the average stork weight (Rotics et al., 2016),
which is below the recommended threshold in wildlife tracking
(Kenward, 2000). The transmitters recorded GPS locations
(50% confidence intervals for accuracy are ±3.6m) and ground
speed between 2:00 and 20:00 GMT and 3-dimensional body
acceleration (ACC) between 3:00 and 19:00 GMT. GPS location
and speed were recorded every 5min when solar recharge was
high (ca. 95% of the time) and every 20min otherwise. Body
acceleration was recorded every 5min. In our analyses, we
restricted the tracking data to the early nestling-rearing phase
of the first 30 days after hatching if hatching date was known
or to the month of June when all nestlings are known to hatch.
Usually, white storks care for their brood for 70 days (Van den
Bossche et al., 2002; Tryjanowski et al., 2006). If the brood is
lost, the pair typically stays together or even attempts another
brood if early enough in the season (personal observation, M.
Kaatz). In later stages of nestling-rearing, the adults leave the
nests for longer time periods and distances. We thus chose
to concentrate on the early nestling-rearing phase in order to
capture distinct behavioral differences between breeding and
non-breeding adults. We further restricted the tracking data to
the 2013 and 2014 breeding seasons because many birds were
tagged late in 2011–2012 and data were not available for the entire
breeding season for these years. Overall, we analyzed tracking
data for 31 individuals in 2013 and 34 individuals in 2014, of
which 24 individuals were tracked in both years (Table 1).

For the resource selection analyses, we filtered the GPS data
to foraging occasions using ACC-based behavioral classifiers
in order to exclude potential biases that may arise from
including GPS fixes corresponding to flight or rest. We used
a supervised machine-learning algorithm (radial-basis-function
kernel support vector machine) to classify the ACC records to
behavioral modes (Nathan et al., 2012; Resheff et al., 2014). The

model was trained on 3,815 ground-truthed ACC records of
known behaviors and classified seven behavioral modes: active
flight (flapping), passive flight (soaring or gliding), walking,
pecking, standing, sitting, and preening, with an overall accuracy
of 92% (Rotics et al., 2016). These behavioral classes were used
to limit the analyzed GPS locations to foraging activities only
(walking and pecking).

Habitat information was extracted from the Corine Land
Cover 2006 raster map at a resolution of 100m (https://www.eea.
europa.eu/ds_resolveuid/ba3deb09ce0e4151a02a33dcd585aa04).
Relevant classes occurring in the study area are urban areas
(class 2), non-irrigated arable land (12), pastures (18) and
mosaics (open semi-natural landscapes; 21), broad-leaved
(23), coniferous (24) and mixed forests (25), woodland-shrub
associations (29), and water bodies (40) (Figure 1). Additionally,
we obtained MOD13Q1 Normalized Difference Vegetation
Index (NDVI) data at 16 day and 250m resolution for the
considered early-nestling periods 2013 and 2014 (Didan, 2015).
Overall, we obtained six NDVI tiles for 2013 and seven NDVI
tiles for 2014 with useful to good reliability in 84–100% of the
pixels (mean ± sd 98 ± 4%). NDVI ranged 0–0.9 in the study
region (Supplementary Figure S1). For home range selection
and the resource selection analyses, Corine and NDVI data were
aggregated at the home range scale or used as point location,
which we explain below. Furthermore, in the home range
selection analyses, NDVI was averaged over all 16-day layers
that matched the considered time span for each stork (first 30
days after hatching). In the resource selection analyses, each
GPS location was matched to the respective 16-day NDVI layer.
At both scales (home range scale and point location), bivariate
Spearman correlations between Corine and NDVI data were
|r| < 0.7, which is generally regarded as threshold under which
collinearity is unproblematic (Dormann et al., 2013).

Home Range Size and Selection
Home range sizes were estimated using minimum convex
polygons (MCP). We used different quantiles for estimating
home ranges: 50% representing core areas, 95% as the most
commonly applied conservative estimate excluding extreme
outliers, and 99.9% including (almost) all points.MCPs constitute
very simple home range estimators. However, we judge these as
purposeful for subsequent analyses and, also, although previous
comparisons showed significant differences between home range
estimators, all tested estimators based on GPS data showed
excellent performance in terms of Area under the ROC curve
(AUC) with values above 0.9 in all cases (Walter et al., 2015). We
evaluated differences in home range size depending on breeding
status, location, sex, and year using ANOVA.

TABLE 1 | Number of individuals in observation years.

Year n Breeding Non-breeding Brood-loss Female Male Sex unknown Beuster Drömling Loburg

2013 31 19 3 9 14 (9) 15 (8) 2 (2) 11 (9) 12 (6) 8 (4)

2014 34 25 4 5 12 (10) 22 (15) – 9 (8) 15 (9) 10 (8)

For Sex and Location, we report total numbers, and breeding numbers in brackets.
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FIGURE 1 | Home ranges of breeding and non-breeding (including brood loss) white storks in years 2013 (blue) and 2014 (orange). Presented are the 95% minimum

convex polygons. Gray shading indicates Corine land cover types from 2006; for a colored version of land cover map See Supplementary Figure S1.

