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Small mesopelagic fish are ubiquitous in the ocean, representing an important trophic link

between zooplankton and tertiary consumers such as larger fish, marine mammals and

birds. Lanternfishes (Myctophidae) are common worldwide as well as in the Southern

Ocean. However, only 17 of the approximately 250 myctophid species occur exclusively

in sub-Antarctic or Antarctic waters. It is unclear whether they colonized these latitudes

once and diversified from there, or whether multiple colonization events took place

in which multiple ancestral phenotypes entered the Southern Ocean at various times.

Phylogeographic patterns have been investigated for individual myctophid species, but

so far no study has compared species across the Southern Ocean. Here, we present a

dataset with previously unpublished cytochrome c oxidase I (COI; n= 299) and rhodopsin

(rh1; n = 87) gene sequences from specimens collected at various locations in the

Southern Ocean. Our data extend the DNA barcode library of Antarctic mesopelagic

fish substantially. Combined morphological and molecular taxonomy lead to confident

species level identification in 271 out of 299 cases, providing a robust reference dataset

for specimen identification, independently of incomplete morphological characters. This

is highly topical in light of prospective ecological metabarcoding studies. Unambiguous

sequences were subsequently combined with publicly available sequences of the global

DNA barcode library yielding a dataset of over 1,000 individuals for phylogenetic and

phylogeographic inference. Maximum likelihood trees were compared with results of

recent studies and with the geographical origin of the samples. As expected for

these markers, deep phylogenetic relationships remain partially unclear. However, COI

offers unmatched sample and taxon coverage and our results at the subfamily to

genus level concur to a large extent with other studies. Southern Ocean myctophids

are from at least three distant subfamilies suggesting that colonization has occurred

repeatedly. Overall, spatial divergence of myctophids is rare, potentially due to their

enormous abundance and the homogenizing force of ocean currents. However, we
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highlight potential (pseudo-)cryptic or unrecognized species in Gymnoscopelus bolini,

Lampanyctus achirus, and the non-myctophid genus Bathylagus.

Keywords: marine biodiversity, adaptation, Antarctic, COI, Myctophidae, phylogeny, rhodopsin

INTRODUCTION

The mesopelagic fauna of the world’s oceans is dominated
by ubiquitous small filter feeding fish. These fishes likely
represent a total biomass of up to 10 billion tons and
include the perhaps most abundant vertebrate species on
earth, Cyclothone sp. (Irigoien et al., 2014; Proud et al.,
2018). Approximately 90% of all small mesopelagic fishes
belong to the bristlemouths (Gonostomatidae) and lanternfishes
(Myctophidae). They form an important trophic link between
primary consumers (predominantly mesozooplankton) and
higher trophic levels such as large fish, squid, marine mammals,
and birds (Smith et al., 2011a). Most small mesopelagic fish,
which are generally found in the zone between approximately
200 and 1,000m, undertake a diurnal vertical migration following
their prey into the epipelagic zone to feed at night (Isaacs et al.,
1974). During daytime they retreat into the deep again, where
they digest and excrete, which likely results in a substantial
vertical carbon flux (Irigoien et al., 2014). Sonar reflections of
their swim bladders cause the oceanic deep scattering layer
(Barham, 1966). However, despite their importance for marine
food webs and organic carbon cycling, small mesopelagic fish are
largely understudied.

The sub-Antarctic and Antarctic waters of the Southern
Ocean are of particular importance both for global climate
through ocean circulation and as a relatively pristine
sanctuary for marine biodiversity. The Southern Ocean harbors
considerable biodiversity (Brandt et al., 2007; Griffiths, 2010),
although species richness of fish is low compared to temperate
and tropical seas with 322 currently recognized species from
19 families (Eastman, 2005). Nevertheless, the Southern Ocean
has been identified as an evolutionary hotspot, particularly
because of the morphological and ecological diversity of species
and a high degree of endemism, which amounts to 88% in
fish (Eastman, 1991, 2005). It is believed that a key factor for
such evolutionary uniqueness is the relative isolation of the
Southern Ocean fauna, initiated approximately 24–25 mya by the
formation of the Antarctic Circumpolar Current (ACC), a system
of ocean currents flowing around Antarctica from West to East
between 50◦ and 60◦ South (Eastman, 1991; Rintoul et al., 2001;
Lyle et al., 2007). The ACC is the dominant hydrographic feature
in the Southern Ocean (Orsi et al., 1995), and by providing
a continuous, strong flow it forms a variable, but permanent
boundary between Antarctic waters and water masses of lower
latitudes (Rintoul et al., 2001). This greatly hampers any possible
north-south (or south-north) migration of organisms. However,
Saunders et al. (2017) recently showed that lanternfish biomass
in the Scotia and Weddell Sea must be supported by mass
immigration from lower latitudes. The mesopelagic zone in
temperate regions is generally strongly stratified and includes
a distinct thermocline. Temperatures tend to range between 2◦

and 15◦C with the upper layer being warmer and well mixed,
followed by a sharp decrease in temperature at the thermocline
(at around 50–400m) and a gradual decrease of temperature
with increasing depth. In contrast, the Southern Ocean is
relatively well-mixed with temperatures ranging between −0.5
and 2.0◦C (Ikeda, 1988). Temperatures at 1,000m depth are
therefore similar in temperate and Antarctic regions, whereas
temperatures of upper water masses are very different.

Although less abundant than at lower latitudes, mesopelagic
fish are still numerous in Antarctic and sub-Antarctic waters and
represent a major part of the biomass (Eastman, 1993). In terms
of species richness, abundance, and biomass, the mesopelagic
zone there is dominated by lanternfishes (Myctophidae)
(Donnelly et al., 1990; Kock, 1992). Myctophids are common in
oceanic waters north of the Antarctic Slope Front (ASF; near
the Antarctic continental shelf break), where they act as largely
opportunistic mesozooplankton feeders with some interspecific
dietary variation (Pakhomov et al., 1996; Pusch et al., 2004;
Connan et al., 2010; Saunders et al., 2014, 2015). Charismatic
Antarctic top predators such as king penguin (Cherel et al.,
2009), Antarctic fur seals (Casaux et al., 2011; Santora, 2013),
and seabirds (Connan et al., 2007) heavily rely on myctophids as
a food source. Despite their small size some myctophid species
(Gymnoscopelus spp., Electrona carlsbergi) were commercially
exploited in the 1980s (Hulley, 1990; Kock, 1992). Of the
approximately 240 myctophid species recognized worldwide, 68
have been recorded south of the Sub-Tropical Front, 15 of which
have a Sub-Antarctic and two an Antarctic distribution pattern
(Duhamel et al., 2014). The remaining species exhibit widespread
distribution patterns and only sporadically occur in the Southern
Ocean.

Ecological studies are dependent on accurate biological

identification to a level of taxonomic resolution appropriate for
the study goal (Tautz et al., 2003). In myctophids, photophore
patterns are mainly used to distinguish species. However,

accurate identification can be impeded, because myctophids
tend to lose scales during capture and are easily damaged

in the net. The identification of early life stages may also

be challenging. DNA barcoding is a molecular technique that

uses the mitochondrial cytochrome c oxidase I gene (COI) as
a genetic marker to provide biological identifications (Hebert
et al., 2003). The system is now widely accepted and many

taxa, including teleosts, have been successfully integrated in

barcoding initiatives and data systems (Ratnasingham and
Hebert, 2007, 2013; Ward et al., 2009). A sufficiently complete

reference dataset of DNA barcodes thus enables fast and
efficient verifications for morphologically identified specimens
as long as COI exhibits levels of interspecific divergence that
are higher than the intraspecific divergence of a given group.
Furthermore, it can assist with the discovery of misidentified
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specimens, cryptic or simply not yet identified new species, help
settle synonymies, or hint at intraspecific genetic structuring
(Hajibabaei et al., 2007; see Bucklin et al., 2011 for an
extended overview of marine barcoding applications). The
latter can be used in phylogeography, a discipline concerned
with phylogenetic relatedness and connectivity of species or
populations with respect to geographic distribution. Genetic
distance, derived from markers such as COI, is used to study the
historical processes that may be responsible for the contemporary
geographic distribution of individuals. In order to increase
robustness of results derived from COI data, it can be useful
to include an additional genetic marker, particularly nuclear
and thus biparentally inherited (Cao et al., 2016; Thiel and
Knebelsberger, 2016). Rhodopsin belongs to a family of genes,
the so called G-protein-coupled receptors, that are involved
in translating external information (e.g., light, molecules) into
internal signals that can be processed by organisms. Rhodopsin
encodes a protein that is involved in photoreception (Palczewski
et al., 2000). It occurs on the rod cells and is extremely light
sensitive enabling vision under low-light conditions (Yokoyama
and Yokoyama, 1996). In Actinopterygians, the rhodopsin gene
generally occurs in two copies, homologous to other vertebrates.
One copy, rh1, is an intronless retrogene that does not recombine
anymore with other opsins and has proven useful for fish
identification and phylogeny (Fitzgibbon et al., 1995; Chen et al.,
2003; Lin et al., 2017; Morrow et al., 2017).

Less than a decade ago Grant and Linse (2009) recognized
a lack of Antarctic barcoding studies. The Census of Antarctic
Marine Life (CAML) set an explicit focus on DNA barcoding,
resulting in many studies making significant progress in
addressing this gap (Schiaparelli et al., 2013 and references
therein). Over the past few years, Antarctic barcoding
demonstrated the usefulness of COI sequencing e.g., to identify
Trematomus fishes (Lautredou et al., 2010), and showcased the
presence of cryptic species in various groups, e.g., pycnogonids
(Krabbe et al., 2010), amphipods (Havermans et al., 2011),
octopuses (Allcock et al., 2011), skates (Smith et al., 2008), and
grenadier fishes (Smith et al., 2011b; McMillan et al., 2012). These
examples clearly demonstrate that despite the fact that Antarctic
biodiversity is still underexplored (Grant et al., 2010; Griffiths,
2010), molecular techniques can enhance our understanding of
contemporary diversity patterns and the processes that shaped
these (Allcock and Strugnell, 2012). Fish communities of the
Southern Ocean have been studied using DNA barcoding, but
these studies primarily focused on benthic fish in the Scotia Sea
(Rock et al., 2008), Dumont D’Urville Sea (Dettaï et al., 2011),
and Ross Sea (Smith et al., 2012). Phylogeographic patterns
of myctophids have been investigated for a few species (e.g.,
Electrona antarctica, Van de Putte et al., 2012), but to date no
study has compared species across the Southern Ocean. Here, we
present an extensive DNA barcoding approach to investigate the
ecologically relevant community of Antarctic mesopelagic fish.

Our objectives were, (1) to extend the DNA barcode library of
Antarctic mesopelagic fish, (2) to assess the success of specimen
identification using this system, (3) to discover potential
mismatches between taxonomy and genetic identification, (4) to
compare our Antarctic myctophid phylogenetic data with recent

myctophid phylogenies, and (5) to investigate phylogeographic
patterns of common Antarctic myctophids. To achieve these
objectives, we used a large-scale dataset of mesopelagic Antarctic
fish, covering over 1,000 specimens from a circum-Antarctic
sampling range. This dataset includes 386 new samples and
combines these with publicly available sequences found on the
Barcode of Life Data Systems, BOLD (Ratnasingham and Hebert,
2007). We focused on the analysis of COI, but extended our
results by incorporating an additional nuclear marker (rh1).
Thus, a comprehensive picture on the inter- and intraspecific
diversity of mesopelagic fishes occurring in the Southern Ocean
was drawn.

MATERIALS AND METHODS

Sampling and Identification
Mesopelagic fish were captured in the Southern Ocean and sub-
Antarctic waters during various expeditions. The sampling effort
comprised cruise 200 with RV James Clark Ross (see Collins
et al., 2012b), cruises PS65 and PS69 with RV Polarstern, BROKE-
West with RV Aurora Australis and additional Atlantic samples
collected with RV G.O. Sars (BOLD project FISCO); the POKER
sampling campaign 2010 off Kerguelen and additional Pacific
samples from the JAMSTEC survey with RV Hakuho Maru
(BOLD project MYCSO); cruises JR100 (Collins et al., 2008),
JR161 and JR177 (Collins et al., 2012b) with RV James Clark
Ross and few specimens from commercial vessels (BOLD project
BASMF); and finally 23 myctophid specimens collected off
South Africa (BOLD project DSSAU). Samples from the Atlantic
and Pacific Oceans were included to provide an outgroup
framework. Overall, these sampling efforts yielded a total of
386 previously unpublished specimens (Table 1). All specimens
were identified morphologically aboard the research vessels
or, in absence of a taxonomic expert, immediately frozen or
preserved whole in high-grade ethanol or formalin and identified
at the respective institutions. Muscle tissue or fin biopsies
were excised using sterile tools and stored in ethanol. In most
cases identifications were carried out to species level and only
in some instances to family or genus level (juvenile/larval or
severely damaged specimens). The majority of specimens are
stored at the Muséum National d’Histoire Naturelle (MNHN,
Paris), KU Leuven (Belgium), the British Antarctic Survey
(BAS, Cambridge) or the National History Museum (NHM,
London), and the South African Institute for Aquatic Biodiversity
(Grahamstown), respectively. Detailed collection data of all
specimens are shown in Supplementary Table S1.

DNA Extraction, PCR and Sequencing
DNA was extracted from the tissue sample using a modified
standard salting-out protocol (Cruz et al., 2016). Extracts from
the datasets FISCO, BASMF, and DSSAU were subsequently
shipped to the University of Guelph, Canada, for COI
amplification and sequencing following protocols described in
Steinke and Hanner (2011). Primers used for COI were the
cocktails C FishF1t1-C FishR1t1 as described in Ivanova et al.
(2007). Rhodopsin gene fragments (rh1) were amplified using
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TABLE 1 | Overview of fish specimens and species and the respective numbers of DNA sequences that were successfully obtained for the cytochrome c oxidase I (COI)
and rhodopsin (rh1) gene.

