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In the absence of annual laminations, time series generated from lake sediments or

other similar stratigraphic sequences are irregularly spaced in time, which complicates

formal analysis using classical statistical time series models. In lieu, statistical analyses

of trends in palaeoenvironmental time series, if done at all, have typically used simpler

linear regressions or (non-) parametric correlations with little regard for the violation of

assumptions that almost surely occurs due to temporal dependencies in the data or that

correlations do not provide estimates of the magnitude of change, just whether or not

there is a linear or monotonic trend. Alternative approaches have used LOESS-estimated

trends to justify data interpretations or test hypotheses as to the causal factors without

considering the inherent subjectivity of the choice of parameters used to achieve the

LOESS fit (e.g., span width, degree of polynomial). Generalised additive models (GAMs) are

statistical models that can be used to estimate trends as smooth functions of time. Unlike

LOESS, GAMs use automatic smoothness selection methods to objectively determine

the complexity of the fitted trend, and as formal statistical models, GAMs, allow for

potentially complex, non-linear trends, a proper accounting of model uncertainty, and

the identification of periods of significant temporal change. Here, I present a consistent

and modern approach to the estimation of trends in palaeoenvironmental time series

using GAMs, illustrating features of the methodology with two example time series of

contrasting complexity; a 150-year bulk organic matter δ15N time series from Small

Water, UK, and a 3,000-year alkenone record from Braya-Sø, Greenland. I discuss the

underlying mechanics of GAMs that allow them to learn the shape of the trend from

the data themselves and how simultaneous confidence intervals and the first derivatives

of the trend are used to properly account for model uncertainty and identify periods

of change. It is hoped that by using GAMs greater attention is paid to the statistical

estimation of trends in palaeoenvironmental time series leading to more a robust and

reproducible palaeoscience.

Keywords: time series, generalised additive model, simultaneous interval, spline, environmental change

1. INTRODUCTION

Palaeoecology and palaeolimnology have moved away from being descriptive disciplines, rapidly
adopting new statistical developments in the 1990s and beyond (Smol et al., 2012). Less
development has been observed in the area of trend estimation in palaeoenvironmental time series.
The vast majority of data produced by palaeoecologists and palaeolimnologists is in the form of

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2018.00149
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2018.00149&domain=pdf&date_stamp=2018-10-26
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gavin.simpson@uregina.ca
https://doi.org/10.3389/fevo.2018.00149
https://www.frontiersin.org/articles/10.3389/fevo.2018.00149/full
http://loop.frontiersin.org/people/72603/overview


Simpson Modelling Palaeoecological Time Series

time-ordered observations on one or more proxies or biological
taxa (Smol, 2008; Birks, 2012b; Smol et al., 2012). Typically these
data are arranged irregularly in time; in the absence of annual
laminae or varves, the sediment core is sectioned at regular
depth intervals (Glew et al., 2001), which, owing to variation
in accumulation rates over time and compaction by overlying
sediments, results in an uneven sampling in time. An under-
appreciated feature of such sampling is that younger sediments
often have larger variance than older sediments; each section
of core represents fewer lake years in newer samples, relative
to older samples. This variable averaging acts as a time-varying
low-pass (high-cut) filter of the annual depositional signal.

Irregular intervals between samples means that the time-
series analysis methods of autoregressive or moving average
processes, in the form of autoregressive integrated moving
average (ARIMA) models, are practically impossible to
apply because software typically requires even spacing
of observations in time. Dutilleul et al. (2012) and Birks
(2012a), eschewing the term time series, prefer to call
such data temporal series on account of the irregular
spacing of samples, a distinction that I find unnecessary,
however.

Where statistical approaches have been applied to trend
estimation in palaeoenvironmental time series, a commonly-
used method is LOESS (Cleveland, 1979; Birks, 1998, 2012a;
Juggins and Telford, 2012). LOESS, locally weighted scatterplot
smoother, as it’s name suggests, was developed to smooth x-y
scatterplot data (Cleveland, 1979). The method fits a smooth
line through data by fitting weighted least squares (WLS) models
to observations within a user-specified window of the focal
point, whose width is typically expressed as a proportion α of
the n data points. Weights are determined by how close (in
the x-axis only) an observation in the window is to the focal
point giving greatest weight given to points closest to the focal
point. The interim LOESS-smoothed value for the focal point is
the predicted value from the weighted regression at the focal
point. The interim values are updated using weights based on
how far in the y-axis direction the interim smoothed value
lies from the observed value plus the x-axis distance weights;
this has the effect of down-weighting outlier observations. The
final LOESS is obtained by joining the smoothed values. The
user has to choose how large a window to use, whether to fit
degree 1 (linear) or degree 2 (quadratic) polynomials in the
WLS model, and how to weight points in the x-axis. When
used in an exploratory mode, the user has considerable freedom
to choose the detail of the LOESS fit; the window width, for
example, can be infinitely tweaked to give as close a fit to the
data, as assessed by eye, as is desired. Using cross-validation (CV)
to choose α or the degree of polynomial in the WLS model
is complicated for a number of reasons, not least because the
CV scheme used must involve the time ordering of the data
(e.g., Bergmeir et al., 2018). This subjectivity is problematic
however once we wish to move beyond exploratory analysis and
statistically identify trends to test hypotheses involving those
trend estimates.

Running means or other types of filter (Juggins and
Telford, 2012) have also been used extensively to smooth

palaeoenvironmental time series, but, as with LOESS, their
behaviour depends on a number of factors, including the filter
width. Furthermore, the width of the filter causes boundary
issues; with a centred filter, of width five, the filtered time series
would be two data points shorter at both ends of the series
because the filter values are not defined for the first and last two
observations of the original series as these extra time points were
not observed. Considerable research effort has been expended
to identify ways to pad the original time series at one or both
ends to maintain the original length in the filtered series, without
introducing bias due to the padding (e.g., Mann, 2004, 2008;
Mills, 2006, 2007, 2010).

These are not the only methods that have been used
to estimated trends in stratigraphic series. Another common
approach involves fitting a simple linear trend using ordinary
least squares regression and use the resulting t statistic as
evidence against the null hypothesis of no trend despite
the statistical assumptions being almost surely violated due
to dependence among observations. The Pearson correlation
coefficient, r, is also often used to detect trends in palaeo
time series (Birks, 2012a), despite the fact that r provides no
information as to the magnitude of the estimated trend, and
the same temporal autocorrelation problem that dogs ordinary
least squares similarly plagues significance testing for r (Tian
et al., 2011). Additionally, both the simple least squares trend
line and r are tests for linear trends only, and yet we typically
face data sets with potentially far more complex trends than can
be identified by these methods. Instead, non-parametric rank
correlation coefficients have been used (Gautheir, 2001; Birks,
2012a), and whilst these do allow for the detection of non-linear
trends, trends are restricted to be monotonic, no magnitude of
the trend is provided, and the theory underlying significance
testing of Spearman’s ρ and Kendall’s τ assumes independent
observations.

Here, I describe generalised additive models (GAMs; Hastie
and Tibshirani, 1986, 1990; Yee andMitchell, 1991; Ruppert et al.,
2003;Wood, 2017) for trend estimation. GAMs, like simple linear
regression, are a regression-based method for estimating trends,
yet they are also, superficially at least, similar to LOESS. GAMs
and LOESS estimate smooth, non-linear trends in time series and
both can handle the irregular spacing of samples in time, yet
GAMs do not suffer from the subjectivity that plagues LOESS as a
method of formal statistical inference.

In the subsequent sections, I present an introduction to GAMs
and discuss the issue of uncertainty in model-estimated trends,
the topic of posterior simulation from a regression model and
how to identify periods of significant environmental change
using the first derivative of the estimated trend. The main
steps in the analysis of palaeoenvironmental time series using
GAMs are illustrated in Figure 1. Two non-standard types of
spline—adaptive smoothers and Gaussian process splines—that
are especially applicable to GAMs in the palaeoenvironmental
setting are subsequently described, followed by an assessment
of the impact of age-model uncertainty on trend estimation via
GAMs. Finally, I briefly discuss the application of GAM trend
analysis to multivariate species abundance and compositional
data.
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FIGURE 1 | Flowchart showing the main steps in the analysis of time series

using generalised additive models. The main R functions associated with each

step or decision are shown in bold.