Home range selection models were used to assess whether
the habitat composition within the 95% MCPs were different
from random expectation. For this, we compared observed home
ranges against habitat compositions of pseudo home ranges of the
same shape to control for home range size. The data thus follow
a presence-absence design (occupied home range vs. pseudo
home range). For each observed home range, one pseudo home
range was simulated by randomly shifting the center coordinates
of each home range within the study area extent. Then, we
calculated the percentage cover of each land cover class as well as
the mean NDVI within all home ranges and pseudo home ranges
to characterize home range composition. We used generalized
linear mixed models to relate home range selection to habitat
composition with occupied home range vs. pseudo home range
as response variable, proportional land cover, and mean NDVI
as predictor variables, and year and animal as random factors.
However, as the random effects did not improve models in
terms of AIC over simpler models, these were discarded and we
subsequently used simple generalized linear models (Zuur et al.,
2009). Our aim was to compare whether home range selection
varied across regions and across life stages, and we thus estimated
separate GLMs for each region and breeding status. However,
this limits the available sample sizes substantially (Table 1). We
thus adapted a recently proposed framework based on ensembles
of small models (Lomba et al., 2010; Breiner et al., 2015). This
involved fitting a larger number of bivariate models with only
two predictors at a time, and averaging them in an ensemble
prediction using weights based onmodels performances.We thus

estimated all combinations of bivariate generalized linear models
(GLMs) with binomial error structure with occupied home range
vs. pseudo home range as response variable, and proportional
land cover and mean NDVI as predictor variables. For NDVI,
we included both the linear and quadratic term. The ensembles
of bivariate models were averaged based on Akaike information
criterion. We tested prediction accuracy of the models by
estimating the area under the ROC curve (AUC), which ranges
between 0 and 1, with 1 indicating perfect discrimination, 0.5
indicating predictions no better than chance, and values above
0.7 indicating useful predictions (Hosmer and Lemeshow, 2000).
Model performance was evaluated internally by predicting to the
training data set and cross-prediction accuracy was evaluated by
predicting to a different data set (or subset). We were mainly
interested how models from different regions and life stages were
able to predict suitability for establishing breeding home ranges.
We thus cross-predicted models calibrated on breeding stork
home ranges from different regions (incl. the entire study area)
to all other regions. Also, we cross-predicted models calibrated
on non-breeding stork home ranges from different regions to
breeding stork home ranges of different regions.

Within-Home Range Resource Selection
Resource selection was evaluated for foraging occasions only, and
GPS data were filtered using ACC-based behavioral classification.
To reduce temporal autocorrelation, we only included data
points that were recorded at least 30min apart. In breeding
white storks, foraging trips last up to 2 h (Johst et al., 2001)
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such that our temporal resolution corresponds to a maximum
of 4 data points per foraging trip. We tested three different
buffer radii (1, 2.5, and 5 km) for deriving pseudo-absences.
Then, for each presence point we randomly sampled 3 pseudo-
absences from within the buffer. With gliding velocities of 0.5–1
km/min and additional time costs for circling in thermals and
orientation (Johst et al., 2001), 5 km approximately correspond to
the maximum (return) flight distance within 30min while most
storks exhibit much smaller flight distances during the nestling-
rearing phase (Zurell et al., 2015). Then, for each presence and
pseudo-absence point, we extracted the land cover and NDVI
value at this point location and time. We used GLMMs with
binomial error structure to infer resource selection from use-
availability data with presence vs. pseudo-absence as response
variable, animal, year, and region as random factors, and the
different land cover classes and NDVI as predictor variables. For
NDVI, we included both the linear and quadratic term. We also
estimated separate GLMMs for each region with the difference
that only animal and year were considered as random factors.
Inspection of model residuals by Moran’s I correlograms showed
no significant spatial autocorrelation; thus, we did not investigate
this further. Analogously to the home range selection analyses, we
tested cross-prediction accuracy of the models in terms of AUC.

All analyses were carried out with R version 3.2.3 (R Core
Team, 2015) using the packages adehabitatHR (Calenge, 2006),
MuMIn (Barton, 2016), lme4 (Bates et al., 2015), and ncf
(Bjornstad, 2016).

RESULTS

Home Range Sizes
Home range sizes differed considerably between individuals
with mean (± SD) size of 78.3 ± 219.9 km2 (MCP 95%;
Table 2). We could not find any significant differences
in home range size between different locations, sexes or
years, whereas we found significant differences in home
range size depending on breeding status (Supplementary
Table S1). Effects of non-breeding white storks and stork
having lost their brood were not consistent between different
home range quantiles and we subsequently pooled these
groups into one group of non-breeding storks. Overall,
the home ranges of non-breeding white storks were
significantly larger than those of breeding storks (Table 2,
Figure 1).

Home Range Selection Analyses
Home range selection in white storks was significantly different
from random, and the presence of occupied home ranges
was well explained by proportional land cover and NDVI
with explained variances of 41–68% (Table 3). Thereby, the
home range selection model calibrated on non-breeding storks
in Beuster needs to be judged with caution as the low
sample size (only three non-breeding storks) led to inflated
parameter estimates. According to our models, breeding white
storks select home ranges that contain a mix of semi-natural
habitats with significant preference for non-irrigated arable
land, pastures and semi-natural open landscape mosaics, while

forests tend to be avoided (Table 3). Variable importance
differed between breeding and non-breeding storks and across
regions (Figures 2A,B). In breeding storks, pastures were most
important in all regions, while the importance of other variables
varied more. Pastures also showed up as important variable
in non-breeding storks, but variable importance across regions
was much more variable, and avoidance of forests was overall
more important than in breeding storks. Despite differences
in variable coefficients and importance, models of breeding
white storks cross-predicted well to other regions with AUC
scores above 0.7 (Figure 2C). By contrast, models calibrated
on non-breeding storks were less successful at predicting
breeding home range selection. Especially, models trained
in the Loburg region were performing worse than random
(Figure 2D). Using the model-averaged GLMs calibrated on
breeding home ranges from the entire study area, we predicted
home range suitability (the probability of establishing a home
range based on the habitat compositions in a given patch or
landscape) across the study region and compared this against
observed white stork breeding pair density per municipal
district. We found a significant Pearson correlation of 0.62
indicating that our home range selection model well explained
observed white stork density in Central Germany (t = 4.12,
p < 0.001) (Supplementary Table S2, Supplementary Figure
S3).