Project Specimens Species COI sequences Rh1 sequences

FISCO 190 33 144 35

MYCSO 99 17 62 52

BASMF 73 28 69 0

DSSAU 24 8 24 0

Total (previously unpublished) 386 min. 57 299 87

Mined from BOLD/GenBank 762

Outgroup, mined from BOLD 9 5

Total (used for tree building) 1073 90

Project name abbreviations as used in the Barcode of Life Data Systems, BOLD (Ratnasingham and Hebert 2007). Some samples with unclear identification status were excluded from
tree building.

Rh193-5′CNTATGAATAYCCTCAGTACTACC3′ and Rh1039r-
5′ TGCTTGTTCATGCAGATGTAGA3′ primers (Chen et al.,
2003). Amplificationwas conducted in 25µl volumewith 0.2mM
dNTP’s, 2.5mM MgO2, 20µM primer mix, and conventional
PCR buffer and Taq polymerase. PCR conditions were 2min
initial denaturation at 94◦C, followed by 30–40 cycles of 20 s
at 94◦C, 30 s at 50–60◦C, 70 s at 72◦C, and a final 3min
elongation at 72◦C. The MYCSO COI and rh1 dataset was
generated at MNHN (France) following Dettaï et al. (2011)
for extraction, PCR, and sequencing using standard automatic
capillary sequencers. Additional rh1 sequences were generated at
KU Leuven (Belgium) for the FISCO samples following the same
protocol.

Dataset Augmentation and Trimming and
Phylogenetic Statistics
We were able to retrieve 299 COI and 87 rh1 sequences of 308
specimens from 16 locations (Table 1, Figure 1). These sequences
were deposited in the BOLD datasets: “Fishes of the Scotia
Sea” (FISCO), “Myctophids of the Southern Ocean” (MYCSO),
“BASMF,” and “DSSAU.” To increase taxonomic and spatio-
temporal coverage our unpublished dataset was extended with
publicly available data from BOLD/GenBank including some
previously published Antarctic COI barcode sets: Rock et al.
(2008) (samples from the Scotia Sea, South Orkney Islands,
and Elephant Island), Mabragaña et al. (2011) (Argentina),
Smith et al. (2012) (Ross Sea, Heard and McDonald Islands
and more). Altogether, sequences cover an unprecedented
area of the Southern Ocean, although many regions remain
underrepresented (Figure 1). This can be attributed to the
enormous logistic and financial challenges posed by Antarctic
exploration. Species identity of all previously unpublished
specimens from the Southern Ocean dataset was confirmed
using internal tools of BOLD (Ratnasingham and Hebert, 2007)
using all available COI sequences > 500 bp with species
level identification on 15th December 2017. If molecular
and morphological identification did not match, a second
morphological examination was performed and only specimens
that were attributed to the species identified by BOLD were

kept as such. In addition, in case of any doubt, e.g., the absence
of crucial morphological characters, the specimen was excluded
from further analysis.

Sequences from five Synodotus binotatus (two-spot lizardfish)
specimens curated on BOLDwere included for bothCOI and rh1.
Synodus binotatus is an aulopiform fish, the order with closest
common ancestor to myctophiform fishes (Betancur et al., 2017).
These sequences were used as outgroup for phylogenetic tree
rooting. Two COI sequences each of Neoscopelus macrolepidotus
andN. microchir (Neoscopelidae (blackchins), the other family in
Myctophiformes, next to Myctophidae) were also included. No
rh1 sequences of Neoscopelidae were available. Three different
datasets were used for phylogenetic reconstruction: (1) all
available COI sequences (new sequences, published myctophid
sequences, and outgroup; total N = 1073); (2) all available rh1
sequences (new sequences and outgroup; N = 90); and (3) a
concatenated dataset consisting of specimens from (1) and (2) for
which good quality sequences of COI and rh1 were available (N
= 68, including outgroup). Sequences were aligned via MUSCLE
(Edgar, 2004) within Geneious v.8.1.5 (Biomatters Ltd) using a
maximum of eight iterations and standard preset values. Tree
building was performed in R v3.1.2 (R Core Team, 2016) using
the packages “ape” (Paradis et al., 2004; Popescu et al., 2012) and
“phangorn” (Schliep, 2011). Kimura’s two-parameter substitution
model (Kimura, 1980) is commonly used in DNA barcoding
studies to construct genetic distance matrices, although the fit
might be poor (Collins et al., 2012a). We decided to assess
a variety of nucleotide substitution models with phangorn’s
“modelTest” function. The most appropriate model for all three
datasets as determined by Akaike’s information criterion (AIC)
was the general time reversible model with gamma distributed
rate variation among sites and a proportion of invariable sites
(“GTR+G+I”). This substitutionmodel was used as initial fit and
for subsequent maximum likelihood (ML) optimization using
a stochastic algorithm instead of nearest-neighbor-interchange
to avoid local maxima. Edge support was evaluated with 10,000
randomly seeded bootstraps. Consensus trees were created in
Geneious with a support threshold of 70% (Hillis and Bull, 1993)
and were subsequently manually checked and annotated using
MEGA7 v7.0.26 (Kumar et al., 2016). COI haplotype networks
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FIGURE 1 | Locations of mesopelagic fish sampled in the Southern Ocean and subsequently used for DNA barcoding. The bold, red line marks the approximate

position of the Antarctic Polar Front. Location codes are (approx. clockwise from West to East Antarctic): SAO, South Atlantic Ocean; SCS, Scotia Sea; EI, Elephant

Island; SO, South Orkney Islands; SG, South Georgia Islands; SSI, South Sandwich Islands; BI, Bouvet Island; LAS, Lazarev Sea; AB, Agulhas Bank (off South Africa);

COS, Cosmonauts Sea; CPS, Cooperation Sea; KG, Kerguelen Islands; HMI, Heard and McDonald Islands; DDU, Dumont d’Urville Sea; ROS, Ross Sea.

were created by median joining (Bandelt et al., 1999) in popART
v.1.7 (Leigh and Bryant, 2015).

RESULTS

Extension of the DNA Barcode Library
Mesopelagic fish of various research expeditions were identified,
cataloged, and when possible sequenced for COI and/or rh1. In
some cases (not listed here) sequencing was impossible due to
DNA degradation or amplification failure. Overall, 297 reliable
COI sequences were added to BOLD after rigorous validation and
exclusion of doubtful samples (two samples excluded, see below).
Some of these sequences belong to larval, juvenile or incidentally
caught fishes whose adult stages are generally not mesopelagic
(notothenioids, grenadiers), leaving 264 Antarctic meso- or
bathypelagic specimens from 35 different species with validated
identification and COI sequences—a biogeographic assemblage
that was previously almost absent in the database. The worldwide
database formyctophids was extended by 23.7% to a total of 1,021

sequences. Furthermore, 87 validated rh1 sequences were added
to BOLD. All samples and sequence IDs and associated metadata
can be found in Supplementary Table S1.

Specimen Identification
All 299 previously unpublished COI sequences were identified
using BOLD data and tools (using only species level barcode
records). In some instances this revealedmost likelymisidentified
or mislabeled sequences in BOLD. If only one COI sequence of
a given species on BOLD was misidentified, the identification
engine will declare there was no species level match. For
instance, at time of study BOLD contained 68 sequences
with the Barcode Index Number (BIN; Ratnasingham and
Hebert, 2013) corresponding to Electrona antarctica (Antarctic
lanternfish; BOLD: AAB3737), all with low pairwise distance
(average: 0.08%, maximum: 0.78%). The nearest neighbor of this
BIN is Symbolophorus veranyi (large-scale lanternfish; BOLD:
AAC4870; pairwise distance: 2.39%). Yet, one of the specimens
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in AAB3737 (E. antarctica) is labeled Nannobrachium achirus—
a more distant species well represented by 27 other sequences
in the clearly distinct BIN BOLD: AAB3778. In these cases
we highlighted the likely misidentified or mislabeled sequences
present in the database (Supplementary Table S2). Five such
sequences were accessible to us and are now flagged in BOLD to
avoid future misidentifications when using the database.

Using this procedure, morphological and molecular
identification showed high levels of congruence (97.65%).
In eleven cases the morphological identification could be
confidently improved using the BOLD identification engine,
as specimens were attributed at least to genus level; which
was confirmed through the placement of the specimen in the
phylogenetic trees. In seven further cases a mismatch between
morphological and molecular identification was detected. After
detailed inspection the identification was revised (Table 2). Five
specimens with unclear species or genus level identification
could not be matched to any available COI sequence in BOLD.
However, they could be attributed to genus level based on the
phylogenetic tree (highlighted in bold italics in Figure 1). Two
specimens were excluded from further analysis, because COI
and rh1 gave conflicting results, likely indicating contamination
or similar error in the laboratory. Lastly, nine specimens had
matching morphological and molecular identification, although
only uni-directional sequences were obtained. These were
included in phylogenetic analyses, but flagged as non-barcode
compliant on BOLD.

Phylogeny
The curated datasets were used to produce three phylogenetic
ML consensus trees: one for COI, one for rh1, and one for both
combined. Sequence alignment was not problematic, as these are
coding sequences without gaps. In each case “GTR+G+I” was
identified as the most appropriate nucleotide substitution model.
Clades with bootstrap support below 70% after consensus tree
building were collapsed, i.e., these splits were not retained or
displayed in the figures.

The Cytochrome C Oxidase I Gene
The dataset includes 1,073 sequences of 539 bp length with 337
variable sites. Myctophidae are not resolved as monophyletic,
because the aulopiform species Notolepis coatsi (Antarctic
jonasfish) and Lagiacrusichthys macropinna (previously
Benthalbella macropinna, see Davis, 2015) are placed within a

Lampanyctinae clade and the neoscopelid species Neoscopelus
macrolepidotus and N. microchir are placed next to Notolychnus
valdiviae (topside lanternfish; Figure 2). Other outgroup taxa are
placed outside ofMyctophidae, but their exact position is not well
resolved (i.e., often <70% bootstrap support and thus displayed
as polytomic). Within Myctophidae the tribe Electronini (sensu
Paxton, 1972) and subfamily Gymnoscopelinae (sensu Martin
et al., 2017) are monophyletic with medium bootstrap support
(BS = 78 and 79%, respectively). Diaphinae (sensu Martin et al.,
2017) is monophyletic as well (BS = 89%), with the exception of
the inclusion of Symbolophorus boops (bogue lanternfish). The
placement of these three subfamilies/tribes and the remaining
genera within the Myctophidae is less clear, with bootstrap
support at times below the applied cut-off threshold. Myctophid
species with their main distribution range in Sub-Antarctic
or Antarctic waters all belong to the three groups mentioned
above, except for S. boops and Lampanyctus achirus (previously
Nannobrachium achirus, see Martin et al., 2017), a bathypelagic
species that was placed within a clade of Lampanyctus spp.,
sister group of Parvilux ingens. As the focus of this study is on
(sub-)Antarctic mesopelagics, further description and discussion
is restricted to these species and their position in the phylogenetic
trees.

Within Electronini, the position of the genera Metelectrona,
Electrona, Krefftichthys, and Protomyctophum is unclear.
Electrona antarctica forms a clade with K. anderssoni (BS =

75%). Metelectrona ventralis (flaccid lanternfish) is resolved
as sister group (BS = 84%) to Protomyctophum, the only
monophyletic genus (BS = 99%). Electrona subaspera (rough
lanternfish) and E. paucirastra (belted lanternfish), and E. risso
(electric lanternfish) and E. carlsbergi (electron subantarctic
lanternfish), respectively, appear to be closely related (BS =

89% in both cases). Within Protomyctophum, the split into the
subgenera Hierops and Protomyctophum is supported except
for P. tenisoni, which is placed next to these subgenera (BS =

99%). Hierops contains P. parallelum (parallel lanternfish), P.
thompsoni (bigeye lanternfish), P. arcticum (Arctic telescope),
and P. crockeri (California flashlightfish) (BS = 97%) and the
subgenus Protomyctophum contains P. bolini, P. choriodon, P.
andriashevi, and P. gemmatum (BS= 88%).

In Gymnoscopelinae (sensu Martin et al., 2017),
Gymnoscopelus is monophyletic (BS = 99%) and sister group to
a clade with medium support (BS = 74%) containing Scopelopsis
multipunctatus and the also monophyletic Notoscopelus (BS =

TABLE 2 | Antarctic mesopelagic fish specimens where mismatch between morphological and molecular identification led to re-identification after detailed inspection.

Specimen ID Sequence ID Initial identification Molecular identification Final identification

GYP#1 BASMC030-09 Gymnoscopelus piabilis G. nicholsi G. nicholsi

GYF#4 BASMC039-09 G. fraseri G. bolini G. bolini

PRL#1 BASMC057-09 Protomyctophum luciferum P. bolini P. bolini

KUL_Gym_bra_PS69_FF_1524 FISCO075-10 G. braueri G. opisthopterus G. opisthopterus

KUL_Hyg_hyg_27677 FISCO108-10 Hygophum sp. Benthosema glaciale B. glaciale

KUL_Lam_mac_27733 FISCO112-10 Lampanyctus sp. Lobianchia dofleini L. dofleini

KUL_Lob_dof_27761 FISCO114-10 Lobianchia dofleini Lobianchia gemellarii L. gemellarii
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Synodus binotatus (n=5)
Macrourus sp.

Trematomus sp. (n=2)

Nototheniidae
Bathydraco sp. (n=5)

Pogonophryne marmorata
Artedidraco skottsbergi
Pogonophryne marmorata
Gerlachea australis

Cygnodraco mawsoni
Pleuragramma antarctica (n=12)

Sio sp.
Sio nordenskjoldii

Poromitra capito (n=3)
Bathylagus antarcticus (n=12)

Oneirodes notius
Gonichthys cocco (n=4)

Gonichthys tenuiculus (n=2)
Gonichthys cocco

Centrobranchus sp.