1.1. Example Time Series
To illustrate trend estimation in palaeoenvironmental data using
GAMs, I use two proxy time series; a 150-year bulk organic
matter δ15N record from Small Water, and a 3,000-year alkenone
record from Braya-Sø. Between them, the two examples, combine
many of the features of interest to palaeoecologists that motivate
the use of GAMs; non-linear trends and the question of when
changes in the measured proxy occurred. The example analyses
were all performed using the mgcv package (version 1.8.24;
Wood, 2017) and R (version 3.4.4; R Core Team, 2018), and the
Supplementary Material contains a fully annotated document
showing the R code used to replicate all the analyses described
in the remainder of the paper.

1.1.1. δ15N Time Series From Small Water
Figure 2A shows 48 nitrogen stable isotope measurements on
the bulk organic matter of a sediment core collected from Small
Water, a small corrie lake located in the English LakeDistrict, UK.
The data were collected to investigate disturbance of nitrogen (N)
cycling in remote, oligotrophic lakes by N deposited from the
atmosphere (Simpson, unpublished data). The data are shown on
a 210Pb time scale. Questions that might be asked about this series
are; what is the trend in δ15N?, when do we first see evidence
for a change in δ15N?, and is the reversal in δ15N values in the
uppermost section of the core a real change?

1.1.2. Braya-Sø Alkenone Time Series
The second example time series is a 3,000 year record of alkenone
unsaturation, UK

37, from Braya-Sø, a meromictic lake in West
Greenland (D’Andrea et al., 2011). Alkenones are long-chained
unsaturated organic compounds that are produced by a small
number of planktonic organisms known as haptophytes. TheUK

37
unsaturation index (Brassell, 1993) is

UK
37 =

[C37 : 2]− [C37 : 4]

[C37 : 2]+ [C37 : 3]+ [C37 : 4]

where [C37 : x] is the concentration of the alkenone with
37 carbon atoms and x double carbon bonds. The relative
abundance of these alkenones is known to vary with changes in
water temperature (Brassell, 1993; Zink et al., 2001; Chu et al.,
2005; Toney et al., 2010), and as a result UK

37 is used as a proxy
for lake- and sea-surface temperatures. For further details on
the Braya-Sø UK

37 record and age model see D’Andrea et al.
(2011). Here I use the 3,000 year UK

37 record from the PAGES 2K
database (PAGES 2K Consortium, 2013). The data are presented
in Figure 2B.

2. REGRESSION MODELS FOR
PALAEOENVIRONMENTAL TIME SERIES

A linear model for a trend in a series of T observations yt at
observation times xt with t = 1, 2, . . . ,T is

yt = β0 + β1xt + εt , (1)

where β0 is a constant term, the model intercept, representing
the expected value of yt where xt is 0. β1 is the slope of the
best fit line through the data; it measures the rate of change in
y for a unit increase in x. The unknowns, the βj, are commonly
estimated using least squares by minimising the sum of squared
errors,

∑

t ε
2
t . If we want to ask if the estimated trend β1 is

statistically significant we must make further assumptions about
the data (conditional upon the fitted model) or the model errors

(residuals); εt
iid
∼ N (0, σ 2). This notation indicates that the

residuals εt are independent and identically distributed Gaussian
random variables with mean equal to 0 and constant variance
σ 2. In the time series setting, the assumption of independence
of model residuals is often violated.

The linear model described above is quite restrictive in terms
of the types of trend it can fit; essentially linear increasing or
decreasing trends, or, trivially, a null trend of no change. This
model can be extended to allow for non-linear trends by making
yt depend on polynomials of xt , for example

yt = β0 + β1xt + β2x
2
t + · · · + βPx

P
t + εt (2)

= β0 +

P
∑

p=1

βpx
p
t + εt ,

where polynomials of xt up to order P are used. Thismodel allows
for more complex trends but it remains a fully parametric model
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FIGURE 2 | Example time series; (A) Small Water bulk organic matter δ15N time series on a 210Pb time scale, and (B) Braya-Sø UK37 time series on a calibrated 14C

time scale. The observations in the UK37 time series have been joined by lines purely as a visual aid to highlight potential trends.

and suffers from several problems, especially the behaviour of the
fitted trend at the start and end of the observed series.

Linear models using a range of polynomials fitted to the Small
Water data set are shown in Figure 3. The low-order models
(P ∈ {1, 3}) result in very poor fit to the data. The model with
P = 5 does a reasonable job of capturing the gross pattern in
the time series, but fails to adapt quickly enough to the decrease
in δ15N that begins ~1940 CE, and the estimated trend is quite
biased as a result. The P = 10th-order polynomial model is
well able to capture this period of rapid change, but it does so
at the expense of increased complexity in the estimated trend
prior to ~1940. Additionally, this model (P = 10) has undesirable
behaviour at the ends of the series, significantly overfitting the
data, a commonly observed problem in polynomial models such
as these (Runge, 1901; Epperson, 1987). Finally, the choice of
what order of polynomial to fit is an additional choice left for
the analyst to specify; choosing the optimal P is not a trivial task
when the data are a time series and residual autocorrelation is
likely present.

Can we do better than these polynomial fits? In the remainder,
I hope to demonstrate that the answer to that question is
emphatically “yes”! Below I describe a coherent and consistent
approach to modelling palaeoenvironmental time series using
generalised additivemodels that builds upon the linear regression
framework.

3. GENERALISED ADDITIVE MODELS

The GAM version of the linear model (1) is

yt = β0 + f (xt)+ εt , (3)

where the linear effect of time (the β1xt part) has been replaced
by a smooth function of time, f (xt). The immediate advantage
of the GAM is that we are no longer restricted to the shapes of
trends that can be fitted via global polynomial functions such as
(2). Instead, the shape of the fitted trend will be estimated from
the data itself.

The linear model is a special case of a broader class, known
as the generalised linear model (GLM; McCullagh and Nelder,
1989). The GLM provides a common framework for modelling
a wide range of types of data, such as count, proportions,
or binary (presence/absence) data, that are not conditionally
distributed Gaussian. GLMs are, like the linear model, parametric
in nature; the types of trends that we can fit using a GLM are
the linear or polynomial models. GAMs extend the GLM by
relaxing this parametric assumption; in a GAM some, or all, of
the parametric terms, the βp, are replace by smooth functions fj
of the covariates xj. For completeness then, we can write (3) as a
GLM/GAM

yt ∼ EF(µt ,2) (4a)

g(µt) = β0 + f (xt) (4b)

µt = g−1(β0 + f (xt)), (4c)

where µt is the expected value (e.g., the mean count or
the probability of occurrence) of the random variable Yt

(µt ≡ E(Yt)) of which we have observations yt . g is the
link function, an invertible, monotonic function, such as the
natural logarithm, and g−1 is its inverse. The link function
maps values from the response scale on to the scale of the
linear predictor, whilst the inverse of the link function provides
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FIGURE 3 | Linear models with various orders of polynomial of the covariate Year fitted using ordinary least squares to the δ15N time series from Small Water. The

degree of polynomial is indicated, with the degree 1 line equal to a simple linear regression model.

the reverse mapping. For example, count data are strictly non-
negative integer values and are commonly modelled as a Poisson
GLM/GAM using the natural log link function. On the log
scale, the response can take any real value between −∞ and
+∞, and it is on this scale that model fitting actually occurs
(i.e., using Equation 4b). However we need to map these
unbounded values back on to the non-negative response scale.
The inverse of the log link function, the exponential function,
achieves this and maps values to the interval 0–∞ (Equation
4c).

In (4a), we further assume that the observations are drawn
from a member of the exponential family of distributions—
such as the Poisson for count data, or the binomial for
presence/absence or counts from a total—with expected value
µt and possibly some additional parameters 2 (yt ∼

EF(µt ,2)). Additionally, many software implementations of
the above model also allow for distributions that are not
within the exponential family but which can be fitted using
an algorithm superficially similar to the one used to fit GAMs
to members of the exponential family (e.g., Wood, 2003).
Common examples of such extended families include the
negative binomial distribution (for overdispersed counts) and the
beta distribution (for true proportions or other interval-bounded
data).