Resource Selection Analyses
The results of the fine-scale resource selection model based
only on foraging events were largely consistent with the coarse-
scale home range configuration analyses. Tracked white storks
chose foraging sites that were significantly different from
random, although the explained variance was comparably low,
ranging from 3 to 14% (Table 4, Supplementary Table S3). We
found important differences in resource selection depending on
breeding status, and to a lesser extent depending on region.
While breeding white storks showed general preference for
non-forested landscapes (urban, arable, pasture, and semi-
natural mosaic landscapes), non-breeding storks showed no
preference for arable land and tended to avoidmosaic landscapes.
Preference and avoidance of forests further differed between
regions. While breeding storks of Drömling and Loburg
generally avoided forests, storks of Beuster also foraged in
(or near) broad-leaved and mixed forests. These differences
in model coefficients led to differences in predicted resource

TABLE 2 | Mean home range sizes (± standard error) estimated using minimum

convex polygons (MCP) depending on breeding status.

Home range sizes (km2)

Breeding Non-breeding p

MCP 50% 0.84 ± 14.4 52.4 ± 39.1 0.05

MCP 95% 21.4 ± 29.0 205.8 ± 80.5 <0.001

MCP 99.9% 64.7 ± 34.6 386.4 ± 95.2 <0.001

Differences between breeding and non-breeding home range sizes were evaluated using

ANOVAs with the p-values indicating significance levels.

Frontiers in Ecology and Evolution | www.frontiersin.org 5 June 2018 | Volume 6 | Article 79

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Zurell et al. Transferability of Habitat Selection Models

FIGURE 2 | Variable importance (A,B) and cross-prediction results (C,D) of home range selection models for breeding (A,C) and non-breeding white storks (B,D). To

reduce bias from small sample sizes, we used ensembles of small bivariate generalized linear models fitted with binomial error structure (1 for occupied home range, 0

for random home range). Models were fitted for the entire study area (All = entire region) and for single regions (Dr, Drömling; Be, Beuster; Lo, Loburg). (A,B) Variable

importance for each region and breeding status is given by the sum of Akaike weights over all bivariate models including the respective variable. (C,D) We assessed

the ability of the ensembles to predict breeding home ranges in the entire area or single regions by calculating the area under ROC curve (AUC), which ranges

between 0 and 1, with 1 indicating perfect discrimination and 0.5 predictions no better than chance. AUC scores for predicting all breeding storks are highlighted in

bold. White boxes indicate internal predictions, meaning that training and prediction data were identical.

suitability (Figure 3). Models calibrated on breeding stork
data from Dromling and Loburg tended to underpredict
resource suitability (relative to the model calibrated on all
available breeding stork data), while the model calibrated on
Beuster breeding stork data overpredicted resource suitability
(Figure 3B). Models calibrated on non-breeding storks generally
underpredicted resource suitability (relative to the model
calibrated on all available breeding stork data; Figure 3C).
However, discrimination ability of the fine-scale resource
selection models was generally very poor. For models calibrated
on breeding stork data, AUC ranged from 0.62 to 0.67
for internal validation and from 0.56 to 0.66 for cross-
predictions between regional data sets (Figure 3D). When cross-
predicting from non-breeding to breeding storks, predictive
performance was even lower and not much better than random
(Figure 3E).

DISCUSSION

Building on a large and highly detailed set of spatially
and temporally resolved movement and behavioral data of
white storks in the Central German breeding grounds, we
investigated variation in home range sizes andmulti-scale habitat
selection between and within (sub-) populations. Our results
corroborated earlier findings that breeding status considerably
affects space use and habitat selection in birds (Tanferna et al.,
2013). Additionally, we were able to show that white storks
may exhibit regional differences in home range and resource
selection. These results call for caution when deriving large-
scale management strategies from limited sample sizes or from
a limited number of (sub-)populations or regions because
these may not capture the full spectrum of habitat selection
behaviors.
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TABLE 3 | Home range selection models for breeding and non-breeding white storks.