Centrobranchus choerocephalus (n=2)

Centrobranchus brevirostris
Centrobranchus sp.

Centrobranchus nigroocellatus

Myctophum sp. (n=2)

Myctophum obtusirostre
Myctophum obtusirostre

Myctophum brachygnathum
Myctophum sp.

Myctophum lychnobium
Myctophum sp.
Myctophum lychnobium
Myctophum spinosum (n=5)

Myctophum asperum (n=2)
Myctophum selenops (n=3)

Myctophum orientale
Myctophum orientale

Loweina interrupta
Loweina rara

Tarletonbeania crenularis (n=4)
Symbolophorus evermanni
Symbolophorus rufinus
Symbolophorus sp.

Symbolophorus evermanni (n=2)

MYCSO027 - Symbolophorus sp.
Symbolophorus reversus
Symbolophorus evermanni
Symbolophorus californiensis (n=5)

Centrobranchus andrea (n=3)
Benthosema fibulatum (n=3)

Benthosema panamense
Benthosema pterotum
Benthosema pterotum

Diogenichthys atlanticus (n=4)
Diogenichthys sp.
Diogenichthys panurgus

Diogenichthys atlanticus
Diogenichthys laternatus (n=3)

Benthosema suborbitale

Electrona antarctica

(n=61)
Krefftichthys anderssoni (n=20)

Protomyctophum gemmatum (=3)
Protomyctophum andriashevi (n=7)
Protomyctophum choriodon (n=6)
Protomyctophum bolini (n=21)
Protomyctophum crockeri (n=3)

Protomyctophum sp.

Protomyctophum thompsoni (n=2)

Protomyctophum parallelum (n=3)
Protomyctophum arcticum (n=18)

Protomyctophum parallelum
Protomyctophum tenisoni (n=9)

Metelectrona ventralis (n=8)
Electrona carlsbergi (n=16)

Electrona risso (n=23)
Electrona paucirastra (n=2)

Electrona subaspera

Electronini

Neoscopelus macrolepidotus (n=2)
Neoscopelus microchir (n=2)

Notolychnus valdiviae (n=13)
Benthosema glaciale (n=17)

Bolinichthys supralateralis (n=3)

Bolinichthys distofax
Bolinichthys supralateralis
Bolinichthys distofax
Bolinichthys pyrsobolus
Bolinichthys sp. (n=2)

Bolinichthys longipes (n=2)
Lepidophanes guentheri (n=18)

Lepidophanes gaussi (n=9)
Ceratoscopelus warmingii (n=19)

Ceratoscopelus maderensis (n=15)
Notolepis coatsi (n=4)

Lagiacrusichthys macropinna
Ceratoscopelus maderensis

Notoscopelus bolini (n=6)
Notoscopelus elongatus (n=11)

Notoscopelus resplendens
Notoscopelus caudispinosus (n=3)

Scopelopsis multipunctatus (n=5)
Gymnoscopelus nicholsi
Gymnoscopelus piabilis
Gymnoscopelus hintonoides (n=16)
Gymnoscopelus piabilis (n=2)
Gymnoscopelus fraseri (n=2)

Gymnoscopelus fraseri (n=10)

Gymnoscopelus bolini (n=7)
Gymnoscopelus bolini (n=6)

Gymnoscopelus nicholsi (n=41)

Gymnoscopelus bolini

Gymnoscopelus braueri (n=30)

Gymnoscopelus opisthopterus (n=24)

Gymno-

scopelinae

Myctophidae (n=2)

Diaphus dumerilii (n=4)
MYCSO056 - Diaphus sp.

Diaphus schmidti

Diaphus fragilis (n=2)

Diaphus chrysorhynchus

Diaphus sp. (n=2)

Diaphus watasei (n=2)
Diaphus signatus

Symbolophorus boops (n=6)
Diaphus brachycephalus (n=3)
Diaphus richardsoni
Diaphus sp.

Diaphus aliciae

Diaphus sp. (n=2)

Diaphus lobatus

Diaphus fulgens (n=2)

Diaphus theta (n=12)
Diaphus rafinesquii (n=10)

Diaphus subtilis
Diaphus holti (n=4)

Diaphus anderseni (n=2)

Diaphus parri (n=2)
Diaphus meadi
Diaphus parri

Diaphus mollis
Diaphus sp.
Diaphus mollis (n=2)

Diaphus effulgens (n=5)
Diaphus thiollierei
Diaphus sp.
Diaphus thiollierei
Diaphus sp.

Diaphus perspicillatus (n=2)

Diaphus metopoclampus (n=6)
Diaphus garmani

Diaphus malayanus
Diaphus splendidus (n=3)

Diaphus sp.
Diaphus antonbruuni

Diaphus whitleyi
Diaphus adenomus

Diaphus bertelseni
Diaphus gigas

Diaphus lucidus
Triphoturus mexicanus (n=4)

Triphoturus sp.
Triphoturus oculeum

Triphoturus nigrescens (n=3)
Lampanyctus crocodilus (n=9)
Lampanyctus macdonaldi (n=13)

Lampanyctus photonotus (n=8)

Lampanyctus achirus (n=28)

MYCSO046-13 - Lampanyctus sp. (n=1)
Lampanyctus bristori
Lampanyctus festivus (n=2)
Lampanyctus tenuiformis (n=5)
Lampanyctus ritteri (n=9)

Lampanyctus ritteri (n=2)
Lampanyctus regale

Lampanyctus ritteri
Lampanyctus regale (n=2)

Lampanyctus regale

Lampanyctus tenuiformis (n=2)

Lampanyctus festivus
Lampanyctus tenuiformis

Lampanyctus fernae
Lampanyctus jordani
MYCSO009-13 - Lampanyctus sp.

Lampanyctus australis (n=8)
Lampanyctus alatus (n=12)

Lampanyctus pusillus (n=19)
Lampanyctus intricarius (n=5)
Lampanyctus macdonaldi (n=5)

Lampanyctus atrum (n=11)

Lampanyctus atrum (n=2)

Lampanyctus crocodilus
Lampanyctus atrum
Lampanyctus atrum (n=3)

Lampanyctus cuprarium (n=8)
Lampanyctus lineatum (n=4)

Lampanyctus sp.
Lampanyctus sp.

Lampanyctus hubbsi
Lampanyctus omostigma

Lampanyctus nobilis (n=8)
Lampanyctus turneri

Lampanyctus nobilis (n=3)
Lampanyctus sp. 

Parvilux ingens (n=2)
Stenobrachius nannochir (n=5)

Stenobrachius leucopsarus (n=21)

Taaningichthys minimus (n=2)
Lampadena speculigera (n=6)

Taaningichthys bathyphilus (n=6)
Lampadena urophaos (n=4)

Lampadena chavesi (n=3)
Lampadena anomala (n=2)
Lampadena yaquinae
Lampadena luminosa (n=5)

Lampadena atlantica
Lampadena urophaos

Lampadena urophaos (n=2)
Lampadena urophaos (n=3)

Lobianchia gemellarii (n=7)
Lobianchia dofleini (n=15)

Hygophum reinhardtii (n=3)
MYCSO008 - Hygophum sp.

Hygophum atratum

Hygophum proximum (n=2)
Hygophum reinhardtii
Hygophum hanseni

Hygophum hygomii (n=10)
Hygophum benoiti (n=17)

Hygophum taaningi
Symbolophorus veranyi (n=6)

Symbolophorus barnardi (n=3)
Myctophum sp. (n=2)

Myctophum nitidulum (n=2)

Myctophum affine
Myctophum sp.

Myctophum nitidulum
Myctophum aurolaternatum (n=4)

Myctophum punctatum (n=25)

Idiacanthus atlanticus (n=2)
Borostomias antarcticus (n=2)

Pseudoicichthys australis
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FIGURE 2 | Continued.

FIGURE 2 | Phylogenetic consensus tree of myctophid fishes based on

cytochrome c oxidase I (COI) gene variation using a maximum likelihood

analysis with 10,000 bootstrap permutations. Bootstrap support> 70 is

shown above the branches; branches with lower support are collapsed to

polytomies; species with Antarctic, broadly Antarctic, and sub-Antarctic

distribution pattern following Duhamel et al. (2014) are depicted in purple, dark

blue, and light blue, respectively (please see online version of the article for

full-scale, color figure). Number of collapsed samples noted in brackets.

Samples where genus level identity was added a posteriori based on position

in the tree are noted in bold italics.

99%). Within Gymnoscopelus, two single specimens identified
as G. piabilis (Southern blacktip lanternfish) and G. nicholsi
(Nichol’s lanternfish) form their own clade apart from all other
specimens with the same identification (BS = 93%). Sister group
to these is a clade comprised of G. hintonoides (false-midas
lanternfish), G. piabilis, and G. fraseri (BS = 100%), in which
G. hintonoides and G. piabilis are resolved as monophyletic (BS
= 88 and 98%), but G. fraseri not. Gymnoscopelus bolini and G.
nicholsi form a clade (BS= 91%), in which G. nicholsi is placed as
one group (BS = 99%), but G. bolini as three. Lastly, G. braueri
and G. opisthopterus are monophyletic sister group to all others
(BS = 98%) and also monophyletic within each species (BS =

82% for G. braueri and 99% for G. opisthopterus).

The Rhodopsin Gene
The compiled rhodopsin dataset includes 90 sequences of
820 bp length including 511 variable sites. The Myctophidae
are monophyletic with 100% bootstrap support (Figure 3).
Diaphinae and Gymnoscopelinae are resolved as monophyletic
similarly to the COI tree, but Electronini are not. However, the
taxonomic sampling is much smaller than for the COI dataset
and covers 21 myctophid species, whereas Duhamel et al. (2014)
report 66 species that are at least occasionally recorded south of
the Sub-Tropical Front.

Electronini are paraphyletic with the inclusion of
Diogenichthys sp. and Myctophum species. Electrona antarctica
is placed outside the remaining Electronini and and Myctophum
spp. as sister group to Diogenichthys sp. (BS = 86%). Within
the other Electronini, Kreffthichtys anderssoni, and E. carlsbergi
diverge first from the monophyletic Protomyctophum (BS =

98%), represented by P. bolini and P. choriodon.
The genus Gymnoscopelus (no other Gymnoscopelinae were

available for rh1) forms a monophyletic group with high
bootstrap support (100%), with two G. fraseri and four G.
nicholsi diverging first from all other specimens (BS = 99%).
Three further G. fraseri are resolved within the remaining clade,
next to G. bolini and G. hintonoides (BS = 78%) and another
clade that comprises G. braueri and G. opisthopterus (BS =

100%). However, the resolved topology differs from the COI
tree, although G. braueri and G. opisthopterus are resolved as
sister taxa in both analyses. Lampanyctus achirus—the only other
myctophid common in sub-Antarctic waters in this dataset—
clusters with a clade of Lampanyctus spp. similarly to COI.

Both Markers Combined
The concatenated dataset comprises 68 specimens. In total this
dataset has 795 variable sites. As expected the concatenation
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Lampadena luminosa (n=2)

Electrona antarctica (n=15)

Diogenichthys sp.
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Krefftichthys anderssoni

Myctophum spinosum (n=2)
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MYCSO035 - Myctophum sp.
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Symbolophorus sp. (n=2)

Symbolophorus sp.
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FIGURE 3 | Phylogenetic consensus tree of myctophid fishes based rhodopsin (rh1) gene variation using a maximum likelihood analysis with 10,000 bootstrap

permutations. Bootstrap support> 70 is shown above the branches; branches with lower support are collapsed to polytomies; species with Antarctic, broadly

Antarctic, and sub-Antarctic distribution pattern following Duhamel et al. (2014) are depicted in purple, dark blue, and light blue, respectively (color figure available

online). Number of collapsed samples noted in brackets.

of both markers reduced the size of the dataset, but provided
at times higher confidence in the resolved consensus topology.
The Myctophidae are monophyletic with 100% bootstrap
support (Figure 4). The tribe Electronini is monophyletic
except for the inclusion of a Diogenichthys sp. and placed
within a clade also containing Symbolophorus spp., Hygophum
spp., and Myctophum species. This entire clade is a sister
group of a clade containing Notolychnus valdiviae, Lampadena
luminosa (luminous lanternfish), a Diaphinae clade, and a
clade of Gymnoscopelus and Lampanyctus. The latter are both
monophyletic with 100% bootstrap support.

Within the Electronini a clade comprising E. antarctica and
the singleDiogenichthys sample diverges first from the remaining
samples. Krefftichthys anderssoni is sister group to a clade with
E. carlsbergi and the remaining Protomyctophum (P. bolini
and P. choriodon). Hence, Protomyctophum is monophyletic

(BS= 100%), but Electrona and Krefftichthys are not. Diaphinae
are monophyletic, but only D. richardsoni, D. brachycephalus
(short-headed lanternfish), and unidentified Diaphus spp. are
included; therefore, further inferences are impossible.

Gymnoscopelinae (although only Gymnoscopelus is present
in this dataset, neither Scopelopsis nor Notoscopelus) is resolved
as monophyletic with 100% bootstrap support. Within
Gymnoscopelus, G. nicholsi diverges first from other taxa,
with high support (BS = 100%). Gymnoscopelus bolini is sister
group (BS = 96%) to a clade that contains two other clades, with
G. fraseri and G. hintonoides (BS = 100%) and G. braueri and G.
opisthopterus (BS = 100%), respectively. Lampanyctus achirus
is again placed inside a clade of Lampanyctus spp., here sister
group of the Gymnoscopelus clade (BS = 80%). Sister to these
two clades are the Diaphinae, Notolychnus valdivae, and two
samples of Lampadena luminosa.
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FIGURE 4 | Phylogenetic consensus tree of myctophid fishes based on cytochrome c oxidase I (COI) and rhodopsin (rh1) gene variation using a maximum likelihood

analysis with 10,000 bootstrap permutations. Bootstrap support> 70 is shown above the branches; branches with lower support are collapsed to polytomies;

species with Antarctic, broadly Antarctic, and sub-Antarctic distribution pattern following Duhamel et al. (2014) are depicted in purple, dark blue, and light blue,

respectively (color figure available online). Number of collapsed samples noted in brackets.