3.1. Basis Functions
It is clear from plots of the data (Figure 2) that we require the
fitted trends for the Small Water δ15N and Braya-Sø UK

37 time
series to be non-linear functions, but it is less clear how to specify
the actual shape require. Ideally, we’d like to learn the shape of
the trend from the data themselves. We will refer to these non-
linear functions as smooth functions, or just smooths for short,
and we will denote a smooth using f (xt). Further, we would
like to represent the smooths in a way that (4) is represented
parametrically so that it can be estimate within the well-studied
GLM framework. This is achieved by representing the smooth
using a basis. A basis is a set of functions that collectively
span a space of smooths that, we hope, contains the true f (xt)
or a close approximation to it. The functions in the basis are
known as basis functions, and arise from a basis expansion of
a covariate. Writing bj(xt) as the jth basis function of xt , the

smooth f (xt) can be represented as a weighted sum of basis
functions

f (xt) =

k
∑

j=1

bj(xt)βj ,

where βj is the weight applied to the jth basis function.
The polynomial model is an example of a statistical model

that uses a basis expansion. For the cubic polynomial (P = 3)
fit shown in Figure 3 there are in fact 4 basis functions: b1(xt) =
x0t = 1, b2(xt) = xt , b3(xt) = x2t , and b4(xt) = x3t . Note that
b1(xt) is constant and is linked to the model intercept, β0, in the
linear model (2), and further, that the basis function weights are
the estimated coefficients in the model, the βj.

As we have already seen, polynomial basis expansions do not
necessarily lead to well-fitting models unless the true function
f is itself a polynomial. One of the primary criticisms is that
polynomial basis functions are global (Magee, 1998); the value
of f at time xt affects the value of f at time point xt+s even if the
two time points are at opposite ends of the series. There are many
other bases we could use; here I discuss one such set of bases, that
of splines.

There are a bewildering array of different types of spline. In the
models discussed below we will largely restrict ourselves to cubic
regression splines (CRS) and thin plate regression splines (TPRS).
In addition, I also discuss two special types of spline basis, an
adaptive spline basis and a Gaussian process spline basis.

A cubic spline is a smooth curve comprised of sections of
cubic polynomials, where the sections are joined together at
some specified locations—known as knots—in such a way that
at the joins, the two sections of cubic polynomial that meet have
the same value as well as the same first and second derivative.
These properties mean that the sections join smoothly and
differentiably at the knots (Wood, 2017, 5.3.1).

The CRS can be parameterised in a number of different ways.
One requires a knot at each unique data value in xt , which is
computationally inefficient. Another way of specifying a CRS
basis is to parameterise in terms of the value of the spline at
the knots. Typically in this parametrisation there are many fewer
knots than unique data, with the knots distributed evenly over the
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range of xt or at the quantiles of xt . Placing knots at the quantiles
of xt has the effect of placing a greater number of knots where the
data is most dense.

A CRS basis expansion comprised of 7 basis functions for the
time covariate in the Small Water series, is shown in Figure 4A.
The tick marks on the x-axis show the positions of the knots,
which are located at the ends of the series and evenly in between.
Notice that in this particular parametrisation, the jth basis
function takes a value of 1 at the jth knot and at all other knots a
value of 0.

To estimate a model using this basis expansion each basis
function forms a column in the model matrix X and the weights
βj can be found using least squares regression (assuming a
Gaussian response). Note that in order to estimate a coefficient
for each basis function the model has to be fitted without an
intercept term. In practice we would include an intercept term
in the model and therefore the basis functions are modified via
an identifiability constraint (Wood, 2017). This has the effect of
making the basis orthogonal to the intercept but results in more
complicated basis functions than those shown in Figure 4A.

Having estimated the weight for each basis function, the jth
basis function bj is scaled (weighted) by its coefficient βj. The
scaled CRS basis functions for the Small Water time series are
shown in Figure 4B. The solid line passing through the data
points is formed by summing up the values of the seven scaled
basis functions (bj(xt)βj) at any value of xt (time).

Cubic regression splines, as well as many other types of
spline, require the analyst to choose the number and location
of the knots that parametrise the basis. Thin plate regression

splines (TPRS) remove this element of subjectivity when fitting
GAMs. Thin plate splines were introduced by Duchon (1977)
and, as well as solving the knot selection problem, have several
additional attractive properties in terms of optimality and their
ability to estimate a smooth function of two or more variables,
leading to smooth interactions between covariates. However,
thin plate splines have one key disadvantage over CRS; thin
plate splines have as many unknown parameters as there are
unique combinations of covariate values in a data set (Wood,
2017, 5.5.1). It is unlikely that any real data problem would
involve functions of such complexity that they require as many
basis functions as data. It is much more likely that the true
functions that we attempt to estimate are far simpler than the set
of functions representable by 1 basis function per unique data
value. From a practical point of view, it is also highly inefficient
to carry around all these basis functions whilst model fitting,
and the available computational resources would become quickly
exhausted for large time series with many observations.

To address this issue low rank thin plate regression splines
(TPRS) have been suggested which truncate the space of the
thin plate spline basis to some lower number of basis functions
whilst preserving much of the advantage of the original basis
as an optimally-fitting spline (Wood, 2003). A rank 7 TPRS
basis (i.e., one containing 7 basis functions) is shown in
Figure 4C for the Small Water time series. The truncation is
achieved by performing an eigen-decomposition of the basis
functions and retaining the eigenvectors associated with the
k largest eigenvalues. This is similar to the way principal
components analysis decomposes a data set into axes of variation

FIGURE 4 | Basis functions for the time covariate and the Small Water δ15N time series. A rank (size) 7 cubic regression spline (CRS) basis expansion is show in (A),

with knots, indicated by tick marks on the x-axis, spread evenly through the range of the data. (B) Shows the same CRS basis functions weighted by the estimated

coefficients βj , plus the resulting GAM trend line (black line drawn through the data). The grey points in both panels are the observed δ15N values. (C) A rank 7 thin

plate regression spline basis for the same data.
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(eigenvectors) in decreasing order of variance explained. The
truncated basis can preserve much of the space of functions
spanned by the original basis but at the cost of using far fewer
basis functions (Wood, 2003, 2017, 5.5.1). Note the horizontal
TPRS basis function (at δ15N = 1) in Figure 4C; this basis
function is confounded with the intercept term and, after the
application of identifiability constraints, ends up being removed
from the set of basis functions used to fit the model.

The truncation suggested byWood (2003) is not without cost;
the eigen-decomposition and related steps can be relatively costly
for large data sets. For data sets of similar size to the two examples
used here, the additional computational effort required to set up
the TPRS basis over the CRS basis will not be noticeable. For
highly resolved series containing more than ~1,000 observations
the truncation may be costly computationally. In such instances,
little is lost by moving to the CRS basis with the same number
of knots as the rank of the desired TPRS, with the benefit of
considerably reduced set up time for the basis.

To fit a GAM using either of the two regression spline bases
described above, the analyst is generally only required to the
specify the size (rank) of the basis expansion required to represent
or closely approximate the true function f . With practice and
some knowledge of the system fromwhich the observations arise,
it can be relatively easy to put an upper limit on the expected
complexity of the true trend in the data. Additionally, the number
of available data points places a constraint on the upper limit of
the size of basis expansion that can be used.

In practice, the size of the basis is an upper limit on the
expected complexity of the trend, and a simple test can be used
to check if the basis used was sufficiently large (Pya and Wood,
2016). This test is available via the gam.check() function in
mgcv for example, which essentially looks at whether there is
any additional nonlinearity or structure in the residuals that can
be explained by a further smooth of xt . Should a smooth term
in the fitted model fail this test the model can be refitted using
a larger basis expansion, say by doubling the value of k (the
rank) used to fit the original. Note also that a smooth might fail
this test whilst using fewer effective degrees of freedom than the
maximum possible for the dimension of basis used. This may
happen when the true function lies at the upper limit of the set of
functions encompassed by the size of basis used. Additionally, a
basis of size 2k encompasses a richer space of functions of a given
complexity than a basis of size k (Wood, 2017); increasing the
basis dimension used to fit the model may unlock this additional
function space resulting in a better fitting model whilst using a
similar number of effective degrees of freedom.