Breeding Non-breeding

Predictors All Loburg Beuster Dromling All Loburg Beuster Dromling

Urban (Corine 2) −0.45 −0.90 −2.08 −1.35 0.00 1.74 −54.28 −0.09

Arable (Corine 12) 1.51* 0.78 5.79 1.37 1.36‘ 3.62 10.47 0.74

Pastures (Corine 18) 3.03** 3.53‘ 4.74 3.72* 2.99** −19.18 106.24 3.65‘

Mosaics (Corine 21) −0.05 −1.16 1.31 −1.62 0.43 0.61 292.12 1.32

Broadleaf forest (Corine 23) −0.62 −2.73 −1.04 0.55 −5.80* −6.36 −1727.94 −6.94‘

Coniferous forest (Corine 24) −1.13* −0.66 −4.27 −0.86 −0.87 −7.68 −217.74 −0.04

Mixed forest (Corine 25) 0.29 0.13 0.53 −0.18 −0.04 2.48 −236.56 −1.14

NDVI −0.38 60.66 0.45 −0.57 −0.68 −3.26 −757.35 0.10

(NDVI)2 −0.42 −62.01 0.45 −0.58 −0.72 −2.82 −664.46 −2.39

Explained deviance 50.83% 46.29% 67.46% 66.20% 41.18% 62.76% 59.87% 54.88%

The table provides the coefficients for models trained in the entire study area or in single regions, and for breeding vs. non-breeding individuals. To reduce bias from small sample

sizes, we used ensembles of small bivariate generalized linear models fitted with binomial error structure (1 for occupied home range, 0 for random home range), and the coefficients

thus represent the model-averaged coefficients over all bivariate models weighted by their Akaike weights. All variables were centered and standardized prior to modeling. P-values:

**p < 0.01, *p < 0.05, ‘p < 0.1.

TABLE 4 | Estimates of generalized linear mixed models (GLMMs) quantifying fine-scale resource selection of breeding and non-breeding white storks within 1 km radii for

different regions.

Breeding Non-breeding

Predictors All Loburg Beuster Dromling All Loburg Beuster Dromling

(Intercept) −1.15*** −1.11*** −1.15*** −1.20*** −1.27*** −1.06*** −1.71*** −1.29***

Urban (Corine 2) 0.46*** 0.19*** 0.58*** 0.62*** 0.24*** 0.10*** 0.53*** 0.36***

Arable (Corine 12) 0.49*** 0.14* 0.64*** 0.75*** 0.08‘ −0.13* −0.18 0.43***

Pastures (Corine 18) 0.78*** 0.67*** 0.73*** 1.05*** 0.52*** 0.51*** 0.39** 0.79***

Mosaics (Corine 21) 0.31*** −0.03 0.35*** 0.38*** −0.25*** −0.20* −0.54*** −0.06

Broadleaved forest (Corine 23) 0.10*** −0.14* 0.22*** 0.04 −0.12*** −0.10** −0.08 −0.09**

Coniferous forest (Corine 24) −0.08*** −0.15*** 0.04 −0.03 −0.25*** −0.35*** −1.88 −0.13**

NDVI 1.13*** 1.43*** 1.35*** 0.34* 0.35*** 0.63** 0.65** −0.25*

(NDVI)2 −1.04*** −1.20*** −1.38*** −0.34** −0.26** −0.32‘ −0.59** 0.19

Explained deviance 3.28% 5.78% 4.01% 3.17% 5.08% 8.76% 10.66% 4.10%

GLMMs were fit using binomial error structure and year and animal ID as random factors. GPS data were filtered to include only foraging activities (ACC categories pecking and walking).

All variables were centered and standardized prior to modeling. P-values: ***p < 0.001, **p < 0.01, *p < 0.05, ‘p < 0.1.

We assessed within and between-population variation in
three main features of space and habitat use in birds, namely
home range size, home range selection, and fine-scale resource
selection. First, we expected home range size to differ with
breeding status and across regions. In our study region, breeding
and non-breeding individuals (floaters) co-occur, and non-
breeding individuals can be expected to be of similar age as
breeding individuals as white storks typically return to the
breeding grounds only after reaching maturity. Floaters are thus
individuals that did not attempt to breed, for example because
of territory competition, late arrival, no arrival of the partner, or
individuals that have lost their brood during the breeding season,
for example because of adverse weather or predation. Confirming
previous findings from other bird species, home range sizes
were significantly larger for non-breeding compared to breeding
individuals (Tanferna et al., 2013; Reid et al., 2015; Margalida
et al., 2016). These differences were consistent irrespective of
whether the individuals did not attempt to breed at all or lost their

eggs or brood during the breeding season. By contrast, we did
not find any significant differences in home range sizes between
regions. Hence, white storks seem to be very conservative in
their overall space use, which is probably related to energetic and
behavioral constraints. When caring for a brood, white storks
return to their nest to feed (and shelter) at least every 2 h, which
ultimately limits their activity radius (Johst et al., 2001; Zurell
et al., 2015). There seem to be differences in home range sizes
of non-breeding storks between regions (Figure 1), but we could
not evaluate this statistically because of low sample size.

Second, we assessed habitat selection at the home range scale
and compared home range selection across breeding status and
across regions. Overall, our home range selection models showed
high predictive performance and well predicted overall density of
white stork breeding pairs in the study area. Themodels indicated
differences in variable importance for breeding and non-breeding
individuals, with non-breeding storks showing less preference
for arable land and a stronger avoidance of forested areas.
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FIGURE 3 | Predicted resource suitability and cross-prediction results from fine-scale resource selection analysis. GLMMs were fitted using binomial error structure

with presences and pseudo-absences (within 1 km buffers around presence points) as response variable, year, and animal as random factors, and Corine land cover

variables and NDVI as predictor variables. GPS data were filtered to include only foraging activities (ACC categories pecking and walking). (A) shows the predicted

resource suitability from a GLMM calibrated on breeding stork data from entire study region. (B,C) show overprediction (positive) and underprediction (negative) of

predicted resource suitability (relative to a) when models were calibrated on data from (B) breeding white storks and (C) non-breeding white storks in different regions

(All = entire region, Dr, Drömling; Be, Beuster; Lo, Loburg). (D,E) show the cross-prediction results in terms of AUC. AUC scores for predicting all breeding storks are

highlighted in bold. White boxes indicate internal predictions, meaning that training and prediction data were identical.

