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Emotions are often associated with the evolution of monogamy. For example, fear of

cuckoldry has been recently proposed as the driving force for human monogamy. We

used prairie voles (Microtus ochrogaster) as a model of human behavior to study how

stress reactivity is shaped by socio-ecological disruptions experienced as neonates and

as subadults. We hypothesized that social disruptions would have a greater impact on

the vole’s stress levels than ecological disruptions, and that females would be more

susceptible to the experience than males. At 6 days postpartum, the housing conditions

were manipulated to have offspring raised by: (1) both parents under a protective

cover (NoDisrupt); (2) Both parents uncovered (EcoDisrupt); (3) Mother alone covered

(SocDisrupt); (4) Mother alone uncovered (SocEcoDisrupt). To experience disruptions as

subadults, offspring were weaned then housed either alone (Isolate) or with a same-sex

sibling (Social). As adults, each offspring was placed in an open-field arena and tested

over 3 consecutive days to measure its behavior in response to an empty space (Day1),

a same-sex vole in a container (Day2), and an empty container (Day3). The brain of

a subgroup of subjects was processed for Golgi staining to assess the impact of

disruptions on hippocampal dendritic morphology in adulthood. Males that experienced

social disruption in early life displayed lower stress levels on Day2 of testing than

males and females in other groups. This effect was only evident in males that did not

experience social disruptions as subadults. Socio-ecological disruptions at postpartum

had an unanticipated impact on the hippocampus of the voles. The apical dendrites of

the CA3 neurons in male and female voles that experienced either social or ecological

disruptions in early life and remained socially isolated as subadults were longer than those

in undisturbed voles. Our results suggest that social disruptions experienced in early life

modulate the male’s stress-related behaviors and may thus influence his monogamous

tendencies. Exposure to disruptions may also impact the memory circuits of the brain

that monogamous animals use to make mating decisions.

Keywords: paternal deprivation, early-life environmental disruptions, socio-spatial memory circuit, social

monogamy, adolescence, social isolation, HPA-axis
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INTRODUCTION

The evolutionary pressure that led humans and other mammals
to form monogamous relationships is an enigma (Wittenberger
and Tilson, 1980; Henrich et al., 2012). Given the low cost of
reproduction for male mammals, they should maximize their
fitness by pursuing as many females as possible (Clutton-Brock
and Parker, 1992; Kappeler, 2013), but not all of them do (Lukas
and Clutton-Brock, 2012). Males of a few species across a broad
range of taxa display pair-living and copulate with their partner
rather than with novel females (Lukas and Clutton-Brock, 2013).
Although some of these males occasionally come in contact with
other females and engage in extra-pair copulations (Solomon and
Jacquot, 2002; Cohas and Allaine, 2009; Streatfeild et al., 2011),
most share a home range with one female for an extended period
of time and some even participate in parental care (Reichard,
2003). Studies from a variety of species that have attempted
to explain why some males forgo their mating opportunities
to invest in their family have produced contradictory results
(Dobson et al., 2010). While the conflicting data continues to
puzzle the evolutionary biologists (Kappeler, 2013), the research
has provided neurobiologists with multiple avenues to explore
the underlying physiological mechanisms that may maintain
social monogamy within a population.

The neurobiology of social monogamy is studied from
multiple angles. Some have focused on the biology of attachment
in monogamous species as a rewarding emotion that keeps sexual
partners in close proximity of each other and fosters paternal
care (Lim et al., 2004; Young and Wang, 2004; Young, 2009;
Young et al., 2011; Burkett and Young, 2012; Johnson and
Young, 2015). This line of research, which has been immensely
fruitful in discovering the neurochemistry of selective partner
preference and social bonding, has been based on the theory
that the evolution of monogamy was driven by the need for
males to invest in paternal care, thus making bonding an adaptive
behavior (Geary, 2000; Fraley et al., 2005; Young et al., 2011).
However, others have viewed the problem of monogamy as a
male tactic to maximize his fitness in environments where access
to mates is limited and where he could be cuckolded into caring
for another male’s progeny (Phelps and Ophir, 2009; Ophir,
2017). This approach that is focused on cognition is more in
line with the theory that the pressure driving the evolution
of monogamy was mate guarding or resource scarcity instead
of paternal investment (Schacht and Bell, 2016). Accordingly,
individuals choose a mating strategy to increase their fitness
and lower their chances of being cuckolded by processing social

and spatial information within a given space. That information
enables them to identify and remember the location of potential

mates and their competitors. Additionally, a unified model
of emotions and cognition controlled by the so called “social

decision-making network” has been proposed to show how
animals could evaluate their social environment when deciding
whether to remain attached to a single mating partner, mate
outside the relationship or seek many partners (Ophir, 2017). A
key brain region in this model is the hippocampus, which along
with the retrosplenial cortex, anterior thalamus, and septal nuclei
is part of a network for forming spatial and social memories, and

is also a main accessory area of the mesolimbic reward circuitry
(Ikemoto, 2010; O’Connell and Hofmann, 2011; Ophir, 2017).

If social monogamy is a cost-benefit assessment evolved to
enhance fitness, then it is likely to be entangled not only with the
positive emotion of attachment, but also with stress that can affect
decisions making. In real life, when individuals are challenged
with physical threats or face uncertainty, neither humans nor
other animals weigh all alternatives to choose the best strategy
and their cognitive abilities can be affected by their stress
responses (Giora, 1987; Lima, 1998; Porcelli and Delgado, 2017;
Summers et al., 2017). Although several studies have examined
the role of stress in monogamy, most have focused on how stress
influences or is impacted by partner preference and paternal care
(DeVries et al., 1996; Bosch et al., 2009; Hostetler and Ryabinin,
2013; Hyer and Glasper, 2017; Kowalczyk et al., 2018). Our
aim in the current study was to examine the development of
stress reactivity in a socially monogamous rodent that displays
alternative reproductive tactics in nature to understand how
stress might shape an individual’s decision-making processes
associated with reproductive strategies.