3.2. Smoothness Selection
Having identified low rank regression splines as a useful way
to represent f , we next need a way to decide how wiggly
the fitted trend should be. A backwards elimination approach
to sequentially remove knots or basis functions might seem
appropriate, however such an approach would likely fail as
the resulting sequence of models would not be strictly nested,
precluding many forms of statistical comparison (Wood, 2017).
Alternatively, we could keep the basis dimension at a fixed size

but guard against fitting very complex models through the use of
a wiggliness penalty.

The default wiggliness penalty used in GAMs is on the second
derivative of the spline, which measures the rate of change of the
slope, or the curvature, of the spline at any infinitesimal point
in the interval spanned by xt . The actual penalty used is the
integrated squared second derivative of the spline

∫

R

[f ′′]2dx = βTSβ . (5)

The right hand side of (5) is the penalty in quadratic form. The
convenience of the quadratic form is that it is a function of the
estimated coefficients of f (xt) where S is known as the penalty
matrix. Notice that now both the weights for the basis functions
and the wiggliness penalty are expressed as functions of themodel
coefficients.

Now that we have a convenient way to measure wiggliness, it
needs to be incorporated into the objective function that will be
minimised to fit the GAM. The likelihood of the model given the
parameter estimates L(β) is combined with the penalty to create
the penalised likelihood Lp(β):

Lp(β) = L(β)−
1

2
λβTSβ .

The fraction of a half is there simply to make the penalised
likelihood equal the penalised sum of squares in the case of
a Gaussian model. λ is known as the smoothness parameter
and controls the extent to which the penalty contributes to the
likelihood of the model. In the extreme case of λ = 0 the penalty
has no effect and the penalised likelihood equals the likelihood
of the model given the parameters. At the other extreme, as
λ → ∞ the penalty comes to dominate Lp(β) and the wiggliness
of f (xt) tends to 0 resulting in an infinitely smooth function. In
the case of a second derivative penalty, this is a straight line, and
we recover the simple linear trend from (1) when assuming a
Gaussian response.

Figure 5 illustrates how the smoothness parameter λ controls
the degree of wiggliness in the fitted spline. Four models are
shown, each fitted with a fixed value of λ; 10,000, 1, 0.01, and
0.00001. At λ = 10, 000 the model effectively fits a linear
model through the data. As the value of λ decreases, the fitted
spline becomes increasingly wiggly. As λ becomes very small, the
resulting spline passes through most of the δ15N observations
resulting in a model that is clearly over fitted to the data.

To fully automate smoothness selection for f (xt) we need to
estimate λ. There are two main ways that λ can be automatically
chosen during model fitting. The first way is to choose λ such
that it minimises the prediction error of the model. This can
be achieved by choosing λ to minimise Akaike’s information
criterion (AIC) or via cross-validation (CV) or generalised cross-
validation (GCV; Craven and Wahba, 1978). GCV avoids the
computational overhead inherent to CV of having to repeatedly
refit the model with one or more observations left out as a test set.
Minimising the GCV score will, with a sufficiently large data set,
find a model with the minimal prediction error (Wood, 2017).
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FIGURE 5 | The effect of the smoothness parameter λ on the resulting wiggliness of the estimated spline. Large values of λ penalise wiggliness strongly, resulting in

smooth trends (upper row), while smaller values allow increasingly wiggly trends. The aim of automatic smoothness selection is to find an optimal value of λ that

balances the fit of the model with model complexity to avoid overfitting.

The second approach is to treat the smooth as a random effect,
in which λ is now a variance parameter to be estimated using
maximum likelihood (ML) or restricted maximum likelihood
(REML; Wood, 2011; Wood et al., 2016).

Several recent results have shown that GCV, under certain
circumstances, has a tendency to under smooth, resulting in
fitted splines that are overly wiggly (Reiss and Ogden, 2009).
Much better behaviour has been observed for REML and ML
smoothness selection, in that order (Wood, 2011). REML is
therefore the recommended means of fitting GAMs, though,
where models have different fixed effects (covariates) they cannot
be compared using REML, and ML selection should be used
instead. In the sorts of data examples considered here there is
only a single covariate xt as our models contain a single estimated
trend so REML smoothness selection is used throughout unless
otherwise stated.

4. FITTING GAMS

4.1. Small Water
The trend in δ15N values is clearly non-linear but it would be
difficult to suggest a suitable polynomial model that would allow
for periods of relatively no change in δ15N as well as rapid change.
Instead, a GAM is ideally suited to modelling such trends; the
data suggest a smoothly varying change in δ15N between 1925
and 1975. It is reasonable to expect some autocorrelation in
the model errors about the fitted trend. Therefore I fitted the
following GAM to the δ15N time series.

yt = β0 + f (xt)+ ε, εt ∼ (0,3σ 2) (6)

Now the i.i.d. assumption has been relaxed and a correlation
matrix, 3, has been introduced that is used to model
autocorrelation in the residuals. The δ15N values are irregularly
spaced in time and a correlation structure that can handle
the uneven spacing is needed (Pinheiro and Bates, 2000). A
continuous time first-order autoregressive process (CAR(1))
is a reasonable choice; it is the continuous-time equivalent
of the first-order autoregressive process (AR(1)) and, simply
stated, models the correlation between any two residuals as
an exponentially decreasing function of h (φh), where h is the
amount of separation in time between the residuals (Pinheiro and
Bates, 2000). hmay be a real valued number in the CAR(1), which
is how it can accommodate the irregular separation of samples
in time. φ controls how quickly the correlation between any two
residuals declines as a function of their separation in time and
is an additional parameter that will be estimated during model
fitting. The model in (6) was fitted using the gamm() function
(Wood, 2004) in the mgcv package (Wood, 2017) for R (R Core
Team, 2018).

The fitted trend is shown in Figure 6A, and well-captures the
strong pattern in the data. The trend is statistically significant
(effective degrees of freedom = 7.95; F = 47.44, approximate p
value = ≪ 0.0001). However further analysis of the fitted model
is required to answer the other questions posed earlier about
the timing of change and whether features in the trend can be
distinguished from random noise. I discuss these issues shortly.

4.2. Braya-Sø
The UK

37 data present a more difficult data analysis challenge
than the δ15N time series because of the much more complex
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FIGURE 6 | GAM-based trends fitted to the Small Water δ15N (A) and Braya-Sø UK37 (B) time series. The shaded bands surrounding the estimated trends are

approximate 95% across-the-function confidence intervals. For the UK37 series, two models are shown; the orange fit is the result of a GAM with a continuous-time

AR(1) process estimated using REML smoothness selection, while the blue fit is that of a simple GAM with GCV-based smoothness selection. The REML-based fit

significantly oversmooths the UK37 time series.

variation present. Fitting the same model as the Small Water
example, (6), to the UK

37 data resulted in the unsatisfactory fit
shown as the very smooth line in Figure 6B (labelled GAMM
(CAR(1))). Further problems were evident with this model fit—
the covariance matrix of the model was non-positive definite,
a sure sign of problems with the fitted model. Refitting with a
smaller basis dimension (k = 20) for the trend term resulted in
a model with a positive-definite covariance matrix for the model
variance-covariance terms, but the estimated value of the CAR(1)
parameter φ = 0.2 was exceedingly uncertain (95% confidence
interval 0–1!).

Fitting this model as a standard GAMwith REML smoothness
selection resulted in the same fitted trend as the GAM with
CAR(1) errors (not shown), whilst using GCV smoothness
selection resulted in a much more satisfactory fitted trend. There
are two potential problems with the GCV-selected trend: (i) GCV
is sensitive to the profile of the GCV score and has been shown to
under smooth data in situations where the profile is flat around
the minimum GCV score, and (ii) the model fitted assumes that
the observations are independent, an assumption that is certainly
violated in the UK

37 time series.
To investigate the first issue, the GCV and REML scores for

an increasing sequence of values of the smoothness parameter
(λ) were evaluated for the standard GAM (Equation 4) fit to the
UK
37 time series. The resulting profiles are shown in Figure 7,

with the optimal value of the parameter shown by the vertical
line. The GCV score profile suggests that the potential for under
smoothing identified by Reiss and Ogden (2009) is unlikely to
apply here as there is a well-defined minimum in profile.