Most models cross-predicted well, meaning that region-specific
models and also models calibrated on non-breeding storks were
well able to predict home range selection of breeding storks
over the entire study area. The exception was the home range
selection model calibrated on non-breeding storks in the Loburg
region that showed very poor cross-prediction performance.
These results partially corroborate our hypotheses that home
range selection varies across regions and across life stages.
Because of the opportunistic foraging behavior of white storks,
we expected regional differences in white stork home range
selection. From previous analyses on black kites (Tanferna et al.,
2013), we expected home range selection to differ between non-
breeding and breeding birds because floaters typically show a
more nomadic behavior where normal home range activities of
foraging, mating and caring for young are (partially) replaced
by more explorative and sporadic activities (Burt, 1943; Kie
et al., 2010). Overall, our results indicate that at the home range
scale, breeding white storks are largely conservative in their
habitat selection. Yet, home range selection of non-breeding
storks may differ more strongly from that of breeding storks and
also between regions. From the current results, we cannot infer

the reasons why especially the non-breeding storks of Loburg
behaved differently. Although wild storks are not fed at or near
the Loburg white stork sanctuary, we cannot completely rule
out any anthropogenic effects. Nevertheless, our results indicate
that home range selection is sensitive to life stage and regional
differences.

Lastly, we assessed variation in fine-scale resource selection
during foraging within and between (sub-)populations. We
found support for both our hypotheses that resource (or foraging
site) selection differs according to breeding status and across
regions. Yet, similar to the analyses of home range selection,
differences between breeding and non-breeding storks were
slightly more pronounced than differences between regions.
Generally, non-breeding storks tended to be more selective for
a few habitat types. This could mirror the high pressure of
breeding white storks to gather food within limited time and
movement distance (Johst et al., 2001) while non-breeding white
storks are relieved from such constraints. Overall, however, all
resource-selection models showed poor predictive performance
and poor cross-prediction. Thus, fine-scale resource selection
seems rather variable and much less conservative than habitat
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selection at the home range scale. Foraging site selection
may depend on several other factors, for example individual
behavior and individual experience, weather conditions, biotic
factors such as the presence of competitors or predators,
anthropogenic disturbances. Beside these factors, foraging site
selection also seems to be random to some extent, corroborating
the opportunistic foraging behavior of white storks.

Our results show that white storks are highly conservative
in their overall space use and, to some extent, also in their
home range selection behavior. By contrast, fine-scale resource
selection is hardly predictable and also not transferable across
breeding status and regions. Thus, habitat selection may vary
within and between populations, and the magnitude of this
variation is highly scale dependent, which needs to be taken into
account when using habitat selection studies to inform landscape
planning and conservation management (Reid et al., 2015;
Margalida et al., 2016; Vasilakis et al., 2016). Highly resolved
movement data are becoming increasingly available through
advances in GPS technology and development of increasingly
smaller data loggers (Kranstauber et al., 2011; Kays et al., 2015).
These technological advances offer great opportunities to study
different aspects of animals’ life history and space use (Flack et al.,
2016; Rotics et al., 2017) and can substantially aid conservation
and management of wild populations (Wilson et al., 2015;
McGowan et al., 2017). However, studies based on biotelemetry
tags are often limited to relatively low sample size, for example
because deployment of tags is costly and individuals may be
difficult to capture. Here, we show that space use and multi-
scale habitat selection of wild animals may considerably differ
with breeding status and between regions. This calls for caution
when informing conservation actions andmanagement decisions
on data of limited sample size or regional coverage. We thus
recommend diverse sampling designs that cover both within and
between population variations, which will facilitate more robust
estimates of habitat suitability for wild animal populations.

DATA AVAILABILITY STATEMENT

The data will be archived inMovebank and will be available upon
reasonable request.

ETHICS STATEMENT

This research was carried out with approvals from (a) the
National Administrative Office of Sachsen-Anhalt, Germany,
Division of Nature Conservation, 407.3.3/255.13-2248/2, (b) the
State Office for Environment, Health and Consumer Protection
of Brandenburg, Germany, V3-2347-8-2012.

AUTHOR CONTRIBUTIONS

DZ, HvW, and FJ designed the study with the help of SR, MW,
and RN. SR, MK, and ST collected the data. SR, HG, LS, and
MS contributed to data preparation and analyses. DZ ran the
analyses, and drafted the manuscript. All authors significantly
contributed to editing and revising the manuscript.

FUNDING

We acknowledge the generous funding of DIP grants (DFG)
NA 846/1-1 and WI 3576/1-1 to RN, FJ, and MW. FJ further
acknowledges support by Deutsche Forschungsgemeinschaft in
the framework of the BioMove Research Training Group (DFG-
GRK 2118/1). We acknowledge support by the German Research
Foundation (DFG) and the Open Access Publication Fund of
Humboldt-Universität zu Berlin.