Phylogeography and Cryptic Species
In addition to further parameterizing the BOLD database
and investigating phylogenetic relationships of particularly sub-
Antarctic and Antarctic myctophids, our data was used to
identify phylogeographic diversity patterns of Southern Ocean
myctophids. These analyses focused on the largest dataset,
COI, and mainly on species of the tribe Electronini and the
subfamily Gymnoscopelinae, comprising 203 specimens from
16 species and 167 specimens from 12 species, respectively.
They were plotted as sub-trees of the COI tree (Figure 2) with
all (sub-) Antarctic species coded corresponding to sampling
locality and associated haplotype networks (Figures 5, 6; codes
as in Figure 1). The geographical coverage within species varies
from circum-Antarctic to only a few single sites. In general,
these data cover specimens of most waters around Antarctica, as
well as more northerly areas (Scotia Sea, South Atlantic Ocean
north of the Scotia Sea and off Argentina, waters around Bouvet
Island, and the Kerguelen and Heard and McDonald Islands
plateaus, and off South Africa; Figure 1). Lampanyctus achirus
is not resolved as a single clade, but rather two groups – one
with seven individuals caught off South Africa, and one with 21
individuals from the Ross Sea, Dumont d’Urville Sea, Scotia Sea,
Kerguelen Islands, and also one individual from South Africa
(Supplementary Figure S1). Symbolophorus boops is resolved as
group of six individuals with low COI variation. Phylogeographic
patterns of the other (sub-) Antarctic myctophids are discussed
by tribe/subfamily below.

Electronini
Electrona antarctica is the most common species in available COI
sequences (N = 61). Nonetheless, intraspecific variation appears
to be minimal, with only one small group of five individuals
clustering apart with moderate support (BS = 84%) and the
vast majority of specimens showing one identical haplotype

(Figure 5). The group that clusters apart comprises samples from
the Ross Sea, Heard andMcDonald Islands, and Cosmonauts Sea,
all locations also present in the other group. The intraspecific
diversity is low and appears not to be related to geography.
Krefftichthys anderssoni is present in sufficient numbers (N = 20)
and with relatively broad geographical coverage, but no structure
is apparent, although haplotype diversity is a little higher
compared to E. antarctica. The sub-Antarctic Electrona carlsbergi
features one sample of unknown origin that is separated with
moderate support (BS = 71%). The remaining samples show
some haplotype diversity, but no phylogeographic pattern.
Electrona subaspera as well as Protomyctophum parallelum are
only present in small numbers (N = 1 and 4, respectively).
Metelectrona ventralis is represented by only eight samples, five
of which come from Agulhas Bank off South Africa (Figure 5).
The remaining three samples have no public locality information.
However, two of these build a distinct cluster divergent from all
others (BS= 95%). All nine P. tenisoni are from the Scotia Sea or
the South Atlantic Ocean, showing no signs of phylogeographic
diversity. The remaining Protomyctophum, i.e., P. bolini, P.
choriodon, P. andriashevi, and P. gemmatum, also show no sign
of elevated intraspecific variability or clustering by location.

Gymnoscopelinae
In Gymnoscopelus (Figure 6), G. nicholsi shows moderate
diversity with all but one specimen represented in one clade, but
more different haplotypes than E. antarctica. The only outlier
here is a specimen from the Kerguelen Island plateau (BS =

99%), although the remaining samples include individuals from
the Kerguelen area as well. In contrast, G. bolini is split into three
groups with high support: (1) one group with two samples each
from the Ross Sea, Heard and McDonald Island, and Scotia Sea
(BS = 98%); (2) one group (including a sub-split) with samples
from Heard and McDonald as well as Kerguelen Islands, but also
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FIGURE 5 | Haplotype networks and phylogenetic consensus tree of myctophid fishes of the tribe Electronini (sensu Paxton, 1972) based on cytochrome c oxidase I

(COI) gene variation using a maximum likelihood analysis with 10,000 bootstrap permutations. Bootstrap support> 70 is shown above the branches; branches with

lower support are collapsed to polytomies. Branches of species with Antarctic, broadly Antarctic, and sub-Antarctic distribution pattern following Duhamel et al. (2014)

are depicted in purple, dark blue, and light blue, respectively (color figure available online). Geographic origin is reflected by colored circles in the tree and networks,

approx. clockwise from West (dark) to East Antarctic (light). In the haplotype networks one branch represents one mutation. Additional mutation steps between

samples are indicated with small black circles.
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FIGURE 6 | Haplotype networks and phylogenetic consensus tree of myctophid fishes of the subfamily Gymnoscopelinae (sensu Martin et al., 2017) based on

cytochrome c oxidase I (COI) gene variation using a maximum likelihood analysis with 10,000 bootstrap permutations. Bootstrap support> 70 is shown above the

branches; branches with lower support are collapsed to polytomies. Branches of species with Antarctic, broadly Antarctic, and sub-Antarctic distribution pattern

following Duhamel et al. (2014) are depicted in purple, dark blue, and light blue, respectively (color figure available online). Geographic origin is reflected by colored

circles in the tree and networks, approx. clockwise from West (dark) to East Antarctic (light). In the haplotype networks one branch represents one mutation. Additional

mutation steps between samples are indicated with small black circles.
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Ross and Scotia Sea (BS = 92%); and (3) one individual from
off Dumont d’Urville Sea (DDU). East Antarctic coastal waters
seem to stand out, but the sampling density is too low for solid
inferences. Two other individuals, one nominalG. piabilis caught
off Argentina and one nominal G. nicholsi collected off South
Africa, appear as sister group to a clade of G. fraseri, remaining
G. piabilis, and G. hintonoides (BS = 93%). The latter form a
polyphyletic group with only G. hintonoidesmonophyletic in the
tree (BS = 88%), but all three species separated in the haplotype
network. All 24 individuals of G. opisthopterus form one group
with low COI variation. Gymnoscopelus braueri in turn exhibits
more divergence, with one DDU individual clustering as sister
to a group of two Ross Sea and one Bouvet Island samples
(BS = 92%), which diverge from the 26 remaining individuals.
However, the haplotype network of G. opisthopterus and G.
braueri rather resembles the pattern of E. antarctica (Figure 5)
with one very common shared haplotype.

DISCUSSION

Our study adds to the increasing knowledge and baseline data
of Antarctic marine biodiversity as envisioned by the Census
of Antarctic Marine Life and associated initiatives (Schiaparelli
et al., 2013). It successfully uses the BOLD database to uncover
mismatches between morphological and molecular specimen
identification and highlights targets for deeper phylogenetic
study to ascertain the position of some species and specimens
in the lanternfish family. Lastly, we discuss phylogeographic
patterns and the evolution of the family Myctophidae in the
Southern Ocean in general and hypothesize that the presence
of myctophids in the high polar seas is the result of multiple
colonization events.

Extending and Using the DNA Barcode
Library for Specimen Identification
The newly added sequences expand the public DNA barcoding
database of Myctophidae to more than 1000 individual
sequences. Of these, 263 belonged to specimens captured in the
Southern Ocean, which represents a substantial increase of the
barcode library of Antarctic mesopelagic fish. This will be of
major importance for future ecological studies that intend to use
the library for specimen identification. The value of the BOLD
database is likely to increase even further with the development
ofmetabarcoding studies. Recent approaches include for example
the detection of tropical sharks (Bakker et al., 2017), large-scale
larval fish ecology through efficient identification of thousands
of larvae (Kimmerling et al., 2018), as well as Antarctic studies
characterizing notothenioid fish assemblages (Cowart et al., 2017)
and toothfish diet (Yoon et al., 2017). All these examples are
fully dependent on a high quality reference database to match
metabarcoding sequences, as the lack of identification can lead to
reduced or biased results and interpretations. Good coverage of
the (sub-)Antarctic teleost fauna, which now includes demersal
fishes (Rock et al., 2008; Dettaï et al., 2011; Smith et al., 2011b,
2012; Mabragaña et al., 2016) and large parts of the meso- and
bathy-pelagic fish fauna (this study), will likely be highly valuable

for future metabarcoding studies investigating for example the
diet and trophic position of top predators. Species that are
quickly digested can be detected with this molecular approach,
although quantification remains challenging. Such studies can
contribute to refine our understanding of food webs in Antarctic
and sub-Antarctic waters (Cornejo-Donoso and Antezana, 2008;
Pinkerton and Bradford-Grieve, 2014), a task of high relevance
with regard to the ecosystem approach of the Commission for the
Conservation of Antarctic Marine Living Resources (CCAMLR;
Kock et al., 2007; Constable, 2011).

Morphological specimen characterizations were verified with
DNA barcoding. Generally, the success of specimen identification
using the BOLD database (Ratnasingham and Hebert, 2007) was
very high. Where morphological identification is challenging
because discriminating characters are frequently lost during
sampling, such as in theMyctophidae, DNA barcoding represents
a useful complement to traditional identification. In eleven
cases we were able to improve the initial identification and
in seven further cases, we discovered mismatches between
taxonomy and genetic signature, which were attributed to initial
misidentification or mislabeling. Without DNA barcoding these
would likely have retained an erroneous identification, which
in turn poses problems for further ecological analysis and
interpretation. As other studies have shown, DNA barcoding of
Antarctic vertebrates is a useful molecular taxonomic approach
(Rock et al., 2008; Smith et al., 2008, 2011b, 2012; Duhamel
et al., 2010; Lautredou et al., 2010; Dettaï et al., 2011; Rey
et al., 2011). Furthermore, it may also serve as a starting
point for phylogenetic and phylogeographic investigations
(Duhamel et al., 2014; Mabragaña et al., 2016). Such help for
taxonomy is highly needed in times where classical taxonomic
expertise has become rare (Cao et al., 2016). At least some
myctophids, however, may be particularly prone to DNA
degradation problems. Some of the authors observed that
samples from non-myctophid fishes collected during the same
expeditions and processed in the same way had much higher
amplification success rates. This might be linked to (taxon-
)specific degradation processes and we therefore recommend that
myctophids are processed first when treating a fish catch for
scientific purposes.

Phylogeny and Phylogeography of
Southern Ocean Mesopelagic Fishes
The topology of phylogenetic trees constructed using COI
and rh1 concur to a great extent with recent multi-marker
phylogenies (Poulsen et al., 2013; Davis et al., 2014; Denton,
2014; Martin et al., 2017). However, our data cannot be used to
discuss the relationship betweenmyctophid tribes. The elsewhere
well-supported monophyly of Myctophidae is not resolved in
our full COI data set with some aulopiform and neoscopelid
species placed within Myctophidae. In addition, the first split
of Myctophidae showed polytomy with nine branches; in other
words, the placement of these clades is unclear (Figure 2). The
rh1 tree spans fewer taxa and resolved Lampadena as sister group
to all otherMyctophidae, which is not supported by other studies.
COI and rh1 alone are clearly not sufficient to accurately resolve
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deeper phylogenetic relationships of Myctophidae. However,
these markers offer the most comprehensive datasets, which
are important for a holistic understanding of the approximately
395 currently described Myctophidae (Eschmeyer and Fong,
2018). High taxon density can positively affect tree topology
through breaking down of otherwise very long branches. COI
in particular is unmatched regarding coverage with more than
700 sequences from 149 species already previously available in
BOLD for our analysis. At the subfamily to genus level our
results indeed match better with recent hypotheses of myctophid
intrarelationships. For example, within Lampanyctinae (sensu
Martin et al., 2017) the COI tree shows that the genera
Lampadena and Taaningichthys are related, as are Bolinichthys,
Lepidophanes, and Ceratoscopelus and, lastly, Stenobrachius,
Triphoturus, Parvilux, and Lampanyctus. This concurs with
the multi-marker results of Denton (2014) and Martin et al.
(2017). The concatenated dataset even resolves an initial split
into a clade with Diaphinae, Lampanyctinae, Gymnoscopelinae,
and Notolychninae and another clade with Electronini and
Myctophini (Figure 4). This pattern matches the analyses of
Poulsen et al. (2013), Davis et al. (2014), Denton (2014), and
of Martin et al. (2017), with the exception that the latter find
Diaphinae closer related to Myctophinae. Ultimately, the deep
phylogenetic hypotheses of Myctophidae still need further work.
With respect to phylogeny our data can serve as starting point
to highlight genera or species that are of particular interest for
further analysis, such as studies analyzing entire mitogenomes or
large numbers of single nucleotide polymorphisms. We restrict
this discussion here to species common in the Southern Ocean
but extend it toward intraspecific genetic diversity by analyzing
phylograms and haplotype networks in relation to geography.
Such phylogeographic patterns are important to understand
the distribution of biodiversity in the mesopelagic zone of the
Southern Ocean and to plan conservation and management
actions accordingly in light of climatic changes. We discuss
specific phylogenetic and phylogeographic implications and
recommendations of our study as compared to other recent
phylogenies for: (1) Electronini, (2) Gymnoscopelinae (sensu
Martin et al., 2017); (3) other Southern Ocean myctophids,
and (4) other Southern Ocean mesopelagic, non-myctophids
fishes.