To understand the reason why the GAM plus CAR(1) and the
simple GAMwith REML smoothness selection performed poorly
with the UK

37 time series we need to delve a little deeper into what
is happening when we are fitting these two models.

The primary issue leading to poor fit is that neither model
accounts for the different variance (known as heteroscedasticity)
of each observation in the UK

37 record. This seemingly isn’t
a problem for GCV which minimises prediction error. The
sediments in Braya-Sø are not annually laminated and therefore
the core was sliced at regular depth intervals. Owing to
compaction of older sediments and variation in accumulation
rates over time, each sediment slice represents a different
number of “lake years”. We can think of older samples
as representing some average of many years of sediment
deposition, whilst younger samples are representative of fewer
of these lake years. The average of a larger set of numbers
is estimated more precisely than the average of a smaller
set, all things equal. A direct result of this variable averaging
of lake years it that some samples are more precise and
therefore have lower variance than other samples and yet
the model assumed that the variance was constant across
samples.

Accounting for heteroscedasticity within the model is
relatively simple via the use of observational weights. The
number of lake years represented by each slice is estimated by
assigning a date to the top and bottom of each sediment slice.
The variance of each observation should be proportional to the
inverse of the number of lake years each sample represents. In
the gam() function used here, weights should be specified as the
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FIGURE 7 | GCV and REML scores as a function of the smoothness parameter λ. From left to right, GAMs were estimated using GCV and REML smoothness

selection, and REML using a basis dimension of 40 and observational weights to account for heterogeneity in the UK37 times series. The selected value of λ for each

model is indicated by the vertical grey line.

number of lake years each sample represents. Other software may
require the weights to be specified in a different way.

A secondary problem is the size of the basis dimension
used for the time variable. The main user selectable option
when fitting a GAM in the penalised likelihood framework
of Wood (2004) is how many basis functions to use. As
described above, the basis should be large enough to contain
the true, but unknown, function or a close approximation
to it. For GCV selection the basis used contained 29 basis
functions, whilst the CAR(1) model with REML smoothness
selection would only converge with a basis containing 20
functions. The size of the basis appears to be sufficient for
GCV smoothness selection, but following Wood (2011) REML
smoothness selection is preferred. Using the test of Pya and
Wood (2016), the basis dimension for the models with REML
smoothness selection was too small. To proceed therefore, we
must drop the CAR(1) term and increase the basis dimension to
39 functions (by setting k = 40; I set it larger than expected
because the larger basis contains a richer family of functions
and the excess complexity is reduced because of the smoothness
penalty.)

With the larger basis dimension and accounting for the non-
constant variance of the observations via weights, themodel fitted
using REML is indistinguishable from that obtained using GCV
(Figure 6B). The trace of the REML score for this model shows
a pronounced minimum at a much smaller value of λ than the
original REML fit (Figure 7), indicating that a more wiggly trend
provides a better fit to the Braya-Sø time series. This example
illustrates that some care and understanding of the underlying
principles of GAMs is required to diagnose potential issues
with the estimated model. After standard modelling choices
(size of basis to use, correct selection of response distribution
and link function, etc.) are checked, it often pays to think
carefully about the properties of the data and ensure that the
assumptions of the model are met. Here, despite increasing the
basis size, it was the failure to appreciate the magnitude of
the effect of the non-constant variance that lead to the initially
poor fit and the problems associated with the estimation of the
CAR(1) process. I return to the issue of why the GAM plus
CAR(1) model encountered problems during fitting later (see
section 4.5).

4.3. Confidence Intervals and Uncertainty
Estimation
If we want to ask whether either of the estimated trends
is statistically interesting or proceed to identify periods of
significant change, we must address the issue of uncertainty in
the estimated model. What uncertainty is associated with the
trend estimates? One way to visualise this is through a 1 - α

confidence interval around the fitted trend, where α is say 0.05
leading to a 95% interval. A 95% interval would be drawn at ŷt ±
(m1−α × SE(ŷt)), withm1−α = 1.96, the 0.95 probability quantile
of a standard normal distribution1, and SE(ŷt) is the standard
error of the estimated trend at time xt . This type of confidence
interval would normally be described as pointwise; the coverage
properties of the interval being correct for a single point on the
fitted trend, but, if we were to consider additional points on the
trend, the coverage would logically be lower than 1 - α. This is
the traditional frequentist interpretation of a confidence interval.
However, the GAM described here has a Bayesian interpretation
(Kimeldorf and Wahba, 1970; Wahba, 1983, 1990; Silverman,
1985) and therefore the typical frequentist interpretation does
not apply. Nychka (1988) investigated the properties of a
confidence interval created as described above using standard
errors derived from the Bayesian posterior covariance matrix
for the estimated model parameters. Such intervals have the
interesting property that they have good across-the-function
coverage when considered from a frequentist perspective. This
means that, when averaged over the range of the function, the
Bayesian credible intervals shown in Figure 6 have close to the
expected 95% coverage. However, to achieve this some parts of
the function may have more or less than 95%-coverage. Marra
and Wood (2012) recently explained Nychka’s (1988) surprising
results and extended them to the case of generalised models
(non-Gaussian responses).

Whilst the across-the-function frequentist interpretation of the
Bayesian credible intervals is useful, if may be important to have

1The 0.95 probability quantile of the t distribution may be used instead, which will

account for estimation of σ , the variance of the data. However, given the number

of observations, and hence residual degrees of freedom, needed to motivate fitting

GAMs, differences between intervals computed using extreme quantiles of the

standard normal or the t distribution will be tiny.
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FIGURE 8 | Estimated trends (thick black lines) and 20 random draws (grey lines) from the posterior distribution of the GAM fitted to the Small Water δ15N (A) and

Braya-Sø UK37 (B) time series.

an interval that contains the entirety of the true function with
some state probability (1 - α). Such an interval is known as a
simultaneous interval. A (1 - α)100% simultaneous confidence
interval contains in their entirety 1 - α of all random draws from
the posterior distribution of the fitted model.

Fitting a GAM involves finding estimates for coefficients of
the basis functions. Together, these coefficients are distributed
multivariate normal with mean vector and covariance matrix
specified by the model estimates of the coefficients and their
covariances, respectively. Random draws from this distribution
can be taken, where each random draw represents a new trend
that is consistent with the fitted trend but also reflects the
uncertainty in the estimated trend. This process is known as
posterior simulation.

Figure 8 shows 20 random draws from the posterior
distributions of the GAMs fitted to the Small Water and Braya-
Sø data sets. In the early period of the δ15N time series
many of the posterior simulations exhibit short periods of
increasing and decreasing trend, balancing out to the relatively
flat trend estimated by the GAM (Figure 8A). Reflecting this
uncertainty, we might expect relatively wide simultaneous
intervals during this period in order to contain the vast majority
of the simulated trends. Conversely, the decreasing δ15N trend
starting at ~1945 is consistently reproduced in the posterior
simulations, suggesting that this feature of the time series
is both real and statistically significant, and that the rate of
change in δ15N is relatively precisely estimated. We see a
similar pattern in Figure 8B for the Braya-Sø record; the large
peak in UK

37 at ~250CE and the strong decline at ~1200CE
are well defined in the posterior simulations, whereas most
of the localised trends that are smaller magnitude changes
in yt are associated with posterior simulations that are less

well constrained with the ends of the record in particular
showing considerable variation in the strength, timing, and even
sign of simulated trends, reflecting the greater uncertainty in
estimated trend during these periods. For the random draws
illustrated in Figure 8, a (1 - α)100% simultaneous interval
should contain the entire function for on average 19 of the 20
draws.

There are a number of ways in which a simultaneous
interval can be computed. Here I follow the simulation approach
described by Ruppert et al. (2003) and present only the basic
detail; a fuller description is contained in Appendix 1. The
general idea is that if we want to create an interval that
contains the whole of the true function with 1 - α probability,
we need to increase the standard Bayesian credible interval
by some amount. We could simulate a large number of
functions from the posterior distribution of the model and
then search for the value of m1−α that when multiplied by

SE(f̂ (xt)) yielded an interval that contained the whole function
for (1 − α)100% of the functions simulated. In practice,
the simulation method of Ruppert et al. (2003) does not
involve a direct search, but yields the critical value m1−α

required.
Simultaneous intervals computed using the method described

are show in Figure 9 alongside the across-the-function confidence
intervals for the trends fitted to both example data sets.
As expected, the simultaneous interval is somewhat wider
than the across-the-function interval. The critical value m1−α

for the simultaneous interval of the estimated trend in
δ15N is 3.07, whilst the same value for the UK

37 series
is 3.43, leading to intervals that are approximately ±50%
and ±75% wider than the equivalent across-the-function
intervals.