To investigate the development of stress reactivity in a
monogamous species, we looked at studies in other rodents.
Research in rats has shown that the rearing environment in
early life impacts the developing brain to shape the adult stress
responses, cognition, and reproductive behavior (Liu et al.,
2000; Cameron et al., 2008; Kundakovic and Champagne, 2015).
However, the process is complex and depends on multiple factors
including the offspring genotype, sex, and social interactions
experienced later in life (Daskalakis et al., 2013). We used prairie
voles as an animal model of social monogamy to examine the
impact of early rearing environment and later social experience
on stress reactivity of male vs. female offspring. Prairie voles
are one of the rare mammalian species that display socially
monogamous relationships and biparental care in captivity and
in nature (Getz et al., 1981; Oliveras and Novak, 1986; Terleph
et al., 2004). Like humans, prairie voles are designated as a socially
monogamous species because the adult male and female pairs
show a preference to live together but do not mate exclusively
(Carter et al., 1995; Strassmann, 2003; Solomon et al., 2004;
Streatfeild et al., 2011). Laboratory studies have shown that
when male prairie voles are given the opportunity to access
multiple mates, they show a preference to mate with only one
of them (Blocker and Ophir, 2016). Although pair-bonded males
are attentive to the sensory stimuli of other sexually-receptive
females (Parker et al., 2011; Rodriguez et al., 2013), when given
a choice, they prefer to remain in contact with their mate rather
than a novel female (Blocker and Ophir, 2016). This suggests that
males may be predisposed to forgo a desire to seek other mates
once they form a pair bond.

Nevertheless, observations of prairie voles under natural and
semi-natural settings have shown that the behavior of both males
and females is dynamic and can shift from exclusive mating with
a single partner to occasional mating with a novel conspecific
(Solomon and Jacquot, 2002; Ophir et al., 2008; McGuire and
Getz, 2010). For example, wild male prairie voles are reported to
switch their mating tactics from being residents that share a home
range with a single female to being wanderers that visit multiple
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nests (Solomon and Jacquot, 2002; Ophir et al., 2008). Given
that the reproductive advantage of monogamy vs. polygamy for
prairie voles is equivocal (Mabry et al., 2011; Okhovat et al.,
2015), it is unclear why somemale voles choose a pair-living tactic
while others do not and why some males switch their tactic. An
insight into this conundrum might be found by examining the
stress responses of voles when they encounter conspecifics and
must decide to form a monogamous bond or to copulate outside
the relationship. It is possible that stress reactivity of prairie
voles affects their decision-making processes when exploring
their mating options in unpredictable environments.

By varying the social and ecological conditions of the natal
nest, we attempted to identify the early-life factors that might
contribute to the predisposition of male and female voles for
responding to stress. We hypothesized that the anxiety level
shown by adult voles in presence of a conspecific would differ
based on their sex, whether they were exposed to either social
or ecological disruptions in their early-life environment, and
if they experienced additional disruptions by being socially
isolated as subadults later in life. Given that the hippocampus
can be reshaped by stress throughout life (McEwen and
Magarinos, 2001) and is a key brain region within the so called
“social decision-making network” (Ophir, 2017), we examined
the dendritic morphology of its neurons to determine the
impact of disruptions experienced in early life superimposed on
disruptions experienced in later life. As voles are social animals
that sometimes live in groups and are raised by both parents
(McGuire and Getz, 1995), we predicted that social disruptions
would increase the anxiety levels of adult offspring more than
ecological disruptions. Based on previous research in prairie
and mandarin voles showing that females are more sensitive
than males to manipulations of their social environment such as
paternal deprivation and social isolation (Ruscio et al., 2009; Yu
et al., 2012), we also predicted that our female subjects would
be more susceptible to the impact of postpartum disruptions
than males. Given the adverse effects of social isolation in voles
(Scotti et al., 2015), we expected the early-life disruptions to have
a greater negative effect on the stress reactivity and neuronal
development of voles that were isolated as subadults than the
socially-housed voles that remained with their same-sex sibling.

MATERIALS AND METHODS

Subjects
The subjects were the F2 generation of prairie-vole breeding pairs
that are maintained in the animal facility at Lehman College.
The breeding colony was formed from descendants of wild-
caught voles that were originally captured in east-central Illinois,
U.S.A. We minimize inbreeding in our colony by monitoring
the relatedness of males and females that we select for breeding.
All voles in our facility are housed in standard clear plastic
cages (48 × 27 × 20 cm) and supplied with nesting material to
simulate their natural habitat. Voles are underground burrowers
that occupy a variety of habitats including ungrazed pastures,
hay fields, and alfalfa fields (Cole and Batzli, 1979; Mankin and
Getz, 1994). They prefer to live in areas of thick rather than
sparse vegetation; they use vegetation as both food and cover

(Lin and Batzli, 2001). They are more likely to disperse from
areas of no vegetative cover (Lin et al., 2006). Given that voles
are considered as pests, a way to control their population is
to mow their vegetative cover (Carter and Getz, 1993; O’Brien,
1994). To create a protective and familiar environment for them
in the lab, we first place a layer of ∼5 cm of moistened peat
moss at the bottom of their cage then fill the cage to the top
with straw. Water and food, consisting of a mixture of sunflower
seeds, rabbit chow, and cracked corn are available at libitum. The
colony animals are kept in rooms with fluorescent lighting and at
temperatures around 20–25◦C. The light:dark of the room is set
at 14:10 with lights on at 6:00 a.m. The offspring of our breeding
colony serve as experimental subjects. They are weaned at 20 days
then transferred to a separate room where they are housed with
their same-sex siblings under a protective cover of straw until
adulthood. All experimental and stimulus animals used in the
study were at least 60-days-old, were sexually inexperienced at
the beginning of the experiment, were raised by both parents.
They were removed from their natal nest before their mother
gave birth to another litter.