The tribe Electronini is monophyletic within ourCOI analysis,
but not in the rh1 tree, where Diogenichthys appears related
to Electrona antarctica (Figure 3). This signal is likely the
reason that Diogenichthys is also placed within Electronini
in the concatenated analysis (Figure 4). Other recent studies
have all corroborated the monophyly of Electronini (Poulsen
et al., 2013; Davis et al., 2014; Denton, 2014; Martin et al.,
2017). It is possible that the accuracy of the rh1 marker
here is affected by a bias in base composition across taxa
(Chen et al., 2003). Inferences from rh1 alone as well
as results from the concatenated dataset that may stem
primarily from the rh1 signal as is the case here must
therefore be interpreted with caution. The relationships within
Electronini are still somewhat obscure (Denton, 2014). All
our trees support the monophyly of Protomyctophum, but
the placement of Protomyctophum and the other genera,

Metelectrona, Electrona, and Krefftichthys remains unclear. In
the COI dataset, E. antarctica and K. anderssoni cluster together
and apart from remaining Electrona spp. With rh1 and the
concatenated dataset K. anderssoni rather appears to be a sister
group of all other species, except E. antarctica, somewhat
similar to Martin et al. (2017). However, Denton (2014)
resolved Krefftichthys as sister group of only Protomyctophum.
These contradictory results are evidence that more detailed
studies are needed to clarify relationships within this tribe.
Within Protomyctophum and using COI, where more than two
Protomyctophum species were included, the split between the
subgenera Protomyctophum and Hierops is supported except
for P. tenisoni which diverges first (Figure 2; Gordeeva, 2013;
Denton, 2014). With some additional support a revision
of Protomyctophum as suggested by Denton (2014) appears
sensible.

All Electronini species are recovered as single clusters, with
low to moderate intraspecific levels of diversity (Figure 5). They
show no divergent groups that might point to undescribed or
cryptic species. The striking example of this is E. antarctica,
where the majority of individuals belong to the same haplotype
despite the distant locations. A dominant, widespread haplotype
may indicate reduced genetic diversity due to for example a
recent bottleneck. However, more variable markers show high
levels of genetic diversity in this species (Van de Putte et al., 2012).
Electrona antarctica is arguably the most common myctophid
in Antarctic waters with a circum-Antarctic distribution and
preference for water temperatures below 2.5◦C (Hulley, 1990;
Duhamel et al., 2014). Similar to Antarctic krill (Deagle et al.,
2015), its enormous abundance may be the key factor leading
to virtual panmixia, i.e., genetic homogeneity across the entire
distribution range (Van de Putte et al., 2012). Other Electronini
species, in particular Protomyctophum bolini and Electrona
carlsbergi, show more variability in their COI haplotypes, but
no relation to geography was detectable. It seems that in
addition to high effective population size, the strong force of
the Antarctic Circumpolar Current causes high connectivity,
resulting in at most subtle spatial genetic structure, but clearly
no pronounced phylogeographic structure of fishes in the tribe
Electronini.

The subfamily Gymnoscopelinae is well supported as
monophyletic group in all our analyses confirming findings
of other phylogenetic studies (Poulsen et al., 2013; Davis
et al., 2014; Denton, 2014; Martin et al., 2017). We therefore
adopted the taxonomic revision of Martin et al. (2017), who
promoted the former lampanyctine tribe of Gymnoscopelini
to Gymnoscopelinae. The genus Gymnoscopelus appears clearly
monophyletic. Our concatenated dataset resolves G. nicholsi as
sister group to all other species (BS = 100%; Figure 4), as
suggested by Denton (2014), the only other study that included
more than two Gymnoscopelus species. In the individual COI
and rh1 datasets the placement of G. nicholsi was not apparent
(Figures 2, 3), highlighting the value of an additional nuclear
marker to increase confidence in phylogenetic positioning. There
are examples where rhodopsin can distinguish fish species, where
COI fails (Thiel and Knebelsberger, 2016), such as in the present
case. In our case all Gymnoscopelus spp. can be delineated
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using COI, but the exact position within the tree remains to be
evaluated, except where they are corroborated by Denton’s (2014)
results.

With respect to phylogeography, the Gymnoscopelinae show
a different pattern from the Electronini (Figure 6). G. nicholsi
features various COI haplotypes, but only one individual,
collected off the Kerguelen Islands, stands out in the phylogenetic
tree (Figure 6). This is similar to the pattern of P. bolini
within the Electronini. Gymnoscopelus bolini on the other hand
splits into three groups based on COI variation (Figure 6).
This pattern might hint at genetic structuring, but this needs
to be investigated further, as the single sample from East
Antarctica (DDU) is divergent, while samples from Ross and
Scotia Sea, and Heard and McDonald, and Kerguelen Islands
group together. Other factors than circumpolar position may
be at play here, for instance trophic niche partitioning, sexual
selection, or simply increased levels of genetic variability. The
other species show relatively low variability and no pattern
related to sampling locality, with two exceptions, both samples
collected in lower latitudes (off South Africa and Argentina,
respectively). These two samples were identified as G. piabilis
and G. nicholsi. Given their very high COI sequence divergence
(23 mutations apart from the nearest neighbor in median
joining networks, not shown in figure), we recommend re-
examination of the specimens, if feasible, to investigate whether
they possibly belong to different (cryptic) species or sub-
species.

The available sequences identified as Symbolophorus
boops (BOLD references DSFSE476-08 to DSFSE480-08 and
DSFSG260-10) cluster apart from the two other Symbolophorus
clades resolved in our COI tree (one composed of S. californiensis,
S. reversus, S. evermanni, Symbolophorus sp., and S. rufinus and
the other composed of S. barnardi and S. veranyi; Figure 2).
Instead these sequences settle within the Diaphinae (sensu
Martin et al., 2017). Unfortunately we discovered a posteriori
that the COI sequences included here as S. boops were likely
misidentified on BOLD. These sequences are probably from
a Diaphus species (P. A. Hulley, pers. comm.) currently
also not present on BOLD, but the specimens are in poor
condition, preventing definite identification. The correction
has been transmitted to the BOLD database. Other studies
that included genetic data proposed that Symbolophorus is
closer related to Myctophum, Hygophum, and other genera,
as opposed to Diaphinae, but they all lacked specimens of S.
boops (Poulsen et al., 2013; Denton, 2014; Martin et al., 2017).
Therefore, we highly recommend the collection of further
samples/sequences in order to resolve the phylogenetic position
of S. boops, and to re-identify the specimens erroneously labeled
as Symbolophorus boops. In fact, the entire genus would benefit
from a detailed systematic revision as already noted by Wisner
(1976).

The genusNannobrachiumwas recently placed into synonymy
with Lampanyctus (Martin et al., 2017). Our results fully support
this across all datasets and all former Nannobrachium were
therefore labeled as Lampanyctus. Interestingly, Lampanyctus
achirus is the only species of the Lampanyctinae with a
sub-Antarctic distribution (sensu Martin et al., 2017). Based

on COI the species also splits into two divergent clades
with 99 and 100% bootstrap support, respectively (Figure S1).
One clade consists entirely of specimens caught off South
Africa and the other clade of specimens from around
Antarctica. These results, however, need to be corroborated
with nuclear and morphological data. This again underscores
the importance of specimen vouchers for groups with difficult
morphological characters and uncertain species delineation.
Nevertheless, recent studies have shown that undescribed
species abound even in groups that were thought well known
(Geiger et al., 2014). The pattern observed for L. achirus
might be indicative of cryptic or undescribed species as
found before in Myctophidae, for example in Benthosema
pterotum (skinnycheek lanternfish; Zahuranec et al., 2012).
Currently, there are two specimens of B. pterotum with
COI sequences in BOLD (from Poulsen et al., 2013 and
Denton, 2014) and they also show a deep split. Additional
COI sequencing of the specimens used by Zahuranec et al.
(2012) could therefore enable fast, cost-efficient, and confident
discrimination between the two cryptic species with COI in the
future.

According to Duhamel et al. (2014) the most abundant
non-myctophid mesopelagic fish families in the Southern Ocean
are Bathylagidae (deep-sea smelts; 5 species), Gonostomatidae
(bristlemouths; 4 spp.), Notosudidae (waryfishes; 2 spp.),
Paralepididae (barracudinas; 4 spp.), and 5 species of Stomiidae
(barbeled dragonfishes). We found COI sequences for only four
(Notolepis coatsi, Bathylagus antarcticus, Idiacanthus atlanticus,
and Borostomias antarcticus), plus five bathypelagic species
(Icichthys australis, Lagiacrusichthys macropinna, Poromitra
capito, Sio nordensjkoldii, and Oneirodes notius). Apart from
Myctophidae and Nototheniidae, and from species only
occasionally recorded south of the Sub-Tropical Convergence,
Duhamel et al. (2014) list 51 species for the whole Southern
Ocean pelagic zone. Thirty-four of those are present with
COI in BOLD (January 2018). Many less abundant species
remain to be sequenced in order to complete the reference
database. Intraspecific variability is difficult to assess for
the available species due to the limited number of samples.
Poromitra capito (N = 3) showed two haplotypes, Notolepis
coatsi (N = 4) showed three haplotypes. The genus Bathylagus
is believed to comprise at least three species in the Southern
Ocean, although morphological discrimination is very difficult.
Preliminary evidence suggests that four species with distinct
COI signature are present in the Scotia Sea (Collins et al.,
unpublished). In this study twelve Bathylagus antarcticus
(Antarctic deep-sea smelt), all collected in the Lazarev Sea,
were included, which had twelve unique haplotypes and showed
at least two divergent clades in our COI tree (BS = 97 and
84%). Dettaï et al. (2011) also found diverging clades of B.
antarcticus in the Dumont d’Urville Sea. We recommend a
detailed integrative taxonomic investigation of all available
Bathylagus specimens using morphology and several genetic
markers to clarify the status of this genus. The other species
mentioned above were only available in low numbers (N ≤

2), which does not permit an examination of intraspecific
variation.
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Evolution of Myctophidae in the Southern
Ocean
Overall, intraspecific genetic divergences are very low with only
one case where COI variation clearly relates to sampling locality
(Lampanyctus achirus). This may be expected, because large
abundance promotes gene flow and homogenization (Hauser
and Carvalho, 2008), especially in conjunction with the strong
oceanographic connectivity enforced by the ACC (Orsi et al.,
1995; Young et al., 2015). Another key contributing factor is
the pelagic lifestyle of myctophids, characterized by seemingly
free dispersal and the lack of a connection to a specific benthic
habitat. Recent analyses suggesting that myctophid biomass
in Antarctic waters is dependent on mass immigration from
lower latitudes (except for E. antarctica and K. anderssoni) may
support the idea of high connectivity (Saunders et al., 2017).
However, examples of extended geographic structure despite
high dispersal capabilities have been found in the Antarctic
(Havermans et al., 2011; Damerau et al., 2014). In addition, weak
genetic structuring has been observed for myctophids, although
this was between the Mediterranean Sea and the Atlantic Ocean
(Pappalardo et al., 2015). Circumpolar connectivity patterns
in the sub-Antarctic and Antarctic are complex and variable,
largely depending on the interplay of oceanography and life
history traits (Moon et al., 2017 and references therein). For
myctophids the combination of large abundance and a free-
roaming, pelagic life style seems to cause a lack of genetic
structuring. Our analysis is only a preliminary attempt to
characterize such structure and is inherently biased toward
common species, for which sufficient numbers of samples were
available. If abundance indeed has a strong effect on population
genetic or phylogeographic structure of lanternfishes, especially
rare species should be investigated in detail. So far, only one study
has investigated genetic structure of an Antarctic myctophid with
multiple, variable markers (Van de Putte et al., 2012). Insights
into the genetics of myctophid populations would be useful in
order to optimize current modeling efforts (Koubbi et al., 2011;
Freer et al., 2018), which in turn are important for conservation
planning in the Southern Ocean (Hill et al., 2017). Attempts to
explain and forecastmesopelagic fish distribution ranges typically
use oceanographic parameters, particularly temperature and
salinity (Koubbi et al., 2011; Duhamel et al., 2014; Olivar et al.,
2017). Non-surprisingly, characteristics of deep water masses
better explain myctophid species occurrence than surface water
properties (Olivar et al., 2017). For both the characterization of
current distribution and for future predictions questions arise,
such as what temperatures can Southern Ocean myctophids
physiologically sustain? To what level have they already adapted
to colder waters and can they adapt to current rates of
environmental change?

Benthic biodiversity in the Southern Ocean is comparably
high, including many endemic species (Brandt et al., 2007).
This is not the case for the mesopelagic fauna, mostly because
it is not as isolated as Antarctic shallow water systems.
However, it appears that only a few myctophid species adapted
to permanently thrive under the prevailing environmental
conditions. Hence, only 17 of 68 species ever recorded in the

Southern Ocean are truly (sub-)Antarctic and endemic to these
waters. This corresponds to 7.1% of all described myctophids,
probably an underestimate considering the deep molecular
divergences within the non-Antarctic species in the group, as
e.g., in the supposedly monotypic genusNotolychnus. In contrast,
equatorial and tropical fish communities feature high myctophid
species richness (Olivar et al., 2017). Compared to for example
pycnogonids, where 17.3% of all species are endemic to (sub-)
Antarctic waters (Krabbe et al., 2010), myctophids seem to have
diversified less in the Southern Ocean. In fact, just two species (E.
antarctica and G. opisthopterus) exhibit what is described as an
Antarctic distribution pattern (Duhamel et al., 2014). Looking at
the phylogenetic trees, it becomes even clearer that adaptation
to Southern Ocean conditions must have occurred repeatedly.
There is no single species flock of Southern Ocean myctophids,
but species from at least three subfamilies sensu Martin et al.
(2017) are in fact true Southern Ocean species, although the
vast majority belongs either to the Electronini or Gymnoscopelus.
This suggests parallel evolution within similar environments
based on similar genomic architecture. Denton (2018) recently
showed that lanternfishes experienced elevated diversification
rates initiated around the Eocene-Oligocene transition, which
on the other hand could indicate that the formation of the
ACC was an important evolutionary trigger for mesopelagic
fish species. Southern Ocean lanternfishes are an interesting
model to study evolution and speciation in the deep sea (de
Busserolles et al., 2013; Denton, 2014). The diversification
of Electronini (especially Protomyctophum, see also Denton,
2018) seems particularly intriguing, as it might represent an
example of a (relatively small scale) marine adaptive radiation.