ACKNOWLEDGMENTS

The MOD13Q1 data product was retrieved from the online Data
Pool, courtesy of the NASA Land Processes Distributed Active
Archive Center (LP DAAC), USGS/Earth Resources Observation
and Science (EROS) Center, Sioux Falls, South Dakota, https://
lpdaac.usgs.gov/data_access/data_pool.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2018.00079/full#supplementary-material

REFERENCES

Alonso, J. C., Alonso, J. A., and Carrascal, L. M. (1991). Habitat selection by

foragingWhite Storks,Ciconia ciconia, during the breeding season.Can. J. Zool.

69, 1957–1962. doi: 10.1139/z91-270

Antczak, M., Konwerski, S., Grobelny, S., and Tryjanowski, P. (2002). The food

composition of immature and non-breeding white storks in Poland.Waterbirds

25, 424–428. doi: 10.1675/1524-4695(2002)025[0424:TFCOIA]2.0.CO;2

Barton, K. (2016). MuMIn: Multi-Model Inference. R Package Version 1.15.6.

Available online at: https://CRAN.R-project.org/package=MuMIn

Bastille-Rousseau, G., Potts, J. R., Schaefer, J. A., Lewis, M. A., Ellington, E. H.,

Rayl, N. D., et al. (2015). Unveiling trade-offs in resource selection of migratory

caribou using a mechanistic movement model of availability. Ecography 38,

1049–1059. doi: 10.1111/ecog.01305

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-

effects models using lme4. J. Stat. Softw. 67, 1–48. doi: 10.18637/jss.v067.i01

Bjornstad, O. N. (2016). ncf: Spatial Nonparametric Covariance Functions.

Available online at: https://CRAN.R-project.org/package=ncf

Blix, A. W., Mysterud, A., Loe, L. E., and Austrheim, G. (2014). Temporal scales

of density-dependent habitat selection in a large grazing herbivore. Oikos 123,

933–942. doi: 10.1111/oik.01069

Börger, L., Dalziel, B. D., and Fryxell, J. M. (2008). Are there general mechanisms

of animal home range behaviour? A review and prospects for future research.

Ecol. Lett. 11, 637–650. doi: 10.1111/j.1461-0248.2008.01182.x

Breiner, F. T., Guisan, A., Bergamini, A., and Nobis, M. P. (2015). Overcoming

limitations of modelling rare species by using ensembles of small

models. Methods Ecol. Evol. 6, 1210–1218. doi: 10.1111/2041-210X.

12403

Buchmann, C. M., Schurr, F. M., Nathan, R., and Jeltsch, F. (2011). An

allometric model of home range formation explains the structuring of

animal communities exploiting heterogeneous resources. Oikos 120, 106–118.

doi: 10.1111/j.1600-0706.2010.18556.x

Frontiers in Ecology and Evolution | www.frontiersin.org 9 June 2018 | Volume 6 | Article 79

https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
https://www.frontiersin.org/articles/10.3389/fevo.2018.00079/full#supplementary-material
https://doi.org/10.1139/z91-270
https://doi.org/10.1675/1524-4695(2002)025[0424:TFCOIA]2.0.CO;2
https://CRAN.R-project.org/package=MuMIn
https://doi.org/10.1111/ecog.01305
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=ncf
https://doi.org/10.1111/oik.01069
https://doi.org/10.1111/j.1461-0248.2008.01182.x
https://doi.org/10.1111/2041-210X.12403
https://doi.org/10.1111/j.1600-0706.2010.18556.x
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Zurell et al. Transferability of Habitat Selection Models

Burt,W. H. (1943). Territoriality and home range concepts as applied tomammals.

J. Mammal. 24, 346–352. doi: 10.2307/1374834

Calenge, C. (2006). The package adehabitat for the R software: tool for the

analysis of space and habitat use by animals. Ecol. Modell. 197, 1035–1035.

doi: 10.1016/j.ecolmodel.2006.03.017

Chamberlain, D. E., and Fuller, R. J. (1999). Density-dependent habitat distribution

in birds: issues of scale, habitat definition and habitat availability. J. Avian Biol.

30, 427–436. doi: 10.2307/3677015

Chamberlain, D. E., and Fuller, R. J. (2000). Local extinctions and changes in

species richness of lowland farmland birds in England and Wales in relation

to recent changes in agricultural land-use. Agric. Ecosyst. Environ. 78, 1–17.

doi: 10.1016/S0167-8809(99)00105-X

Didan, K. (2015). MOD13Q1 MODIS/Terra vegetation indices 16-day L3

global 250m SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC.

doi: 10.5067/MODIS/MOD13Q1.006

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C. M., Carl, G., Carré,

G., et al. (2013). Collinearity: a review of methods to deal with it and

a simulation study evaluating their performance. Ecography 36, 27–46.

doi: 10.1111/j.1600-0587.2012.07348.x

Fischer, J., Abson, D. J., Butsic, V., Chappell, M. J., Ekroos, J., Hanspach, J., et al.

(2014). Land sparing versus land sharing: moving forward. Conserv. Lett. 7,

149–157. doi: 10.1111/conl.12084

Flack, A., Fiedler, W., Blas, J., Pokrovsky, I., Kaatz, M., Mitropolsky, M., et al.

(2016). Costs of migratory decisions: a comparison across eight white stork

populations. Sci. Adv. 2:e1500931. doi: 10.1126/sciadv.1500931

Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Trautman

Richers, B., Lin, B. B., et al. (2009). Loss of functional diversity under

land use intensification across multiple taxa. Ecol. Lett. 12, 22–33.

doi: 10.1111/j.1461-0248.2008.01255.x

Gadenne, H., Cornulier, T., Eraud, C., Barbraud, J.-C., and Barbraud, C.