All applicable national and institutional guidelines for the care
and use of animals were followed. Animal care and all procedures
performed were in accordance with the ethical standards of
Lehman College and were approved by the Lehman College
Institutional Animal Care and Use Committee.

Housing Manipulations
We used a total of 64 adult males and 64 adult females that
we separated from their same-sex siblings to create four sets
of breeding pairs (N = 16 pairs for each of four conditions),
whose offspring served as our experimental subjects. The animals
selected for breeding were between 60 and 120 days old. They
were unrelated and unfamiliar to each other. Each male was held
in a wire mesh cylindrical container (10 × 7.7 cm) with some
food. The container was capped and placed in the cage of a
female for 24 h, so the partners would become accustomed to
one another’s sensory stimuli. The male was then released into
the female’s cage and the pair was left undisturbed, except for
cage cleaning, until the birth of their first offspring. At 6 days
postpartum, the cages of the breeding pairs were manipulated
to expose offspring to early-life disruptions that they may
experience in nature such as loss of their father, protective cover
or both their father and their protective cover. A total of 16 family
units were left undisturbed and served as control (NoDisrupt).
The NoDisrupt offspring were reared by both parents under a
protective cover of straw. In the 16 family units whose ecological
condition was disrupted (EcoDisrupt) the protective cover was
permanently removed leaving the mother and the father to
raise the young with only the peat moss at the bottom of the
cage and a handful of loose straws. In the 16 family units
whose social condition was disrupted (SocDisrupt), the father
was permanently removed leaving the mother to raise the young
under the protective cover of straw. In the 16 family units whose
social and ecological conditions were disrupted (SocEcoDisrupt),
the father and the protective cover were permanently removed
leaving the mother to raise the young alone with only the peat
moss at the bottom of the cage and a handful of loose straws. All
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family units were then left undisturbed until the offspring were
20 days of age. To expose offspring to later-life disruptions, the
subadults at weaning were sexed and housed either with a same
sex-same sibling (Social) or housed alone (Isolate). The Social
and Isolate groups were housed under a protective cover of straw
until adulthood.

Anxiety Testing
Between 60 and 70 days of age, the Social and Isolate adult
offspring from each family unit and of each sex were tested for
their anxiety level in an open-field arena for 3 consecutive days.
The open-field test is a common procedure where behavioral and
physiological reactions such as immobility, leaving the preferred
periphery of the arena to enter the center or defecation and
urination are regarding as increased anxiety (Prut and Belzung,
2003). A day before testing, all subjects were placed alone in a
new cage. The cage holding the Social or the Isolate vole was
transferred to a brightly-lit room where an open-field testing box
was placed directly under the fluorescent light. The square box
(72 × 72 × 36 cm) was made of four white plywood sides and
a Plexiglas bottom that was marked to divide the area into 12
equally-sized squares (18 × 18 cm each). An extra square was
drawn in the center of the box at the intersection of the four
middle squares. The subject’s cage was left on a cart for 20min
for the animal to acclimate to the testing room. Each subject
was then gently picked up by an experimenter and released at
the same corner of the testing arena. A video camera attached
to the ceiling above the open-field arena was turned on a minute
before testing began. After releasing the animal, the experimenter
left the room. Each subject was video-taped for 10min and
its behavior was later scored for the duration of time spent in
the side squares, in the middle squares, in the center square,
locomotion, autogrooming, freezing (remaining stationary), and
rearing (standing on hind legs) by experimenters blind to the
testing conditions. On day 1, the subject was tested in an arena
that was empty. On day 2, the subject was tested in an arena
containing an unfamiliar and unrelated stimulus animal of the
same sex. The stimulus animal was held in a capped wire-mesh
cylindrical container (10 × 7.7 cm) that was placed in the center
square and attached to the Plexiglas floor with Velcro. On day 3,
the subject was tested in an arena containing an empty capped
wire-mesh cylindrical container that was similarly placed in the
center. The open-field test was designed to determine the animal’s
tendency for overcoming its anxiety and risk moving from the
arena’s sides and explore its center. Previous studies in our lab
have shown that prairie voles do not attend to or explore empty
containers unless these containers have a stimulus animal within
them (Parker et al., 2011). To ensure that our subjects would
have an incentive to explore the arena, we tested them over 3
days with and without a social stimulus. On day 2 and 3 of the
behavioral testing sessions, we also measured the time subjects
spent investigating the container that had a stimulus conspecific
or remained empty. However, because we found no differences
in the time spent in the center of the arena and the time spent
investigating the container, we are only reporting the time in the
center. Following each testing session, the animal was returned
to its cage and the number of fecal boli and urine puddles were

counted. The arena was cleaned to remove the excreta, sprayed
with 70% alcohol to remove all odors, and allowed to dry in
between testing sessions.