Frontiers in Ecology and Evolution | www.frontiersin.org 11 October 2018 | Volume 6 | Article 149

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Simpson Modelling Palaeoecological Time Series

FIGURE 9 | 95% simultaneous confidence intervals (light grey bands) and across-the-function confidence intervals (dark grey bands) on the estimated trends (black

lines) for the Small Water δ15N (A) and Braya-Sø UK37 (B) time series.

4.4. Identifying Periods Change
In the simple linear trend model (1) whether the estimated trend
constitutes evidence for or against a null hypothesis of no change
rests on how large the estimated rate of change in yt is (β̂1)
relative to its uncertainty. This is summarised in the t statistic.
As the rate of change in yt is constant over the fitted trend—there
is only a single slope for the fitted trend β̂1—if the t statistic of
the test that β̂1 = 0 is unusually extreme this would be evidence
against the null hypothesis of no change. Importantly, this applies
to the whole time series as the linearmodel implies a constant rate
of change throughout. More formally, the estimate β̂1 is the first
derivative of the fitted trend.

In the GAM, the fitted trend need not be linear; the slope of
the trend is potentially different at every point in the time series.
As such we might reasonably ask where in the series the response
yt is changing, if at all? Mirroring the linear model we can answer
this question by determining whether or not the first derivative at
any time point xt of the fitted trend at any time point is consistent
with a null hypothesis of no change.We want to knowwhether or
not the first derivative is indistinguishable from a value of 0—no
trend—given the uncertainty in the estimate of the derivative.

Derivatives of the fitted spline are not easily available
analytically, but they can be estimated using the method of
finite differences. Two values of the estimated trend, separated
by a very small time-shift (1t), are predicted from the model;
the difference between the estimated values for the two time
points is an approximation of the true first derivative of the
trend. As 1t → 0 the approximation becomes increasingly
accurate. In practice, the first derivative of the fitted trend is
evaluated using finite differences at a large number of points
in the time series. An approximate (1 - α)100% pointwise
confidence interval can be calculated for the derivative estimates

using standard theory (i.e.,±1.96×SE(ŷt) for a 95% interval) and
the covariance matrix of the spline coefficients. A (1 - α)100%
simultaneous interval for the derivatives can also be computed
using the method described earlier. Periods of significant change
are identified as those time points where the (simultaneous)
confidence interval on the first derivative does not include
zero.

Figure 10 shows the estimated first derivative of the
fitted trend in the Small Water (Figure 10A) and Braya-Sø
(Figure 10B) time series. Although the estimated trend suggests
a slight increase in δ15N from the start of the record to ~1940,
the estimated trend is sufficiently uncertain that the simultaneous
interval on the first derivative includes 0 throughout. We can
understand why this is so by looking at the posterior simulations
in Figure 8A; there is considerable variation in the shape of
the simulated trends throughout this period. From ~1925 the
derivative of the trend becomes negative, however it is not
until ~1940 that the simultaneous interval doesn’t include 0.
At this point we have evidence to reject the null hypothesis of
no change. This time point may be taken as the first evidence
for change in δ15N in the Small Water core. The simultaneous
interval on the first derivative of the trend in δ15N is bounded
away from 0 between ~1940 and ~1975, covering the major
decline in values evident in the observations. The simultaneous
interval includes 0 from ~1975 onward, suggesting that, whilst
quite pronounced, the recent increase in δ15N is not statistically
significant. To determine whether or not the recent increase is
real, we would require considerably more samples with which
to (hopefully) more-precisely estimate the trend during this
period. Alternatively, we might just have to wait until sufficient
additional sedimentation has occurred to warrant recoring Small
Water and reestimating the trend in δ15N.
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The estimated trend at Braya-Sø exhibited a number of
oscillations in UK

37. As we saw previously in Figures 8B, 9B,
many of these are subject to significant uncertainty and it is
important therefore to discern which, if any, of the oscillations
in the response can be identified given the model uncertainty.
In Figure 10B only two features of the estimated trend are
considered significant based on the derivatives of the smooth;
one centred on ~250CE and a second at ~1150CE. In both
these periods, the simultaneous interval for the first derivative of
the trend does not include zero. In the first case we detect the
large peak and subsequent decline in UK

37 at ~250CE, whilst at
~1150CE the large trough is identified, but not the increasing
trend immediately prior to this excursion to lower UK

37. Recall
that these intervals are simultaneous in nature, strongly guarding
against false positives, and as such we can be confident in the
estimation of these two features, whilst care must be taken to
not over-interpret the remaining variations in the estimated
trend.

4.5. Residual Autocorrelation and Model
Identification
The GAM fitted to the δ15N time series contained a CAR(1)
process to model residual temporal autocorrelation in the
residuals. The estimated magnitude of the autocorrelation
is given by the parameter φ. The estimated value of φ for
the δ15N series is 0.6 with 95% confidence interval 0.28–
0.85, indicating moderate to strong residual autocorrelation
about the fitted trend. The correlation function is an
exponentially decreasing function of temporal separation
(h), and whilst observations that are a few years apart are
quite strongly dependent on one another, this dependence
drops off rapidly as h increases and is effectively zero
when samples are separated by a decade or more
(Figure 11).

Failure to account for the dependencies in the δ15N time
series could lead to the estimation of a more wiggly trend than
the one shown in Figure 6A which would negatively impact
the confidence placed on the inferences we might draw from
the fitted model. Importantly, failing to account for the strong
dependency in the residuals would lead to smaller uncertainties
in the estimated spline coefficients, which would propagate
through to narrower confidence intervals on the fitted trend
and on the first derivatives, and ultimately to the identification
of significant periods of change. The end result would be
a tendency towards anti-conservative identification of periods
of change; the coverage probability would be lower than the
anticipated 1 − α, leading to a greater chance of false positive
results.

Problems estimating the GAM plus CAR(1) model were
encountered when this was fitted to theUK

37 time series; including
both a smooth trend in themeanUK

37 and a CAR(1) process in the
residuals lead to an unidentifiable model. What makes a model
with a spline-based trend and an autocorrelation process like the
CAR(1) potentially unidentifiable?

Consider again the basic GAM for a smooth trend, (3). In
that equation the correlation matrix 3 was omitted for the sake

of simplicity. As I did in (6), I reintroduce it and restate the
distributional assumptions of this model

yt = β0 + f (xt)+ εt , ε ∼ (0,3σ 2) (7)

In the basic GAM, 3 ≡ I is an identity matrix, a matrix with 1 s
on the diagonal and 0 s elsewhere
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which is where the independence assumption of the model comes
from; a model residual is perfectly correlated with itself (the
1 s on the diagonal), but uncorrelated with any other residual
(the off-diagonal 0 s). In the GAM plus CAR(1) model, an
alternative correlation function for 3 was used—the CAR(1)
with correlation parameter φ. Fahrmeir and Kneib (2008) show
that where the stochastic structure of f and 3 approach one
another, i.e., where we have a potentially wiggly trend or strong
autocorrelation as φ → 1, the two processes can quickly become
unidentifiable (see also Fahrmeir et al., 2013). By unidentifiable,
we mean that it becomes increasingly difficult to distinguish
between a wiggly trend or strong autocorrelation because these
two processes are very similar to one another in appearance. This
leads to model estimation problems of the sort encountered with
fitting the GAM plus CAR(1) model to the Braya-sø UK

37 series.
Why might this be so? Autocorrelation is the tendency for a

large (small) value of yt at time xt to be followed by a likewise
large (small) value at time xt+1. This leads to runs of values
that are consistently greater (less) than the overall mean. Short
runs would indicate weaker autocorrelation whilst longer runs
are associated with stronger autocorrelation, and long runs of
values greater (less) than the mean would be evident as non-
linear trends in the time series. As a result, a wiggly trend and an
autocorrelation function with large φ are two ways to describe the
same pattern of values in a time series, and, without any further
information to constrain either of these, the model is unable to
distinguish both components uniquely.