CONCLUSIONS

With this study we substantially extend the DNA barcode
library of Antarctic mesopelagic fish, particularly lanternfishes.
The combination of morphological and molecular identification
led to confident species level identification in 281 out of
299 cases. Several misidentifications or otherwise uncertain
samples were identified in the database.Overall,DNA barcode
libraries provide a robust reference dataset for specimen
identification, especially to the rescue of fragile morphological
characters. As expected, the mitochondrial COI and nuclear
rh1 genetic markers were not sufficient to resolve deep
phylogenetic relationships. However, our results are largely
congruent with recent phylogenetic studies of the family. Some
of our findings suggest the importance of further study or re-
identification, e.g., of Symbolophorus boops. In addition, we
highlight potential (pseudo-)cryptic or unrecognized species and
recommend further investigation of Gymnoscopelus bolini, two
specific Gymnoscopelus specimens(nominally identified as G.
piabilis and G. nicholsi), Lampanyctus achirus and the non-
myctophid genus Bathylagus. The fact that myctophid species
from at least three subfamilies are Southern Ocean species
suggests that colonization and adaptation to this environment
has occurred repeatedly. Overall, spatial divergence of species
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is rare in this family, potentially due to the enormous
abundance of many myctophids and the homogenizing force
of ocean currents. Finally, this study provides an overview of
currently available Antarctic samples and associated levels of
intraspecific diversity, which bothmay facilitate future ecological,
phylogenetic, and evolutionary investigations of Southern Ocean
myctophids, a fish family that surely warrants increased scientific
attention.

ETHICS STATEMENT

All procedures involving the capture of fish followed
internationally recognized CCAMLR CEMP standard methods
and were permitted under the Antarctic Marine Living Resources
Act.

AUTHOR CONTRIBUTIONS

AVdP conceived the study with input from AD, HC, FH,
MC, and FV. AVdP, AD, MC, GD, and MH were involved in
sample collection. AVdP, AD, MC, DS, and HC contributed to
sequencing and compiled BOLD datasets. HC and FH analyzed
the data with help of AD and wrote the manuscript with help of
AD, DS, MC, AVdP, and FV. All authors read and approved the
manuscript.

FUNDING

Molecular work including sequencing was supported by the
governments of France and Canada. The former through
the Service de Systematique Moleculaire of the Muséum
National d’Histoire Naturelle (MNHN; UMS2700), supported
by the network Bibliothèque du Vivant funded by the CNRS,
the MNHN, the INRA, and the CEA (Centre Nacional de
Séquençage). The latter through Genome Canada and the
Ontario Genomics Institute for the International Barcode
of Life Project. This work was further supported by the

Belgian projects vERSO and RECTO (http://rectoversoprojects.
be). This is contribution no. 25 to the vERSO project, funded
by the Belgian Science Policy Office (BELSPO, Contract no.
BR/132/A1/vERSO). The first author was funded by a grant
from the former Flemish agency for Innovation by Science and
Technology, now Flanders Innovation and Entrepreneurship
(VLAIO, grant no. 141328). DS was supported by the Alfred P.
Sloan Foundation and the Food From Thought research program
funded by the Canada First Research Excellence Fund.

ACKNOWLEDGMENTS

We thank the officers, crew, and scientists of the cruises involved
in the capture of the samples. The cruises with RV James
Clark Ross were supported by British Antarctic Survey (BAS)
and its Discovery 2010 project. The RV Polarstern cruises were
supported by the Alfred Wegener Institute, Helmholtz Centre
for Polar and Marine Research (AWI). The CAML-CEAMARC
cruises of RV Aurora Australis and RV Umitaka Maru (IPY
project no. 53) were supported by the Australian Antarctic
Division (AAD), the Japanese Science Foundation, the French
polar institute IPEV, the CNRS, the MNHN, and the ANR
(White project ANTFLOCKs USAR n07-BLAN-0213-01). The
Austral cruise POKER 2 was supported by specific grants of the
Ministry of Alimentation, Agriculture and Fisheries (MAAP),
the Marine Reserve of TAAF and the contributions of French
ship owners involved in the Kerguelen Islands fisheries, with
the logistic help of SAPMER and TAAF. We thank F. Busson
and the 2013 JAMSTEC RV Hakuho Maru campaign led by K.
Tsukamoto. We thank the editor and reviewers for constructive
comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2018.00120/full#supplementary-material

REFERENCES

Allcock, A. L., Barratt, I., Eléaume, M., Linse, K., Norman, M. D., Smith, P. J.,

et al. (2011). Cryptic speciation and the circumpolarity debate: a case study

on endemic Southern Ocean octopuses using the COI barcode of life. Deep

Sea Res. Part II Top. Stud. Oceanogr. 58, 242–249. doi: 10.1016/j.dsr2.2010.

05.016

Allcock, A. L., and Strugnell, J. M. (2012). Southern ocean diversity:

new paradigms from molecular ecology. Trends Ecol. Evol. 27, 520–528.

doi: 10.1016/j.tree.2012.05.009

Bakker, J., Wangensteen, O. S., Chapman, D. D., Boussarie, G., Buddo, D.,

Guttridge, T. L., et al. (2017). Environmental DNA reveals tropical shark

diversity and abundance in contrasting levels of anthropogenic impact. Sci. Rep.

7:16886. doi: 10.1038/s41598-017-17150-2

Bandelt, H., Forster, P., and Röhl, A. (1999). Median-joining networks

for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.

doi: 10.1093/oxfordjournals.molbev.a026036

Barham, E. G. (1966). Deep scattering layer migration and composition:

observations from a diving saucer. Science 151, 1399–1403.

doi: 10.1126/science.151.3716.1399

Betancur, -R. R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M.,

et al. (2017). Phylogenetic classification of bony fishes. BMC Evol. Biol. 17:40.

doi: 10.1186/s12862-017-0958-3

Brandt, A., Gooday, A. J., Brandão, S. N., Brix, S., Brökeland, W., Cedhagen,

T., et al. (2007). First insights into the biodiversity and biogeography of the

Southern Ocean deep sea. Nature 447, 307–311. doi: 10.1038/nature05827

Bucklin, A., Steinke, D., and Blanco-Bercial, L. (2011). DNA

barcoding of marine metazoa. Ann. Rev. Mar. Sci. 3, 471–508.

doi: 10.1146/annurev-marine-120308-080950

Cao, X., Liu, J., Chen, J., Zheng, G., Kuntner, M., and Agnarsson,

I. (2016). Rapid dissemination of taxonomic discoveries based on

DNA barcoding and morphology. Sci. Rep. 6:37066. doi: 10.1038/

srep37066

Casaux, R., Bertolin, M. L., and Carlini, A. (2011). Feeding habits of three

seal species at the Danco Coast, Antarctica: a re-assessment. Polar Biol. 34,

1615–1620. doi: 10.1007/s00300-011-0994-1

Chen, W., Bonillo, C., and Lecointre, G. (2003). Repeatability of clades as a

criterion of reliability: a case study for molecular phylogeny of Acanthomorpha

(Teleostei) with larger number of taxa. Mol. Phylogenet. Evol. 26, 262–288.

doi: 10.1016/S1055-7903(02)00371-8

Frontiers in Ecology and Evolution | www.frontiersin.org 16 September 2018 | Volume 6 | Article 120

http://rectoversoprojects.be
http://rectoversoprojects.be
https://www.frontiersin.org/articles/10.3389/fevo.2018.00120/full#supplementary-material
https://doi.org/10.1016/j.dsr2.2010.05.016
https://doi.org/10.1016/j.tree.2012.05.009
https://doi.org/10.1038/s41598-017-17150-2
https://doi.org/10.1093/oxfordjournals.molbev.a026036
https://doi.org/10.1126/science.151.3716.1399
https://doi.org/10.1186/s12862-017-0958-3
https://doi.org/10.1038/nature05827
https://doi.org/10.1146/annurev-marine-120308-080950
https://doi.org/10.1038/srep37066
https://doi.org/10.1007/s00300-011-0994-1
https://doi.org/10.1016/S1055-7903(02)00371-8
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Christiansen et al. Mesopelagic Fishes of the Southern Ocean

Cherel, Y., Fontaine, C., Richard, P., and Labat, J. (2009). Isotopic niches and

trophic levels of myctophid fishes and their predators in the Southern Ocean.

Limnol. Oceanogr. 55, 324–332. doi: 10.4319/lo.2010.55.1.0324

Collins, M. A., Stowasser, G., Fielding, S., Shreeve, R., Xavier, J. C., Venables, H.

J., et al. (2012b). Latitudinal and bathymetric patterns in the distribution and

abundance of mesopelagic fish in the Scotia Sea.Deep Sea Res. Part II Top. Stud.

Oceanogr. 59–60, 189–198. doi: 10.1016/j.dsr2.2011.07.003

Collins, M. A., Xavier, J. C., Johnston, N. M., North, A. W., Enderlein,

P., and Tarling, G. A., et al. (2008). Patterns in the distribution of

myctophid fish in the northern Scotia Sea ecosystem. Polar Biol. 31, 837–851.

doi: 10.1007/s00300-008-0423-2

Collins, R. A., Boykin, L. M., Cruickshank, R. H., and Armstrong, K.

F. (2012a). Barcoding’s next top model: an evaluation of nucleotide

substitutionmodels for specimen identification.Methods Ecol. Evol. 3, 457–465.

doi: 10.1111/j.2041-210X.2011.00176.x

Connan, M., Cherel, Y., and Mayzaud, P. (2007). Lipids from stomach oil

of procellariiform seabirds document the importance of myctophid

fish in the Southern Ocean. Limnol. Oceanogr. 52, 2445–2455.

doi: 10.4319/lo.2007.52.6.2445

Connan, M., Mayzaud, P., Duhamel, G., Bonnevie, B. T., and Cherel, Y. (2010).

Fatty acid signature analysis documents the diet of five myctophid fish from the

Southern Ocean.Mar. Biol. 157, 2303–2316. doi: 10.1007/s00227-010-1497-2

Constable, A. J. (2011). Lessons from CCAMLR on the implementation of

the ecosystem approach to managing fisheries. Fish Fish. 12, 138–151.

doi: 10.1111/j.1467-2979.2011.00410.x

Cornejo-Donoso, J., and Antezana, T. (2008). Preliminary trophic model of the

Antarctic Peninsula ecosystem (Sub-area CCAMLR 48.1). Ecol. Modell. 218,

1–17. doi: 10.1016/j.ecolmodel.2008.06.011

Cowart, D. A., Murphy, K. R., and Cheng, C. C. (2017). Metagenomic

sequencing of environmental DNA reveals marine faunal assemblages

from the West Antarctic Peninsula. Mar. Genomics 37, 148–160.

doi: 10.1016/j.margen.2017.11.003

Cruz, V. P., Vera, M., Pardo, B. G., Taggart, J., Martinez, P., Oliveira, C., et al.

(2016). Identification and validation of single nucleotide polymorphisms as

tools to detect hybridization and population structure in freshwater stingrays.

Mol. Ecol. Resour. 17, 550–556. doi: 10.1111/1755-0998.12564

Damerau, M., Matschiner, M., Salzburger, W., and Hanel, R. (2014). Population

divergences despite long pelagic larval stages: lessons from crocodile icefishes

(Channichthyidae).Mol. Ecol. 23, 284–299. doi: 10.1111/mec.12612

Davis, M. P. (2015). Evolutionary relationships of the deep-sea pearleyes

(Aulopiformes: Scopelarchidae) and a new genus of pearleye from Antarctic

waters. Copeia 103, 64–71. doi: 10.1643/CI-14-139

Davis, M. P., Holcroft, N. I., Wiley, E. O., Sparks, J. S., and Leo Smith, W. (2014).

Species-specific bioluminescence facilitates speciation in the deep sea. Mar.

Biol. 161, 1139–1148. doi: 10.1007/s00227-014-2406-x

de Busserolles, F., Fitzpatrick, J. L., Paxton, J. R., Marshall, N. J., and

Collin, S. P. (2013). Eye-size variability in deep-sea lanternfishes

(Myctophidae): an ecological and phylogenetic study. PLoS ONE 8:e58519.

doi: 10.1371/journal.pone.0058519

Deagle, B. E., Faux, C., Kawaguchi, S., Meyer, B., and Jarman, S. N.

(2015). Antarctic krill population genomics: apparent panmixia, but genome

complexity and large population size muddy the water. Mol. Ecol. 24,

4943–4959. doi: 10.1111/mec.13370

Denton, J. S. (2014). Seven-locus molecular phylogeny of Myctophiformes

(Teleostei; Scopelomorpha) highlights the utility of the order for

studies of deep-sea evolution. Mol. Phylogenet. Evol. 76, 270–292.

doi: 10.1016/j.ympev.2014.02.009

Denton, J. S. S. (2018). Diversification patterns of lanternfishes reveal multiple rate

shifts in a critical mesopelagic clade targeted for human exploitation. Curr. Biol.

28, 933–940.e4. doi: 10.1016/j.cub.2018.01.082

Dettaï, A., Lautredou, A. C., Bonillo, C., Goimbault, E., Busson, F., Causse, R., et al.

(2011). The actinopterygian diversity of the CEAMARC cruises: barcoding and

molecular taxonomy as a multi-level tool for new findings. Deep. Res. Part II

Top. Stud. Oceanogr. 58, 250–263. doi: 10.1016/j.dsr2.2010.05.021

Donnelly, J., Torres, J. J., Hopkins, T. L., and Lancraft, T. M. (1990).