(2014). Evidence for density-dependent habitat occupancy at varying

scales in an expanding bird population. Popul. Ecol. 56, 493–506.

doi: 10.1007/s10144-014-0435-4

Green, R. E. (2005). Farming and the fate of wild nature. Science 307, 550–555.

doi: 10.1126/science.1106049

Gurarie, E., Suutarinen, J., Kojola, I., and Ovaskainen, O. (2011). Summer

movements, predation and habitat use of wolves in human modified boreal

forests. Oecologia 165, 891–903. doi: 10.1007/s00442-010-1883-y

Hosmer, D. W., and Lemeshow, S. (2000). Applied Logistic Regression. New York,

NY: John Wiley & Sons, Inc.

Johst, K., Brandl, R., and Pfeifer, R. (2001). Foraging in a patchy andlandscape

landscape: human land use and the white stork. Ecol. Appl. 11, 60–69. doi: 10.

1890/1051-0761(2001)011[0060:FIAPAD]2.0.CO;2

Kaczensky, P., Adiya, Y., von Wehrden, H., Mijiddorj, B., Walzer, C., Güthlin,

D., et al. (2014). Space and habitat use by wild Bactrian camels in

the Transaltai Gobi of southern Mongolia. Biol. Conserv. 169, 311–318.

doi: 10.1016/j.biocon.2013.11.033

Kaczensky, P., Ganbaatar, O., Wehrden, H. V., and Walzer, C. (2008). Resource

selection by sympatric wild equids in the Mongolian Gobi. J. Appl. Ecol. 45,

1762–1769. doi: 10.1111/j.1365-2664.2008.01565.x

Kays, R., Crofoot, M. C., Jetz, W., and Wikelski, M. (2015). Terrestrial

animal tracking as an eye on life and planet. Science 348: aaa2478.

doi: 10.1126/science.aaa2478

Kenward, R. (2000). A Manual for Wildlife Radio Tagging. London: Academic

Press.

Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell, M. S.,

et al. (2010). The home-range concept: are traditional estimators still relevant

with modern telemetry technology? Phil. Trans. R. Soc. B 365, 2221–2231.

doi: 10.1098/rstb.2010.0093

Kjellander, P., Hewison, A. J. M., Liberg, O., Angibault, J. M., Bideau, E.,

and Cargnelutti, B. (2004). Experimental evidence for density-dependence

of home-range size in roe deer (Capreolus capreolus L.): a comparison of

two long-term studies. Oecologia 139, 478–485. doi: 10.1007/s00442-004-

1529-z

Kosicki, J. Z. (2010). Reproductive success of the white stork Ciconia ciconia

population in intensively cultivated farmlands in Western Poland. Ardeola 57,

243–255.

Kramer-Schadt, S., Revilla, E., Wiegand, T., and Breitenmosers, U. (2004).

Fragmented landscapes, road mortality and patch connectivity: modelling

influences on the dispersal of Eurasian lynx. J. Appl. Ecol. 41, 711–723.

doi: 10.1111/j.0021-8901.2004.00933.x

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M.,

et al. (2011). The Movebank data model for animal tracking. Environ. Model.

Softw. 26, 834–835. doi: 10.1016/j.envsoft.2010.12.005

Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., et al.

(2010). Overcoming the rare species modelling paradox: a novel hierarchical

framework applied to an Iberian endemic plant. Biol. Conserv. 143, 2647–2657.

doi: 10.1016/j.biocon.2010.07.007

Margalida, A., Perez-Garcia, J. M., Afonso, I., and Moreno-Opo, R. (2016). Spatial

and temporal movements in Pyrenean bearded vultures (Gypaetus barbatus):

integrating movement ecology into conservation practice. Sci. Rep. 6:35746.

doi: 10.1038/srep35746

McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C., and Cushman, S. A. (2016).

Multi-scale habitat selection modeling: a review and outlook. Landsc. Ecol. 31,

1161–1175. doi: 10.1007/s10980-016-0374-x

McGowan, J., Beger, M., Lewison, R. L., Harcourt, R., Campbell, H., Priest,

M., et al. (2017). Integrating research using animal-borne telemetry with

the needs of conservation management. J. Appl. Ecol. 54, 423–429.

doi: 10.1111/1365-2664.12755

Morán-Ordóñez, A., Whitehead, A. L., Luck, G. W., Cook, G. D., Maggini, R.,

Fitzsimons, J. A., et al. (2017). Analysis of trade-offs between biodiversity,

carbon farming and agricultural development in northern australia

reveals the benefits of strategic planning. Conserv. Lett. 10, 94–104.

doi: 10.1111/conl.12255

Nathan, R., Spiegel, O., Fortmann-Roe, S., Harel, R., Wikelski, M., and Getz, W. M.

(2012). Using tri-axial acceleration data to identify behavioral modes of free-

ranging animals: general concepts and tools illustrated for griffon vultures. J.