Situations where it may be possible to uniquely identify
separate wiggly trends and autocorrelation are exemplified by
the Small Water δ15N time series. The non-linear trend and
the autocorrelation operate at very different scales; the trend
represents decadal-scale variation in mean δ15N, whilst the
CAR(1) process represents the much smaller-scale tendency for
values of the response to be followed in time by similar values.
That such a pattern is observed in the Small Water core is the
result of the high resolution of the sampling in time relative to
the long-term trend. In contrast, the Braya-Sø record is sampled
at far lower resolution relative to the fluctuations in the mean
response, and consequently the data do not contain sufficient
information to separate trend and autocorrelation.
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FIGURE 10 | Estimated first derivatives (black lines) and 95% simultaneous confidence intervals of the GAM trends fitted to the Small Water δ15N (A) and Braya-Sø

UK37 (B) time series. Where the simultaneous interval does not include 0, the models detect significant temporal change in the response.

FIGURE 11 | Estimated CAR(1) process from the GAM fitted to the Small

Water δ15N time series. c(h,φ) is the correlation between residuals separated

by h years, where φ̂ = 0.6. The shaded band is a 95% pointwise confidence

interval on the estimated correlation c.

4.6. Gaussian Process Smooths
In the world of machine learning, Gaussian processes
(Rasmussen and Williams, 2006; Golding and Purse, 2016)
are a widely-used method for fitting smooth non-parametric
regression models. A Gaussian process is a distribution over all
possible smooth functions f (x). In the field of spatial statistics,
Gaussian processes are known by the name kriging.

With a Gaussian process we are interested in fitting a smooth
temporal trend by modelling the way the correlation between
pairs of observations varies as a function of the distance, h, in
time that separates the observations. The correlation between
pairs of observations decreases with increasing separation, which
is modelled using a correlation function, c(h).

Several functions can be used to represent c(h). Two common
ones are the power exponential function and the Matérn family
of correlation functions. The power exponential function at
separation distance h is

c(h) = exp{(−h/φ)κ }

where 0 < κ ≤ 2. The Matérn correlation function is actually a
family of functions with closed-forms only available for a subset
of the family, distinguished by κ . When κ = 1.5, the Matérn
correlation function is

c(h) = (1+ h/φ) exp(−h/φ)

whilst for κ = 2.5 it is

c(h) = {1+ h/φ + (h/φ)2/3} exp(−h/φ)

and for κ = 3.5

c(h) = {1+ h/φ + 2(h/φ)2/5+ (h/φ)3/15} exp(−h/φ) .

In all cases, φ is the effective range parameter, which sets the
distance beyond which the correlation function is effectively zero.

Figure 12 shows examples of two different correlation
functions; the power exponential (Figure 12A), and the Matérn
(Figure 12B) correlation functions. These functions are smooth
and monotonic-decreasing, meaning that the value of the
correlation function decreases with increasing separation (h).
When h = 0, the correlation is equal to 1 (c(0) = 1); two samples
taken at exactly the same time point are perfectly correlated. As
h → ∞, the correlation tends to zero (c(h) → 0); two samples
separated by a large amount of time tend to be uncorrelated.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 October 2018 | Volume 6 | Article 149

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Simpson Modelling Palaeoecological Time Series

FIGURE 12 | Power exponential (A) and Matérn (B) correlation functions for observation separation distance h. Two values of the effective range parameter (φ) are

shown for each function. For the power exponential function, κ is the power in the power exponential function. For the Matérn correlation function, κ distinguishes the

member of the Matérn family.

FIGURE 13 | Gaussian process smooths fitted to the UK37 time series. REML score traces for GAMs fitted using power exponential (κ = 1) or Matérn (κ = 1.5)

correlation functions as a function of the effective range parameter (φ) are shown (A). The optimal model for each function is that with the lowest REML score.

(B) Shows the resulting trends estimated using the respective correlation function with the value of φ set to the optimal value.

Often we are interested in learning how large the separation in
time needs to be before, on average, a pair of observations is
effectively uncorrelated (i.e., where c(h) is sufficiently close to
zero).

Gaussian processes and GAMs share many similarities and we
can fit a Gaussian process using the techniques already described
above for splines (Handcock et al., 1994; Kammann and Wand,
2003). It can be shown (e.g., Fahrmeir et al., 2013) that the
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Gaussian process model has the same penalised likelihood form
as the GAM that we discussed earlier; the observations are the
knots of the smoother and each has a basis function in the form
of a correlation function. The equivalence is only true if the
basis functions do not depend on any other parameters of the
model, which is only achievable if the value of φ is fixed and
known (Fahrmeir et al., 2013). In general, however, we would
like to estimate φ as part of model fitting. To achieve this we
can maximise the profile likelihood or score statistic of the model
over a range of values of φ (Wood, 2017, pp. 362–363). This
involves proposing a value of φ for the effective range of the
correlation function and then estimating the resulting GAM by
minimising the penalised log-likehood conditional upon this
value of φ and repeating for a range of values for φ. The model,
and its corresponding value of φ, with lowest penalised log-
likelihood or score statistic is then retained as the estimated
GAM. Figure 13A shows the REML score for models estimated
using a Gaussian process smooth with a Matérn correlation
function (κ = 1.5) for a sequence of values of φ between 15
and 1,000 years. There is a clear minimum around 40 years
separation, with the minimum REML score being observed at
φ = 41.81). Also shown are the REML scores for models using
the power exponential function (κ = 1) with the minimum score
observed at a somewhat higher effective range of φ = 71.06.

Figure 13B shows the estimated trends for the UK
37 time

series using Gaussian process smooths with exponential and
Matérn correlations functions, both using φ values at their
respective optimal value as assessed using the REML score.
The estimated trends are very similar to one another, although
there is a noticeable difference in behaviour, with the power
exponential (κ = 1) version being noticeably less-smooth than
the Matérn version. This difference is attributable to the shapes
of the respective correlation functions; the Matérn approaches
a correlation of 1 smoothly as h approaches 0, whilst the power
exponential with κ = 1 approaches a correlation of 1 increasingly
quickly with decreasing h. The power exponential with κ = 2,
like the Matérn, approaches φ = 1 smoothly, and consequently
the trend estimated using this correlation function is qualitatively
similar to that estimated using the Matérn correlation function.

4.7. Adaptive Smoothing
Each of the spline types that I have discussed so far shares a
common feature; the degree of wiggliness over the time series
is fixed due to the use of a single smoothness parameter, λ.
The definition of wiggliness, as the integrated squared second
derivative of the spline, ensures that the fitted smoother does
not jump about wildly. This assumes that the data themselves
are well described by a smoothly varying trend. If we anticipate
abrupt change or step-like responses to environmental forcing
this underlying assumption of the GAM would suggest that the
method is ill-suited to modelling palaeo time series in which such
features are evident or expected.

While there is not much we can do within the GAM
framework to model a series that contains both smooth trends
and step-like responses, an adaptive smoother can help address
problems where the time series consists of periods of rapid
change in the mean combined with periods of complacency or

relatively little change. As suggested by their name, adaptive
smoothers can adjust to changes in the wiggliness of the time
series. This adaptive behaviour is achieved by making the
smoothness parameter λ itself depend smoothly on xt (Ruppert
et al., 2003, p. 17; Wood, 2017, 5.3.5); in other words, the
adaptive smoother allows the wiggliness of the estimated trend to
vary smoothly over time. Whilst this allows the estimated trend
to adapt to periods of rapid change in the response, adaptive
smoothers make significant demands on the data (Wood, 2017,
5.3.5); if we used m smoothness penalties to allow the wiggliness
to vary over a time series, it would be like estimating m separate
smooths from chunks of the original series each of length n/m.
In a practical sense, this limits the use of adaptive splines in
palaeoecology to proxies that are readily enumerated, such as the
biogeochemical proxies used in the two example data sets.