Brain Analysis
To determine how the brain is impacted by disturbances
experienced early in life superimposed on those experienced later
in life, we examined the dendritic morphology of neurons in
the CA3 regions of the hippocampus of Isolate adult offspring
that had experienced Social or Ecological disruptions in early life
vs. the Social adult offspring that experienced no disruptions in
early life. Following the behavioral tests, 16 brains from Isolate
subjects (4 brains of each sex from the SocDisrupt and 4 brains
of each sex from the EcoDisrupt groups) and 8 brains from
Controls (4 brains of each sex from the NoDisrupt group that
were socially housed after weaning) were placed in a Golgi-
Cox solution. To stain the neurons, we followed the instructions
in the SuperGolgi Kit by Bioenno LifeSciences (Bioenno Tech,
LLC Santa Ana, California). After immersing the whole brain
in Golgi solution then buffer, we sectioned it on a vibratome
at 200µm, mounted the sections, and completed the staining
process on gel-coated slides. The slides were coded prior to image
analysis with the Neurolucida morphometry software (MBF
Bioscience). The images were acquired on a Zeiss Axiophot 2
microscope equipped with a motorized stage and a video camera,
and the stained neurons were traced using a 40x/1.4N.A., Plan-
Apochromat oil immersion objective. An experimenter blind to
the testing conditions measured the average length of the apical
dendrites of selected neurons in the CA3 area identified on the
rat atlas (Paxinos and Watson, 2013). Of the 24 brains that were
processed, 3 did not stain clearly to be used in the analysis (1
male and 1 female brain from the EcoDisrupt group and 1 female
brain from the SocDisrupt group). For the remaining animals,
3 adjacent neurons were selected from each hemisphere and
analyzed for a total of 6 neurons per brain. The selected neuron
had to satisfy two criteria: (1) reside within the pyramidal layer
of the CA3 region of the designated hippocampus region; (2) be
adjacent to each other.

Statistical Analysis
For all statistical analysis, we used the IBM SPSS Statistics
software for Macintosh, Subscriptions. Prior to running the
statistical analysis, we used the Shapiro-Wilk’s test to determine
if the data were normally distributed and used the Levene’s test to
check for homogeneity of variance. Some of the data did not pass
those tests. The data that did not pass those tests were log, square-
root or cube-root transformed. For the behavioral data, we used
a three-way ANOVA with sex, group, and condition as between-
subject variables to test for differences on each of the three testing
days and used partial eta-squared (ηp2) as a measure of effect
size. For the brain data, we used a two-way ANOVA with sex
and conditions as between-subject variables. For significant P-
values at <0.05, post-hoc analysis was conducted with the Holm-
Bonferroni method. At weaning, a total of 102 offspring raised
under four different conditions were assigned to the Social group
and 93 were assigned to the Isolate groups (see Tables 1, 2 for
sample sizes). We had missing data on Day 2 (a SocEcoDisrupt
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TABLE 1 | ANOVA results for the main effects.