Proximate composition of Antarctic mesopelagic fishes. Mar. Biol. 106, 13–23.

doi: 10.1007/BF02114670

Duhamel, G., Hautecoeur, M., Dettaï, A., Causse, R., Pruvost, P., Busson,

F., et al. (2010). Liparids from the Eastern sector of Southern Ocean

and first information from molecular studies. Cybium 34, 319–343.

Available online at: http://sfi-cybium.fr/en/liparids-eastern-sector-southern-

ocean-and-first-information-molecular-studies

Duhamel, G., Hulley, P.-A., Causse, R., Koubbi, P., Vacchi, M., Pruvost, P., et al.

(2014). “Chapter 7. Biogeographic patterns of fish,” in Biogeographic Atlas of

the Southern Ocean, eds C. De Broyer, P. Koubbi, H. Griffiths, B. Raymond, C.

d’Udekem d’Acoz, A. Van de Putte, et al. (Cambridge: Scientific Committee on

Antarctic Research), 327–362.

Eastman, J. T. (1991). Evolution and diversification of Antarctic notothenioid

fishes. Am. Zool. 31, 93–109. doi: 10.1093/icb/31.1.93

Eastman, J. T. (1993). Antarctic Fish Biology - Evolution in a Unique Environment.

San Diego, CA: Academic Press.

Eastman, J. T. (2005). The nature of the diversity of Antarctic fishes. Polar Biol. 28,

93–107. doi: 10.1007/s00300-004-0667-4

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method

with reduced time and space complexity. BMC Bioinformatics 5:113.

doi: 10.1186/1471-2105-5-113

Eschmeyer, W. N., and Fong, J. D. (2018). Species by Family/Subfamily. Available

online at: http://researcharchive.calacademy.org/research/ichthyology/catalog/

SpeciesByFamily.asp. Electronic version (Accessed 14 January, 2018).

Fitzgibbon, J., Hope, A., Slobodyanyuk, S. J., Bellingham, J., Bowmaker, J. K., and

Hunt, D. M. (1995). The rhodopsin-encoding gene of bony fish lacks introns.

Gene 164, 273–277. doi: 10.1016/0378-1119(95)00458-I

Freer, J. J., Partridge, J. C., Tarling, G. A., Collins, M. A., and Genner, M. J. (2018).

Predicting ecological responses in a changing ocean: the effects of future climate

uncertainty.Mar. Biol. 165:7. doi: 10.1007/s00227-017-3239-1

Geiger, M. F., Herder, F., Monaghan, M. T., Almada, V., Barbieri, R., Bariche, M.,

et al. (2014). Spatial heterogeneity in the mediterranean biodiversity hotspot

affects barcoding accuracy of its freshwater fishes. Mol. Ecol. Resour. 14,

1210–1221. doi: 10.1111/1755-0998.12257

Gordeeva, N. V. (2013). Genetic divergence in the tribe Electronini

(Myctophidae). J. Ichthyol. 53, 575–584. doi: 10.1134/S0032945213

050044

Grant, R. A., Griffiths, H. J., Steinke, D., Wadley, V., and Linse, K. (2010).

Antarctic DNA barcoding; a drop in the ocean?. Polar Biol. 34, 775–780.

doi: 10.1007/s00300-010-0932-7

Grant, R. A., and Linse, K. (2009). Barcoding antarctic biodiversity: current status

and the CAML initiative, a case study of Marine invertebrates. Polar Biol. 32,

1629–1637. doi: 10.1007/s00300-009-0662-x

Griffiths, H. J. (2010). Antarctic marine biodiversity–what do we know about

the distribution of life in the Southern Ocean? PLoS ONE 5:e11683.

doi: 10.1371/journal.pone.0011683

Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., and Hickey, D. A. (2007).

DNA barcoding: how it complements taxonomy, molecular phylogenetics and

population genetics. Trends Genet. 23, 167–172. doi: 10.1016/j.tig.2007.02.001

Hauser, L., and Carvalho, G. R. (2008). Paradigm shifts in marine fisheries

genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362.

doi: 10.1111/j.1467-2979.2008.00299.x

Havermans, C., Nagy, Z. T., Sonet, G., De Broyer, C., and Martin, P. (2011).

DNA barcoding reveals new insights into the diversity of Antarctic species of

Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res.

Part II Top. Stud. Oceanogr. 58, 230–241. doi: 10.1016/j.dsr2.2010.09.028

Hebert, P. D. N., Cywinska, A., Ball, S. L., and DeWaard, J. R. (2003). Biological

identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321.

doi: 10.1098/rspb.2002.2218

Hill, N. A., Foster, S. D., Duhamel, G., Welsford, D., Koubbi, P., and Johnson, C.

R. (2017). Model-based mapping of assemblages for ecology and conservation

management: a case study of demersal fish on the Kerguelen Plateau. Divers.

Distrib. 23, 1216–1230. doi: 10.1111/ddi.12613

Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method

for assessing confidence in phylogenetic analysis. Syst. Biol. 42, 182–192.

doi: 10.1093/sysbio/42.2.182

Hulley, P. (1990). “Family myctophidae,” in Fishes of the Southern Ocean, eds O.

Gon and P. Heemstra (Grahamstown: J. L. B. Smith Institute of Ichthyology),

146–178.

Frontiers in Ecology and Evolution | www.frontiersin.org 17 September 2018 | Volume 6 | Article 120

https://doi.org/10.4319/lo.2010.55.1.0324
https://doi.org/10.1016/j.dsr2.2011.07.003
https://doi.org/10.1007/s00300-008-0423-2
https://doi.org/10.1111/j.2041-210X.2011.00176.x
https://doi.org/10.4319/lo.2007.52.6.2445
https://doi.org/10.1007/s00227-010-1497-2
https://doi.org/10.1111/j.1467-2979.2011.00410.x
https://doi.org/10.1016/j.ecolmodel.2008.06.011
https://doi.org/10.1016/j.margen.2017.11.003
https://doi.org/10.1111/1755-0998.12564
https://doi.org/10.1111/mec.12612
https://doi.org/10.1643/CI-14-139
https://doi.org/10.1007/s00227-014-2406-x
https://doi.org/10.1371/journal.pone.0058519
https://doi.org/10.1111/mec.13370
https://doi.org/10.1016/j.ympev.2014.02.009
https://doi.org/10.1016/j.cub.2018.01.082
https://doi.org/10.1016/j.dsr2.2010.05.021
https://doi.org/10.1007/BF02114670
http://sfi-cybium.fr/en/liparids-eastern-sector-southern-ocean-and-first-information-molecular-studies
http://sfi-cybium.fr/en/liparids-eastern-sector-southern-ocean-and-first-information-molecular-studies
https://doi.org/10.1093/icb/31.1.93
https://doi.org/10.1007/s00300-004-0667-4
https://doi.org/10.1186/1471-2105-5-113
http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp
http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp
https://doi.org/10.1016/0378-1119(95)00458-I
https://doi.org/10.1007/s00227-017-3239-1
https://doi.org/10.1111/1755-0998.12257
https://doi.org/10.1134/S0032945213050044
https://doi.org/10.1007/s00300-010-0932-7
https://doi.org/10.1007/s00300-009-0662-x
https://doi.org/10.1371/journal.pone.0011683
https://doi.org/10.1016/j.tig.2007.02.001
https://doi.org/10.1111/j.1467-2979.2008.00299.x
https://doi.org/10.1016/j.dsr2.2010.09.028
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1111/ddi.12613
https://doi.org/10.1093/sysbio/42.2.182
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Christiansen et al. Mesopelagic Fishes of the Southern Ocean

Ikeda, T. (1988). Metabolism and chemical composition of crustaceans from the

Antarctic mesopelagic zone. Deep Sea Res. Part A Oceanogr. Res. Pap. 35,

1991–2002. doi: 10.1016/0198-0149(88)90121-5

Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G., Acuña, J. L., et al.

(2014). Large mesopelagic fishes biomass and trophic efficiency in the open

ocean. Nat. Commun. 5:3271. doi: 10.1038/ncomms4271

Isaacs, J. D., Tont, S. A., and Wick, G. L. (1974). Deep scattering layers: vertical

migration as a tactic for finding food. Deep. Res. Oceanogr. Abstr. 21, 651–656.

doi: 10.1016/0011-7471(74)90049-7

Ivanova, N. V., Zemlak, T. S., Hanner, R. H., and Hebert, P. D. N. (2007).

Universal primer cocktails for fish DNA barcoding.Mol. Ecol. Notes 7, 544–548.

doi: 10.1111/j.1471-8286.2007.01748.x

Kimmerling, N., Zuqert, O., Amitai, G., Gurevich, T., Armoza-Zvuloni, R.,

Kolesnikov, I., et al. (2018). Quantitative, species-level ecology of reef fish larvae

via metabarcoding.Nat. Ecol. Evol. 2, 306–316. doi: 10.1038/s41559-017-0413-2

Kimura, M. (1980). A simple method for estimating evolutionary rates of base

substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.

16, 111–120. doi: 10.1007/BF01731581

Kock, K.-H. (1992). Antarctic Fish and Fisheries. London: Cambridge University

Press.

Kock, K. H., Reid, K., Croxall, J., and Nicol, S. (2007). Fisheries in the Southern

Ocean: an ecosystem approach. Philos. Trans. R. Soc. B Biol. Sci. 362, 2333–2349.

doi: 10.1098/rstb.2006.1954

Koubbi, P., Moteki, M., Duhamel, G., Goarant, A., Hulley, P.-A., O’Driscoll, R.,

et al. (2011). Ecoregionalization of myctophid fish in the Indian sector of the

Southern Ocean: results from generalized dissimilarity models. Deep Sea Res.

Part II Top. Stud. Oceanogr. 58, 170–180. doi: 10.1016/j.dsr2.2010.09.007

Krabbe, K., Leese, F., Mayer, C., Tollrian, R., and Held, C. (2010). Cryptic

mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx

Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol. 33, 281–292.

doi: 10.1007/s00300-009-0703-5

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary

genetics analysis version 7.0 for bigger datasets.Mol. Biol. Evol. 33, 1870–1874.

doi: 10.1093/molbev/msw054

Lautredou, A. C., Bonillo, C., Denys, G., Cruaud, C., Ozouf-Costaz, C., Lecointre,

G., et al. (2010). Molecular taxonomy and identification within the Antarctic

genus Trematomus (Notothenioidei, Teleostei): how valuable is barcoding with

COI?. Polar Sci. 4, 333–352. doi: 10.1016/j.polar.2010.04.006

Leigh, J. W., and Bryant, D. (2015). PopART: full-feature software for

haplotype network construction. Methods Ecol. Evol. 6, 1110–1116.

doi: 10.1111/2041-210X.12410

Lin, J. J., Wang, F. Y., Li, W. H., andWang, T. Y. (2017). The rises and falls of opsin

genes in 59 ray-finned fish genomes and their implications for environmental

adaptation. Sci. Rep. 7:15568. doi: 10.1038/s41598-017-15868-7

Lyle, M., Gibbs, S., Moore, T. C., and Rea, D. K. (2007). Late oligocene initiation

of the Antarctic circumpolar current: evidence from the South Pacific. Geology

35, 691–694. doi: 10.1130/G23806A.1

Mabragaña, E., Delpiani, S. M., Rosso, J. J., González-Castro, M., Deli Antoni, M.,

Hanner, R., et al. (2016). “Barcoding Antarctic fishes: species discrimination

and contribution to elucidate ontogenetic changes in Nototheniidae,” in DNA

Barcoding in Marine Perspectives, eds S. Trivedi, A. A. Ansari, S. K. Ghosh, and

H. Rehman (Springer International Publishing), 213–242.

Mabragaña, E., Díaz de Astarloa, J. M., Hanner, R., Zhang, J., and González Castro,

M. (2011). DNA barcoding identifies argentine fishes frommarine and brackish

waters. PLoS ONE 6:e28655. doi: 10.1371/journal.pone.0028655

Martin, R. P., Olson, E. E., Girard, M. G., Smith, W. L., and Davis, M. P.

(2017). Light in the darkness: new perspective on lanternfish relationships and

classification using genomic and morphological data. Mol. Phylogenet. Evol.

121, 71–85. doi: 10.1016/j.ympev.2017.12.029

McMillan, P., Iwamoto, T., Stewart, A., and Smith, P. J. (2012). A new species

of grenadier, genus Macrourus (Teleostei, Gadiformes, Macrouridae) from

the southern hemisphere and a revision of the genus. Zootaxa 3165, 1–24.

doi: 10.5281/zenodo.279731

Moon, K. L., Chown, S. L., and Fraser, C. I. (2017). Reconsidering connectivity in

the sub-Antarctic. Biol. Rev. 92, 2164–2181. doi: 10.1111/brv.12327

Morrow, J. M., Lazic, S., Dixon Fox, M., Kuo, C., Schott, R. K., de A Gutierrez, E.,

et al. (2017). A second visual rhodopsin gene, rh1-2 , is expressed in zebrafish

photoreceptors and found in other ray-finned fishes. J. Exp. Biol. 220, 294–303.

doi: 10.1242/jeb.145953

Olivar, M. P., Hulley, P. A., Castellón, A., Emelianov, M., López, C., Tuset,

V. M., et al. (2017). Mesopelagic fishes across the tropical and equatorial

Atlantic: biogeographical and vertical patterns. Prog. Oceanogr. 151, 116–137.

doi: 10.1016/j.pocean.2016.12.001

Orsi, A. H., Whitworth, T., and Nowlin Jr., W. D. (1995). On the

meridional extent and fronts of the Antarctic circumpolar current. Deep

Sea Res. Part I Oceanogr. Res. Pap. 42, 641–673. doi: 10.1016/0967-0637(95)

00021-W

Pakhomov, E. A. E., Perissinotto, R., and McQuaid, C. D. C. (1996). Prey

composition and daily rations of myctophid fishes in the Southern Ocean.Mar.