Exp. Biol. 215, 986–996. doi: 10.1242/jeb.058602

Navarro, L. M., and Pereira, H. M. (2012). Rewilding abandoned landscapes in

Europe. Ecosystems 15, 900–912. doi: 10.1007/s10021-012-9558-7

Niebuhr, B. B. S., Wosniack, M. E., Santos, M. C., Raposo, E. P., Viswanathan,

G. M., da Luz, M. G. E., et al. (2015). Survival in patchy landscapes: the

interplay between dispersal, habitat loss and fragmentation. Sci. Rep. 5:11898.

doi: 10.1038/srep11898

Olsson, O., and Rogers, D. J. (2009). Predicting the distribution of a suitable

habitat for the white stork in Southern Sweden: identifying priority areas

for reintroduction and habitat restoration. Anim. Conserv. 12, 62–70.

doi: 10.1111/j.1469-1795.2008.00225.x

Penteriani, V., Ferrer, M., and Delgado, M. M. (2011). Floater strategies and

dynamics in birds, and their importance in conservation biology: towards

an understanding of nonbreeders in avian populations. Anim. Conserv. 14,

233–241. doi: 10.1111/j.1469-1795.2010.00433.x

R Core Team (2015). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing. Available online at: https://

www.R-project.org/

Reid, T., Krüger, S., Whitfield, D. P., and Amar, A. (2015). Using spatial analyses

of bearded vulture movements in southern Africa to inform wind turbine

placement. J. Appl. Ecol. 52, 881–892. doi: 10.1111/1365-2664.12468

Resheff, Y. S., Rotics, S., Harel, R., Spiegel, O., andNathan, R. (2014). AcceleRater: a

web application for supervised learning of behavioral modes from acceleration

measurements.Movement Ecol. 2, 27–27. doi: 10.1186/s40462-014-0027-0

Ripple,W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite,

M., et al. (2014). Status and ecological effects of the world’s largest carnivores.

Science 343:1241484. doi: 10.1126/science.1241484

Rotics, S., Kaatz, M., Resheff, Y. S., Feldman, S., Zurell, D., Sapir, N., et al. (2016).

The challenges of the first migration: movement and behavior of juvenile versus

adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85,

938–947. doi: 10.1111/1365-2656.12525

Rotics, S., Turjeman, S., Kaatz, M., Resheff, Y. S., Zurell, D., Sapir, N., et al. (2017).

Wintering in Europe instead of Africa enhances juvenile survival in a long-

distance migrant. Anim. Behav. 126, 79–88. doi: 10.1016/j.anbehav.2017.01.016

Sala, O. E., Chapin, F. S. III, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al.

(2000). Global biodiversity scenarios for the year 2100. Science 287, 1770–1774.

doi: 10.1126/science.287.5459.1770

Frontiers in Ecology and Evolution | www.frontiersin.org 10 June 2018 | Volume 6 | Article 79

https://doi.org/10.2307/1374834
https://doi.org/10.1016/j.ecolmodel.2006.03.017
https://doi.org/10.2307/3677015
https://doi.org/10.1016/S0167-8809(99)00105-X
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1111/conl.12084
https://doi.org/10.1126/sciadv.1500931
https://doi.org/10.1111/j.1461-0248.2008.01255.x
https://doi.org/10.1007/s10144-014-0435-4
https://doi.org/10.1126/science.1106049
https://doi.org/10.1007/s00442-010-1883-y
https://doi.org/10.1890/1051-0761(2001)011[0060:FIAPAD]2.0.CO;2
https://doi.org/10.1016/j.biocon.2013.11.033
https://doi.org/10.1111/j.1365-2664.2008.01565.x
https://doi.org/10.1126/science.aaa2478
https://doi.org/10.1098/rstb.2010.0093
https://doi.org/10.1007/s00442-004-1529-z
https://doi.org/10.1111/j.0021-8901.2004.00933.x
https://doi.org/10.1016/j.envsoft.2010.12.005
https://doi.org/10.1016/j.biocon.2010.07.007
https://doi.org/10.1038/srep35746
https://doi.org/10.1007/s10980-016-0374-x
https://doi.org/10.1111/1365-2664.12755
https://doi.org/10.1111/conl.12255
https://doi.org/10.1242/jeb.058602
https://doi.org/10.1007/s10021-012-9558-7
https://doi.org/10.1038/srep11898
https://doi.org/10.1111/j.1469-1795.2008.00225.x
https://doi.org/10.1111/j.1469-1795.2010.00433.x
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1111/1365-2664.12468
https://doi.org/10.1186/s40462-014-0027-0
https://doi.org/10.1126/science.1241484
https://doi.org/10.1111/1365-2656.12525
https://doi.org/10.1016/j.anbehav.2017.01.016
https://doi.org/10.1126/science.287.5459.1770
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Zurell et al. Transferability of Habitat Selection Models

Tanferna, A., López-Jiménez, L., Blas, J., Hiraldo, F., and Sergio, F. (2013).

Habitat selection by Black kite breeders and floaters: implications for

conservation management of raptor floaters. Biol. Conserv. 160, 1–9.

doi: 10.1016/j.biocon.2012.12.031

Tryjanowski, P., Sparks, T. H., and Profus, P. (2009). Severe flooding causes a

crash in production of white stork (Ciconia ciconia) chicks across Central

and Eastern Europe. Basic Appl. Ecol. 10, 387–392. doi: 10.1016/j.baae.

2008.08.002

Tryjanowski, P., Sparks, T., and Jerzak, L. (2006). The White Stork in Poland:

Studies in Biology, Ecology and Conservation. Poznań: Bogucki Wydawnictwo
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