Condition NoDisrupt EcoDisrupt SocDisrupt SocEcoDisrupt

Group Social-Isolate Social-Isolate Social-Isolate Social-Isolate

Sample size 16♂12♀-13♂9♀ 10♂12♀-13♂11♀ 12♂12♀-13♂10♀ 14♂14♀-12♂11♀

Sex Group Condition

DAY 1

Locomotion F (1, 177) = 10** ηp
2= 0.05 F (1, 177) = 0.1 ηp

2= 0.001 F (3, 177) = 1.0 ηp
2= 0.02

Autogroom F (1, 177) = 8.9** ηp
2= 0.05 F (1, 177) = 0.2 ηp

2= 0.001 F (3, 177) = 2.0 ηp
2= 0.03

Freezing F (1, 177) = 5.2* ηp
2= 0.03 F (1, 177) = 1.3 ηp

2= 0.007 F (3, 177) = 3.4* ηp
2= 0.06

Rearing F (1, 177) = 1.3 ηp
2= 0.007 F (1, 177) = 0.05 ηp

2= 0.000 F (3, 177) = 3.0* ηp
2= 0.05

Sides F (1, 177) = 0.90 ηp
2= 0.005 F (1, 177) = 0.6 ηp

2= 0.003 F (3, 177) = 1.9 ηp
2= 0.03

Middle F (1, 177) = 1.1 ηp
2= 0.006 F (1, 177) = 1.0 ηp

2= 0.005 F (3, 177) = 1.4 ηp
2= 0.02

Center F (1, 177) = 0.1 ηp
2= 0.001 F (1, 177) = 1.9 ηp

2= 0.01 F (3, 177) = 1.0 ηp
2= 0.02

DAY 2

Locomotion F (1, 174) = 0.4 ηp
2= 0.003 F (1, 174) = 0.5 ηp

2= 0.003 F (3, 174) = 1.1 ηp
2= 0.02

Autogroom F (1, 174) = 5.9* ηp
2= 0.03 F (1, 174) = 0.8 ηp

2= 0.005 F (3, 174) = 3.0* ηp
2= 0.05

Freezing F (1, 174) = 3.3 ηp
2= 0.02 F (1, 174) = 82** ηp

2= 0.3 F (3, 174) = 2.3 ηp
2= 0.04

Rearing F (1, 174) = 0.01 ηp
2= 0.000 F (1, 174) = 2.0 ηp

2= 0.001 F (3, 174) = 1.2 ηp
2= 0.02

Sides F (1, 174) = 23** ηp
2= 0.1 F (1, 174) = 2.7 ηp

2= 0.02 F (3, 174) = 1.4 ηp
2= 0.02

Middle F (1, 174) = 5.0* ηp
2= 0.03 F (1, 174) = 2.1 ηp

2= 0.01 F (3, 174) = 2.2 ηp
2= 0.04

Center F (1, 174) = 23** ηp
2= 0.1 F (1, 174) = 2.2 ηp

2= 0.01 F (3, 174) = 1.0 ηp
2= 0.02

DAY 3

Locomotion F (1, 174) = 7.8** ηp
2= 0.04 F (1, 174) = 2.0 ηp

2= 0.01 F (3, 174) = 1.5 ηp
2= 0.03

Autogroom F (1, 174) = 10** ηp
2= 0.06 F (1, 174) = 0.04 ηp

2= 0.000 F (3, 174) = 2.2 ηp
2= 0.04

Freezing F (1, 174) = 7.0** ηp
2= 0.04 F (1, 174) = 0.05 ηp

2= 0.000 F (3, 174) = 1.5 ηp
2= 0.02

Rearing F (1, 174) = 7.7** ηp
2= 0.04 F (1, 174) = 0.1 ηp

2= 0.001 F (3, 174) = 1.7 ηp
2= 0.03

Sides F (1, 174) = 2.4 ηp
2= 0.01 F (1, 174) = 0.6 ηp

2= 0.004 F (3, 174) = 3.0* ηp
2= 0.05

Middle F (1, 174) = 1.4 ηp
2= 0.008 F (1, 174) = 0.6 ηp

2= 0.004 F (3, 174) = 1.7 ηp
2= 0.03

Center F (1, 174) = 2.2 ηp
2= 0.01 F (1, 174) = 0.7 η

2
p
= 0.004 F (3, 174) = 2.0 ηp

2= 0.03

*Indicates significant differences at p < 0.05. **Indicates significant differences at p < 0.01.

male) and on Day 3 (a NoDisrupt male). Also, the excreta
of a EcoDisrupt female was not collected after the behavioral
testing. The data for one NoDisrupt Isolate female were removed
because they were outliers, and the data for one SocEcoDisrupt
female could not be analyzed because the video-recordings were
distorted. We had missing data on Day 2 (a NoDisrupt male and
a SocDisrupt female) and on Day 3 (a SocDisrupt female and
a SocEcoDisrupt male). Also, the excreta of one SocEcoDisrupt
male was not collected after the behavioral testing. For differences
in frequency of excreta by subjects within the testing arena, we
first categorized the counts as High if there were more than 3
and as Low if there were <3 excrements then used Fisher’s exact
probability test to analyze the data for each testing day.

RESULTS

Behavior in Open-Field Test
The three-way ANOVA results for the main effects are shown in
Table 1 and for the interaction effects are shown inTable 2. There
were no significant three-way interactions among sex, group, and
conditions. However, for some of the behavioral measures on

each testing day, we found significant main effects and two-way
interactions.

On Day1, there were significant main and interaction effects
for time spent on locomotion, autogrooming, freezing, and
Rearing, but there were no differences in time spent on the Sides,

Middle or Center of the arena. For locomotion and freezing, there
was a significant group by condition effect. In the NoDisrupt

condition, the Social subjects spent more time on locomotion
(P= 0.004) and less time on freezing (P= 0.002) than the Isolate
subjects. For autogrooming and rearing, there was a significant
sex by group effect. Isolate females groomed themselves more
(P = 0.0001) and spent less time on rearing (P = 0.004) than
Isolate males.

On Day2, there were significant main effects for autogroom

and time spent in the arena’s center and middle. Females
across groups and conditions groomed themselves more and

spent less time in the center and middle sections of the arena

than males. The NoDisrupt subjects had the highest mean
for autogrooming that differed significantly with those in the

SocEcoDisrupt condition (P = 0.04). For Freezing, there was a

significant sex by condition effect. The SocDisrupt males spent
less time freezing than the SocDisrupt females (P = 0.0001). For
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TABLE 2 | ANOVA results for the interaction effect.