Ecol. Prog. Ser. 134, 1–14. doi: 10.3354/meps134001

Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A.

(2000). Crystal structure of rhodopsin : a G protein – coupled receptor. Science

289, 739–745. doi: 10.1126/science.289.5480.739

Pappalardo, A. M., Cuttitta, A., Sardella, A., Musco, M., Maggio, T.,

Patti, B., et al. (2015). DNA barcoding and COI sequence variation

in Mediterranean lanternfishes larvae. Hydrobiologia 749, 155–167.

doi: 10.1007/s10750-014-2161-5

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of

phylogenetics and evolution in R language. Bioinformatics 20, 289–290.

doi: 10.1093/bioinformatics/btg412

Paxton, J. R. (1972). Osteology and relationships of the lanternfishes (family

Myctophidae). Bull. Nat. Hist. Museum Los Angeles City 13, 1–81.

Pinkerton, M. H., and Bradford-Grieve, J. M. (2014). Characterizing foodweb

structure to identify potential ecosystem effects of fishing in the Ross Sea,

Antarctica. ICES J. Mar. Sci. 71, 1542–1553. doi: 10.1093/icesjms/fst230

Popescu, A. A., Huber, K. T., and Paradis, E. (2012). Ape 3.0: new tools for

distance-based phylogenetics and evolutionary analysis in R. Bioinformatics 28,

1536–1537. doi: 10.1093/bioinformatics/bts184

Poulsen, J. Y., Byrkjedal, I., Willassen, E., Rees, D., Takeshima, H., Satoh, T.

P., et al. (2013). Mitogenomic sequences and evidence from unique gene

rearrangements corroborate evolutionary relationships of myctophiformes

(Neoteleostei). BMC Evol. Biol. 13:111. doi: 10.1186/1471-2148-13-111

Proud, R., Cox, M. J., Handegard, N. O., Kloser, R. J., and Brierley, A. S.

(2018). From siphonophores to deep scattering layers: an estimation of global

mesopelagic fish biomass. ICES J. Mar. Sci. doi: 10.1093/icesjms/fsy037. [Epub

ahead of print].

Pusch, C., Hulley, P. A., and Kock, K. H. (2004). Community structure and

feeding ecology of mesopelagic fishes in the slope waters of King George Island

(South Shetland Islands, Antarctica). Deep. Res. Part I Oceanogr. Res. Pap. 51,

1685–1708. doi: 10.1016/j.dsr.2004.06.008

R Core Team (2016). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing.

Ratnasingham, S., and Hebert, P. D. (2013). A DNA-based registry for all

animal species: the barcode index number (BIN) system. PLoS ONE 8:e66213.

doi: 10.1371/journal.pone.0066213

Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: the barcode of life

data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364.

doi: 10.1111/j.1471-8286.2007.01678.x

Rey, O., Bonillo, C., Gallut, C., Cruaud, C., Dettaï, A., Ozouf-Costaz, C.,

et al. (2011). Naked dragonfishes Gymnodraco acuticeps and G. victori

(Bathydraconidae, Notothenioidei) off Terre Adélie are a single species.Cybium

35, 111–119. Available online at: http://sfi-cybium.fr/en/naked-dragonfishes-

gymnodraco-acuticeps-and-g-victori-bathydraconidae-notothenioidei-terre-

ad?lie

Rintoul, S. R., Hughes, C., and Olbers, D. (2001). “The Antarctic circumpolar

current system,” in Ocean Circulation and Climate (New York, NY: Academic

Press), 271–302.

Rock, J., Costa, F. O.,Walker, D. I., North, A.W., Hutchinson,W. F., and Carvalho,

G. R. (2008). DNA barcodes of fish of the Scotia Sea, Antarctica indicate

priority groups for taxonomic and systematics focus. Antarct. Sci. 20, 253–262.

doi: 10.1017/S0954102008001120

Santora, J. A. (2013). Dynamic intra-seasonal habitat use by Antarctic fur seals

suggests migratory hotspots near the Antarctic Peninsula. Mar. Biol. 160,

1383–1393. doi: 10.1007/s00227-013-2190-z

Frontiers in Ecology and Evolution | www.frontiersin.org 18 September 2018 | Volume 6 | Article 120

https://doi.org/10.1016/0198-0149(88)90121-5
https://doi.org/10.1038/ncomms4271
https://doi.org/10.1016/0011-7471(74)90049-7
https://doi.org/10.1111/j.1471-8286.2007.01748.x
https://doi.org/10.1038/s41559-017-0413-2
https://doi.org/10.1007/BF01731581
https://doi.org/10.1098/rstb.2006.1954
https://doi.org/10.1016/j.dsr2.2010.09.007
https://doi.org/10.1007/s00300-009-0703-5
https://doi.org/10.1093/molbev/msw054
https://doi.org/10.1016/j.polar.2010.04.006
https://doi.org/10.1111/2041-210X.12410
https://doi.org/10.1038/s41598-017-15868-7
https://doi.org/10.1130/G23806A.1
https://doi.org/10.1371/journal.pone.0028655
https://doi.org/10.1016/j.ympev.2017.12.029
https://doi.org/10.5281/zenodo.279731
https://doi.org/10.1111/brv.12327
https://doi.org/10.1242/jeb.145953
https://doi.org/10.1016/j.pocean.2016.12.001
https://doi.org/10.1016/0967-0637(95)00021-W
https://doi.org/10.3354/meps134001
https://doi.org/10.1126/science.289.5480.739
https://doi.org/10.1007/s10750-014-2161-5
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1093/icesjms/fst230
https://doi.org/10.1093/bioinformatics/bts184
https://doi.org/10.1186/1471-2148-13-111
https://doi.org/10.1093/icesjms/fsy037
https://doi.org/10.1016/j.dsr.2004.06.008
https://doi.org/10.1371/journal.pone.0066213
http://www.barcodinglife.org
https://doi.org/10.1111/j.1471-8286.2007.01678.x
http://sfi-cybium.fr/en/naked-dragonfishes-gymnodraco-acuticeps-and-g-victori-bathydraconidae-notothenioidei-terre-ad?lie
http://sfi-cybium.fr/en/naked-dragonfishes-gymnodraco-acuticeps-and-g-victori-bathydraconidae-notothenioidei-terre-ad?lie
http://sfi-cybium.fr/en/naked-dragonfishes-gymnodraco-acuticeps-and-g-victori-bathydraconidae-notothenioidei-terre-ad?lie
https://doi.org/10.1017/S0954102008001120
https://doi.org/10.1007/s00227-013-2190-z
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Christiansen et al. Mesopelagic Fishes of the Southern Ocean

Saunders, R. A., Collins, M. A., Foster, E., Shreeve, R., Stowasser, G., Ward, P.,

et al. (2014). The trophodynamics of Southern Ocean Electrona (Myctophidae)

in the Scotia Sea. Polar Biol. 37, 789–807. doi: 10.1007/s00300-014-1480-3

Saunders, R. A., Collins, M. A., Stowasser, G., and Tarling, G. A. (2017).

Southern Ocean mesopelagic fish communities in the Scotia Sea are sustained

by mass immigration. Mar. Ecol. Prog. Ser. 569, 173–185. doi: 10.3354/

meps12093

Saunders, R. A., Collins, M. A., Ward, P., Stowasser, G., Shreeve, R., and Tarling, G.

A. (2015). Distribution, population structure and trophodynamics of Southern

OceanGymnoscopelus (Myctophidae) in the Scotia Sea. Polar Biol. 38, 287–308.

doi: 10.1007/s00300-014-1584-9

Schiaparelli, S., Danis, B., Wadley, V., and Stoddart, D. M. (2013). “The census

of Antarctic marine life: the first available baseline for Antarctic marine

biodiversity,” in Adaptation and Evolution in Marine Environments, Vol. 2, eds

C. Verde and G. di Prisco (Berlin; Heidelberg: Springer-Verlag), 3–19.

Schliep, K. P. (2011). Phangorn: phylogenetic analysis in R. Bioinformatics 27,

592–593. doi: 10.1093/bioinformatics/btq706

Smith, A. D., Brown, C. J., Bulman, C. M., Fulton, E. A., Johnson,

P., Kaplan, I. C. (2011a). Impacts of fishing low-trophic level species

on marine ecosystems. Science 333, 1147–1150. doi: 10.1126/science.12

09395

Smith, P. J., Steinke, D., Dettai, A., McMillan, P., Welsford, D., Stewart, A.,

et al. (2012). DNA barcodes and species identifications in Ross Sea and

Southern Ocean fishes. Polar Biol. 35, 1297–1310. doi: 10.1007/s00300-012-

1173-8

Smith, P. J., Steinke, D., McMillan, P. J., Stewart, A. L., McVeagh, S. M., Diaz

De Astarloa, J. M., et al. (2011b). DNA barcoding highlights a cryptic species

of grenadier Macrourus in the Southern Ocean. J. Fish Biol. 78, 355–365.

doi: 10.1111/j.1095-8649.2010.02846.x

Smith, P. J., Steinke, D., Mcveagh, S. M., Stewart, A. L., Struthers, C. D.,

and Roberts, C. D. (2008). Molecular analysis of Southern Ocean skates

(Bathyraja) reveals a new species of Antarctic skate. J. Fish Biol. 73, 1170–1182.

doi: 10.1111/j.1095-8649.2008.01957.x

Steinke, D., and Hanner, R. (2011). The FISH-BOL collaborators protocol.

Mitochondr. DNA 22, 10–14. doi: 10.3109/19401736.2010.536538

Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., and Vogler, A.

P. (2003). A plea for DNA taxonomy. Trends Ecol. Evol. 18, 70–74.

doi: 10.1016/S0169-5347(02)00041-1

Thiel, R., and Knebelsberger, T. (2016). How reliably can northeast Atlantic

sand lances of the genera Ammodytes and Hyperoplus be distinguished? A

comparative application of morphological and molecular methods. Zookeys

2016, 139–164. doi: 10.3897/zookeys.617.8866

Van de Putte, A. P., Van Houdt, J. K. J., Maes, G. E., Hellemans, B., Collins, M.

A., and Volckaert, F. A. M. (2012). High genetic diversity and connectivity in

a common mesopelagic fish of the Southern Ocean: the myctophid Electrona

antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 59–60, 199–207.

doi: 10.1016/j.dsr2.2011.05.011

Ward, R. D., Hanner, R., and Hebert, P. D. (2009). The campaign

to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356.

doi: 10.1111/j.1095-8649.2008.02080.x

Wisner, R. (1976). The Taxonomy and Distribution of Lanternfishes (family

Myctophidae) of the Eastern Pacific Ocean - NORDA-Report 3. Bay St. Louis,

MS.

Yokoyama, S., and Yokoyama, R. (1996). Adaptive evolution of photoreceptors

and visual pigments in vertebrates. Annu. Rev. Ecol. Syst. 27, 543–567.

doi: 10.1146/annurev.ecolsys.27.1.543

Yoon, T. H., Kang, H. E., Lee, S. R., Lee, J. B., Baeck, G. W., Park, H., et al. (2017).

Metabarcoding analysis of the stomach contents of the Antarctic toothfish

(Dissostichus mawsoni ) collected in the Antarctic Ocean. PeerJ 5:e3977.

doi: 10.7717/peerj.3977

Young, E. F., Belchier, M., Hauser, L., Horsburgh, G. J., Meredith, M. P., Murphy,

E. J., et al. (2015). Oceanography and life history predict contrasting genetic

population structure in two Antarctic fish species. Evol. Appl. 8, 486–509.

doi: 10.1111/eva.12259

Zahuranec, B., Karuppasamy, P. K., Valinassab, T., Kidwai, S., Bernardi, J.,

and Bernardi, G. (2012). Cryptic speciation in the mesopelagic environment:

molecular phylogenetics of the lanternfish genus Benthosema. Mar. Genomics

7, 7–10. doi: 10.1016/j.margen.2012.05.001

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Christiansen, Dettai, Heindler, Collins, Duhamel, Hautecoeur,

Steinke, Volckaert and Van de Putte. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 19 September 2018 | Volume 6 | Article 120

https://doi.org/10.1007/s00300-014-1480-3
https://doi.org/10.3354/meps12093
https://doi.org/10.1007/s00300-014-1584-9
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1126/science.1209395
https://doi.org/10.1007/s00300-012-1173-8
https://doi.org/10.1111/j.1095-8649.2010.02846.x
https://doi.org/10.1111/j.1095-8649.2008.01957.x
https://doi.org/10.3109/19401736.2010.536538
https://doi.org/10.1016/S0169-5347(02)00041-1
https://doi.org/10.3897/zookeys.617.8866
https://doi.org/10.1016/j.dsr2.2011.05.011
https://doi.org/10.1111/j.1095-8649.2008.02080.x
https://doi.org/10.1146/annurev.ecolsys.27.1.543
https://doi.org/10.7717/peerj.3977
https://doi.org/10.1111/eva.12259
https://doi.org/10.1016/j.margen.2012.05.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Diversity of Mesopelagic Fishes in the Southern Ocean - A Phylogeographic Perspective Using DNA Barcoding
	Introduction
	Materials and Methods
	Sampling and Identification
	DNA Extraction, PCR and Sequencing
	Dataset Augmentation and Trimming and Phylogenetic Statistics

	Results
	Extension of the DNA Barcode Library
	Specimen Identification
	Phylogeny
	The Cytochrome C Oxidase I Gene
	The Rhodopsin Gene
	Both Markers Combined

	Phylogeography and Cryptic Species
	Electronini
	Gymnoscopelinae


	Discussion
	Extending and Using the DNA Barcode Library for Specimen Identification
	Phylogeny and Phylogeography of Southern Ocean Mesopelagic Fishes
	Evolution of Myctophidae in the Southern Ocean

	Conclusions
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