Sex X Group Sex X Condition Group X Condition Sex X Group X Condition

DAY 1

Locomotion F (1, 177) = 0.2 ηp
2= 0.001 F (3, 177) = 0.6 ηp

2= 0.01 F (3, 177) = 3.5* ηp
2= 0.06 F (3, 177) = 0.9 ηp

2= 0.02

Autogroom F (1, 177) = 8.0** ηp
2= 0.04 F (3, 177) = 0.9 ηp

2= 0.02 F (3, 177) = 0.6 ηp
2= 0.009 F (3, 177) = 0.4 ηp

2= 0.007

Freezing F (1, 177) = 1.3 ηp
2= 0.007 F (3, 177) = 0.4 ηp

2= 0.007 F (3, 177) = 3.0* ηp
2= 0.05 F (3, 177) = 0.4 ηp

2= 0.007

Rearing F (1, 177) = 9.9* ηp
2= 0.05 F (3, 177) = 0.6 ηp

2= 0.01 F (3, 177) = 0.4 ηp
2= 0.006 F (3, 177) = 1.5 ηp

2= 0.02

Sides F (1, 177) = 0.5 ηp
2= 0.003 F (3, 177) = 0.6 ηp

2= 0.01 F (3, 177) = 0.08 ηp
2= 0.001 F (3, 177) = 1.8 ηp

2= 0.3

Middle F (1, 177) = 0.05 ηp
2= 0.000 F (3, 177) = 0.4 ηp

2= 0.007 F (3, 177) = 0.2 ηp
2= 0.004 F (3, 177) = 2.2 ηp

2= 0.4

Center F (1, 177) = 1.5 ηp
2= 0.008 F (3, 177) = 0.2 ηp

2= 0.004 F (3, 177) = 0.09 ηp
2= 0.002 F (3, 177) = 1.3 ηp

2= 0.02

DAY 2

Locomotion F (1, 174) = 2.9 ηp
2= 0.02 F (3, 174) = 1.0 ηp

2= 0.02 F (3, 174) = 1.1 ηp
2= 0.02 F (3, 174) = 1.0 ηp

2= 0.02

Autogroom F (1, 174) = 2.1 ηp
2= 0.01 F (3, 174) = 1.2 ηp

2= 0.02 F (3, 174) = 0.9 ηp
2= 0.02 F (3, 174) = 2.2 ηp

2= 0.04

Freezing F (1, 174) = 0.6 ηp
2= 0.004 F (3, 174) = 3.6* ηp

2= 0.06 F (3, 174) = 1.0 ηp
2= 0.02 F (3, 174) = 0.4 ηp

2= 0.008

Rearing F (1, 174) = 0.1 ηp
2= 0.001 F (3, 174) = 1.6 ηp

2= 0.03 F (3, 174) = 3.8* ηp
2= 0.06 F (3, 174) = 0.6 ηp

2= 0.009

Sides F (1, 174) = 1.6 ηp
2= 0.009 F (3, 174) = 2.9* ηp

2= 0.05 F (3, 174) = 2.7* ηp
2= 0.04 F (3, 174) = 0.5 ηp

2= 0.009

Middle F (1, 174) = 0.05 ηp
2= 0.000 F (3, 174) = 1.4 ηp

2= 0.02 F (3, 174) = 1.7 ηp
2= 0.03 F (3, 174) = 0.7 ηp

2= 0.01

Center F (1, 174) = 1.2 ηp
2= 0.007 F (3, 174) = 2.4 ηp

2= 0.04 F (3, 174) = 2.0 ηp
2= 0.03 F (3, 174) = 0.4 ηp

2= 0.007

DAY 3

Locomotion F (1, 174) = 0.7 ηp
2= 0.004 F (3, 174) = 1.3 ηp

2= 0.02 F (3, 174) = 1.3 ηp
2= 0.02 F (3, 174) = 0.2 ηp

2= 0.004

Autogroom F (1, 174) = 5.7* ηp
2= 0.03 F (3, 174) = 0.9 ηp

2= 0.02 F (3, 174) = 0.8 ηp
2= 0.01 F (3, 174) = 0.3 ηp

2= 0.005

Freezing F (1, 174) = 0.4 ηp
2= 0.002 F (3, 174) = 1.8 ηp

2= 0.03 F (3, 174) = 1.7 ηp
2= 0.03 F (3, 174) = 0.3 ηp

2= 0.006

Rearing F (1, 174) = 0.5 ηp
2= 0.003 F (3, 174) = 1.2 ηp

2= 0.02 F (3, 174) = 0.3 ηp
2= 0.006 F (3, 174) = 0.5 ηp

2= 0.008

Sides F (1, 174) = 0.001 ηp
2= 0.000 F (3, 174) = 0.3 ηp

2= 0.005 F (3, 174) = 0.8* ηp
2= 0.05 F (3, 174) = 0.4 ηp

2= 0.007

Middle F (1, 174) = 0.02 ηp
2= 0.000 F (3, 174) = 0.9 ηp

2= 0.02 F (3, 174) = 1.0 ηp
2= 0.02 F (3, 174) = 0.8 ηp

2= 0.01

Center F (1, 174) = 0.07 ηp
2= 0.000 F (3, 174) = 0.3 ηp

2= 0.006 F (3, 174) = 2.8* ηp
2= 0.05 F (3, 174) = 0.8 ηp

2= 0.01

*Indicates significant differences at p < 0.05. **Indicates significant differences at p < 0.01.

Rearing, there was a significant group by condition effect. In the
SocDisrupt condition, the Isolate subjects spent more time on

rearing than the Social subjects (P = 0.003). For time spent on

the arena’s sides, there was a significant sex by condition and a
group by condition effect. Males spent much less time on the
arena’s sides than females in the SocDisrupt (P = 0.0001) and
the SocEcoDisrupt (P = 0.001) conditions. Although males in
the NoDisrupt group also showed a similar tendency (P = 0.05),
those in the EcoDisrupt condition did not differ from females
(Figure 1).

On Day3, there were significant sex differences in locomotion,
freezing and rearing. Males were more active than females.
They spent more time in locomotion and rearing and less time
freezing than females. For Autogrooming, there was a significant
sex by group effect. Isolate females spent more time grooming
themselves than Isolate males (P= 0.0001). For time spent on the
arena’s sides and center, there were significant group by condition
effect. In the EcoDisrupt group, the Isolate subjects spent more
time in the center (P = 0.02) and less time in the arena’s sides
(P = 0.01) than the Social subjects.

The amount of excreta left in the arena on Day 2 of testing
differed significantly in Isolate males (N = 50, P= 0.001, Fisher’s
exact test) and females (N = 41, P = 0.02, Fisher’s exact test) but
not in Social males (N = 52, P = 0.49) and females (N = 49, P =

0.40). Isolate males in the EcoDisrupt and SocDisrupt groups and
Isolate females in the SocDisrupt groups urinated and defecated

more in presence of a stimulus animal than voles on other days
(Table 3).

Dendritic Morphology
For the length of the apical dendrites in the CA3 area of
the hippocampus (Figure 2a), we found a significant effect of
condition [F(2,15) = 13.7, P = 0.001, ηp

2
= 0.6]. The apical

dendritic length in the pyramidal neurons was longer for the
SocDisrupt (P = 0.001) and for the EcoDisrupt (0.02) than for
the Control subjects (Figures 2b–d). There were no significant
sex [F(1,15) = 0.1, P = 0.341, ηp

2
= 0.07] or interactions effects

[F(2,15) = 1.4, P = 0.29, ηp
2
= 0.15].

DISCUSSION

We disrupted the social and ecological rearing environment of
prairie-vole offspring during the first week of life when rodent
brains are rapidly growing and are susceptible tomodifications by
experience (Bandeira et al., 2009; Kundakovic and Champagne,
2015). The results were contrary to our predictions. Exposure to
disruptions early in life had an anxiolytic effect, but the impact
on males was greater than on females. Social disruption created
by removal of the father, even in the absence of protective cover,
was more effective in reducing anxiety than other conditions.
The effect was noticeable in males on Day 2 of testing when
a same-sex stimulus animal was placed in the center of the

Frontiers in Ecology and Evolution | www.frontiersin.org 6 June 2018 | Volume 6 | Article 84

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Al-Naimi et al. Stress Development in Monogamous Voles

FIGURE 1 | Time spent on the sides of the arena, close to the walls, by

two groups of voles: adult males (M-Social) and females (F-Social) that were

socially housed and adult males (M-Isolate) and females (F-Isolate) that were

housed in isolation after weaning. The behavior shown was measured on Day

2 of testing when a same-sex conspecific was placed in the center of the field.

The early-life conditions were NoDisrupt (both parents with a protective cover);

EcoDisrupt (both parents without a protective cover); SocDisrupt (mother with

a protective cover); SocEcoDisrupt (mother without a protective cover). The

bars show means ± SE, *over the bars indicates significant sex differences at

p < 0.05, and -*over the bars indicates significant group differences at

p < 0.05 for the SocDisrupt condition.

TABLE 3 | Frequency of excretion by Singly-housed (Isolate) subjects in the

open-field arena.

Condition Low High Low High Low High

Male Day 1 NS† Day 2 P = 0.001 Day 3 NS

NoDisrupt 12 1 13 0 11 2

EcoDisrupt 12 1 7 6 10 3

SocDisrupt 9 4 6 7 7 6

SocEcoDisrupt 10 1 10 1 11 0

Female Day 1 NS Day 2 P = 0.02 Day 3 NS

NoDisrupt 8 1 9 0 9 0

EcoDisrupt 11 0 9 2 10 1

SocDisrupt 8 2 4 6 8 2

SocEcoDisrupt 10 1 8 3 8 3

†
Fisher’s Exact Probability Test for each testing day.

arena. Male offspring having experienced the loss of their father
were more likely to risk moving from the arena’s sides to the
center for investigating a social object compared to males and
females in other groups. Confronting the subjects with an empty
container that was previously housed with a stimulus animal on
Day 3 reduced the Social males’ tendency to move away from the
sides and investigate the inanimate object in the arena’s center
while increasing the Isolate voles’ propensity to move to the
center. Exposing the male and female voles to social isolation
in early life increased the subjects’ anxiety-related behaviors in
adulthood, but the experience had a greater impact on females
than on males. Social isolation enhanced the emotionality of
both sexes in response to the social stimulus as evidenced by
their increased defecation and urination on Day 2 and reduced

the anxiolytic effect of social disruption in males. Although
the Isolated voles showed sex differences in their behavior and
appeared to be more anxious than social voles, examination
of their dendritic morphology indicated that both social and
ecological disruptions induced growth rather than retraction of
dendrites in the hippocampus.

Our results are contrary to some of the previous research
in monogamous rodents. In mandarin voles, removal of the
father immediately after birth or separation of young from their
littermates increased adulthood anxiety levels measured in an
empty open-field testing arena (Jia et al., 2009). Exposure of
mandarin voles to paternal loss as neonates also lowered their
sociality, particularly in females. As adults, the subjects were
less parental, less likely to investigate novel conspecifics, and the
females were less likely to show partner preference (Jia et al., 2011;
Yu et al., 2012; Cao et al., 2014). In Californiamice, removal of the
father 3 days postpartum had no effect on the anxiety of the adult
offspring tested in an empty open-field arena, but the subjects
showed reduced social interactions and increased aggression
(Bambico et al., 2015). In prairie voles, removal of the father a day
after birth had no effect on the anxiety levels of adult offspring
tested on the elevated plus maze but increased their social
affiliation toward a conspecific (Tabbaa et al., 2017). However,
with removal of the father 2 days before birth, the adult offspring
displayed delayed partner preference and were less parental.
They showed indications of reduced anxiety in an empty open-
field testing arena and on an elevated plus maze (Ahern and
Young, 2009; Ahern et al., 2011). Collectively, these studies
suggest that social disruption created by the father’s removal
has a negative impact on sociality but a variable effect on stress
reactivity. The stress results are understandable in light of a vast
literature indicating that the outcome of early-life disruptions
in mammals depends on multiple factors including its timing,
severity, and testing procedure (Macrì et al., 2011; Chen and
Baram, 2016). For example, there is evidence that moderate
disruptions of the rearing environment produce offspring that are
hyposensitive, whereas severe disruptions produce offspring that
are hypersensitive to threats as adults (Macri and Wurbel, 2007;
Coutellier et al., 2008). Furthermore, exposure to stress-induced
changes during postnatal days 3–4 can result in hypersensitivity,
whereas the same changes introduced on postnatal days 7–8
can result in hyposensitivity to stress later in life (Van Oers
et al., 1998). By removing the father or the cover at postnatal
day 6, we think we created a moderately stressful environment
that prairie-vole family units may experience in nature as they
occupy surface nests or because their protective cover might
be reduced by mowing. When confronted with a conflicting
situation as adults, only SocDisrupt males that were socially-
housed had sufficiently reduced stress reactivity for overcoming
their anxiety of open spaces to approach and investigate a
stranger.

Multiple hypotheses may explain why we found the
SocDisrupt males to show reduced anxiety following the loss of
their father. It is possible that their mother altered her maternal
behavior when we removed her partner on postpartum day
6. Many studies have found the mother to be the source of
modifications in stress reactivity of offspring when disruptions to
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FIGURE 2 | (a) Photomicrograph showing CA3 area of the hippocampus of a prairie vole prepared with Golgi Stain. (b) Reconstructed CA3 neuron in the

hippocampus showing the apical dendrites in a representative animal from (A) Control and (B) SocDisrupt group. (c) Photomicrograph of the CA3 neuron in the

hippocampus showing the apical dendrites in a representative animal from (A) Control and (B) SocDisrupt group. (d) Group differences in apical dendritic length of

neurons in the CA3 region of the hippocampus. The conditions were Control (adult offspring raised by both parents under a protective cover and housed with a

same-sex partner after weaning), EcoDisrupt (adult offspring raised by both parents without a protective cover and housed alone after weaning); SocDisrupt (adult

offspring raised by mother alone with a protective cover and housed alone after weaning). The bars show means ± SE and **over the bars indicate significant group

differences at p < 0.01.

thematernal environment are introduced at critical points during
development (Curley and Champagne, 2016). Laboratory studies
in uniparental species such as rats and mice have shown that
when the mother is confronted with foraging demands, removal
of nesting materials or predator threats, she alters her nest
attendance and active maternal care thus changing the activity of
her offspring hypothalamic-pituitary-adrenal (HPA) axis in a sex-
specificmanner (Ivy et al., 2008; Coutellier et al., 2009;Mashoodh
et al., 2009). Hence, it is possible that the behavior of prairie-
vole mothers in our study altered her adult sons’ stress responses.
Although we did not record the mother’s behavior following the
father’s removal, we think this is an unlikely scenario because
previous studies under laboratory or semi-natural conditions in
prairie and mandarin voles have shown that the mother does not
compensate when the father is removed from the nest (McGuire
et al., 2007; Jia et al., 2009; Ahern et al., 2011). However, because
voles are biparental, it is possible that reduction in total overall

care that is usually provided by both parents affected the sons’
behavior later in life (Ahern and Young, 2009).

Alternatively, the sons themselves may have sensed and
reacted to the changes in their social environment as we abruptly
removed their father. Their father’s absence may have caused a
shift in how the HPA axis and the sympathetic nervous system
balance the subjects’ risk-taking tendencies in adulthood (Del
Giudice et al., 2011). That change may have mobilized the voles
in our study to move from the safety zones to the center of the
arena where a social stimulus was placed. It is also plausible
that the father’s removal in our study altered the activity of the
mother’s HPA-axis, and that change was transferred to her young
through lactation. Prairie voles form a pair bond shortly after
mating, and separation of the partners increases their levels of
plasma corticosterone (Bosch et al., 2009; McNeal et al., 2013).
Rodent studies have shown that maternal corticosterone can be
transferred to young via milk to affect regulation of HPA axis
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and behavior of the offspring (Casolini et al., 1997; Catalani
et al., 2011). Unlike uniparental species in which only the mother
creates the early social environment of the young, in biparental
species such as prairie voles, the father also contributes to that
social environment and his absence can have either a direct or
an indirect effect on the offspring brain and behavior (McGuire
et al., 2007; Ahern et al., 2011).

Disruptions in life can affect offspring not only in early
phases of their lives but also during adolescence (Weintraub
et al., 2010). There is evidence that exposure of subadults to
social disruptions can alter their behavior so they can adapt to
their environment (Sachser et al., 2011). To determine how later
experience affects prairie vole offspring that were exposed to
social or ecological disturbances, we isolated half of them and
examined their behavior and hippocampal dendritic morphology
in adulthood. Our behavioral results were consistent with past
research showing that chronic isolation activates the subjects’
sympathetic drive and enhances their anxiety and depression-like
behaviors (Grippo et al., 2007; Ruscio et al., 2009). Our subjects
showed signs of increased emotionality in presence of a social
stimulus within the open-field arena and the male’s mobilization
to the center for investigating a conspecific was diminished
following isolation.

However, we found changes in the length of hippocampal

neurons that were contrary to our expectations. Previous research

in a number of species have shown that hippocampal CA1-
CA3 neurons are particularly susceptible to stress and atrophy

in response to chronic stress including social isolation (McEwen,
1999; McEwen and Magarinos, 2001; Silva-Gómez et al., 2003).
In our subjects, both males and females that had experienced
either social or ecological disruptions as neonates and social
isolation as juveniles displayed increases in the dendritic length
of their CA3 neurons. However, our data are consistent with
a recent study in California mice showing that social isolation
enhances cell survival and proliferation in the hippocampus
(Ruscio et al., 2015). Chronic social isolation in prairie voles
also increase estrogen receptors in the medial amygdala (MEA)
and the bed nucleus of stria terminalis (BST) of males, decrease
corticotropin-releasing hormone (CRH) receptor type 1 but
increase CRH receptor type 2 in the hippocampus (Pournajafi-
Nazarloo et al., 2009; Perry et al., 2016). Given that CRH-R1 and
CRH-R2 have been found to differentially modulate dendritic
growth of hippocampal neurons (Sheng et al., 2012), it is possible

that these receptors along with estrogen receptors may mediate
alterations of the hippocampal neuronal structure in response
to moderate environmental disruptions experienced during
offspring development of monogamous species. Combined, the
increased dendritic length of the hippocampal neurons and the
anxiolytic effects of paternal absence on sons that we observed
in prairie voles suggest that moderate stress during development
may be adaptive. The experience might prepare offspring to
counter stressful challenges such as the perils of exposure to
predators or the risk of leaving the social group as ecological
variables change and affect their decision to opt for a resident
vs. a wanderer strategy (Solomon, 2003; McGuire and Getz,
2010).

The hippocampus has recently been proposed to be part of
a socio-spatial memory circuit that is entangled with the pair-
bonding network where neuropeptides such as vasopressin and
oxytocin act to influence prairie vole’s decision for remaining
with a single partner, moving away to mate outside the
relationship or adopting a non-monogamous mating tactic
(Ophir, 2017). We have shown that disruptions of the neonatal
environment at critical periods during development alters the
anxiety profile of individuals to affect their risk-taking tendencies
and enhance hippocampal neuronal growth. These changes in
behavior and brain of voles in response to stress experienced
during development maymodify how they integrate socio-spatial
information about the position of their mates and competitors in
space and thus the decision to remain monogamous.
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