Figure 14 compares trends for the Braya-Sø time series
estimated using GAMs with the three main types of spline
discussed; (i) TPRS, (ii) Gaussian process smooths, and (iii) an
adaptive smoother using 45 basis functions and 5 smoothing
parameters. There is a clear difference in the behaviour of the
adaptive and non-adaptive smoothers for the first 1,000 years
of the record, with the adaptive smooth exhibiting much less
variation compared with either the TPRS or Gaussian process
splines. Over the remaining two thirds of the series, there is much
closer agreement in the three smooths.

The behaviour of the TPRS and Gaussian process splines for
these data is the result of requiring a large amount of wiggliness
(a small λ) to adapt to the large oscillations inUK

37 present around
year 250CE and again at ~900–1500CE. This large degree of
wiggliness allows the splines to potentially over-fit individual data
points much earlier in the record. Because the adaptive smoother,
in contrast, can adapt to these periods of rapid change in the
response it is much less susceptible to this “chasing” behaviour—
we don’t need to waste effective degrees of freedom in periods
with little or no change just to be able to fit the data well when
there is a lot of change.

This potential for over-fitting in such situations is undesirable,
yet if we recall Figure 10 and the discussion around the use of the
first derivative to identify periods of significant change, we would
not interpret the oscillations in the early part of the UK

37 record
as being statistically significant. Owing to the paucity of data in
this part of the series the trends fitted using the non-adaptive
smoothers are subject to such a large degree of uncertainty that
the alternative of no trend through the first 1,000 years of the
record is also a plausible explanation of the data. The trend
estimated using the adaptive smooth reflects this. Therefore,
should we conclude that there is no trend in UK

37 and thence
climate in this period? I believe that to be too-strong a statement;
those oscillations in UK

37 may be real responses to climate forcing
but we may simply lack the statistical power to distinguish them
from the null hypothesis of no trend through this period. The
adaptive smoother is only adjusting to the data available to it;
just because it does not detect a trend during this period does
not lend itself to an interpretation of stable climate forcing or
complacency in the lake’s response to forcing (although that is
a justifiable interpretation of the result). If there were particular
interest in the climate of this particular period we might take
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FIGURE 14 | Comparison of trends estimated using (i) adaptive smooth, (ii) Gaussian process, and (iii) thin plate regression spline bases for the UK37 time series.

from the Braya-Sø record that there is potential early variation
due to climate forcing, but that additional data from this or other
sites is required before any definitive conclusion can be drawn.

4.8. Accounting for Age Model Uncertainty
Thus far, the trend models that I have described and illustrated
assumed that the time covariate (xt) was fixed and known. In both
examples, and generally for most palaeoecological records, this
assumption is violated. Unless the record is annually laminated,
assigning an age to a sediment interval requires the development
of an age model from observations of the relationship between
depth down the sediment core and estimates of the age of
the sample arrived at using any of a number of techniques,
for example 210Pb or 14C radiometric dating. This age-depth
relationship is itself uncertain, usually being derived from
a mathematical or statistical model applied to point age
estimates (e.g., Blaauw and Heegaard, 2012). Incorporating this
additional component of uncertainty complicates the estimation
of statistical models from palaeoenvironmental data. In this
section I illustrate a simulation based approach to quantify and
account for age-model uncertainty as part of the trend estimation
using a GAM (see Anchukaitis and Tierney (2013) for a similar,
non-GAM related idea).

Figure 15A shows the estimated dates (in Years CE) for
12 levels in the Small Water core dated using 210Pb. The
vertical bars show the estimated age uncertainty of each level.
The solid line through the data points is an additive model
fitted to the observations, with prior weights given by the
estimated age uncertainties. The fitted age-depth model is
constrained to be monotonically decreasing with increasing
depth, following the method of Pya and Wood (2015) using
the scam package (Pya, 2017). Also shown are 25 simulations
from the posterior distribution of the monotonically-constrained
GAM. Each simulation from the posterior distribution of the age-
model is itself a potential age-depth model, which can be used to
assign dates to the Small Water core. The trend model in (4) can
be fitted to the δ15N data using these new dates as xt , and the
whole process repeated for a large number of simulations from
the age model.

Figure 15B shows the trend in δ15N for the observed age-
depth model, plus trends estimated via the same model using 100
draws from the posterior distribution of the age model. In this
case, the age-depth model is relatively simple with little variation

in the posterior draws, resulting in trends that match closely that
obtained from the estimated age-depth relationship. Even so, this
additional uncertainty suggests that the timing of the decline in
δ15N covers the interval ~1935–1945.

The uncertainty in the trend estimates illustrated in
Figure 15B only reflects the variation in trends fitted to the
uncertain dates of the sediment samples. To fully visualise the
uncertainty in the trend estimates, incorporating both age model
uncertainty and uncertainty in the estimated model coefficients
themselves, 50 simulations from the posterior distribution of
each of the 100 estimated trends shown in Figure 15B were
performed, resulting in 5,000 trend estimates for the δ15N series.
These are shown in Figure 15C, where the two obvious changes
over the same simulations without accounting for uncertainty in
xt (Figure 8A) are that the uncertainty band traced out by the
simulations is approximately 50% wider and, not surprisingly,
the uncertainty in the estimated trend is most pronounced
in the least accurately-dated section of the core. Despite this
additional uncertainty however, the main result holds; a marked
decline of ~1.5‰ that occurred between approximately 1930 and
1945, with mild evidence of a small increase in δ15N post 2000
CE.

4.9. Multivariate Data
A large proportion of the palaeoenvironmental data generated
today is multivariate in nature and yet the two examples used
to illustrate GAMs were univariate. Can the approach described
here be used for multivariate data? Yes, and no. With one
main exception it is not possible to directly apply the GAM
methodology described here to multivariate abundance data,
where the aim is to model all species at once. The mgcv
software, for example, is not able to estimate the penalised GAM
for multiple non-Gaussian responses. The exception is for a
small number of correlated Gaussian responses; these could be
modelled as being distributed multivariate normal conditional
upon the covariates. Such a model would estimate the expected
values of each response and the correlations between them. For
example, we could jointly model δ15N and δ13C series using this
approach.

Formal multivariate versions of GLM or GAMs are currently
an important area of research within ecology (see (Warton
et al., 2015) for a recent review), where they go by the name
joint species distribution models (JSDMs). Whilst undoubtedly
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FIGURE 15 | Accounting for uncertainty in age estimates whilst fitting a smooth trend to the Small Water δ15N time series. (A) Estimated age model using a

monotonically-constrained spline fitted to 210Pb inferred ages for selected depths in the sediment core (red points). The uncertainty in the 210Pb inferred age is shown

by the red vertical bars. The fitted age model is illustrated by the solid black line. The faint grey lines are 25 random draws from the posterior distribution of the

monotonically constrained GAM. The effect of age uncertainty on trend estimation is shown in (B); for 100 simulations from the posterior distribution of the age model

in (A) a trend was estimated using a GAM with a thin plate regression spline basis and a CAR(1) process in the residuals. These trends are shown as grey lines. The

combined effect of age model and fitted GAM uncertainty on the trends for the δ15N time series is shown in (C). The grey lines in (C) are based on 50 random draws

from the model posterior distribution for each of the 100 trends shown in (B). For both (B,C) the black line shows the trend estimated assuming the ages of each

sediment sample are known and fixed.

powerful, our knowledge regarding JSDMs and their availability
in software are still in their relative infancy and they require
considerable expertise to implement. As such, JSDMs are
currently beyond the reach of most palaeoecologists. Despite
this, we should be watching JSDM research as developments are
ongoing and a degree of method maturation occurring.

One currently available avenue for fitting a multivariate GAM
is via regularised sandwich estimators and GLMs (Warton,
2011), which involves fitting separate GLMs (or GAMs) to
each response variable and subsequently using resampling-
based hypothesis tests to determine which covariates are related
to variation at the community level and for individual taxa
(Warton, 2011; Wang et al., 2012; Warton et al., 2012).
The mvabund package (Wang et al., 2012) implements this
approach within R and can use mgcv to fit GAMs to each
species.

A pragmatic although inelegant approach that has been
used to estimate trends in multivariate palaeoecological data is
to first summarise the response data using an unconstrained
ordination via a PCA, CA, or principal curve and then fit
separate GAM models to the site (sample) scores of the first
few ordination axes or principal curve (Bennion et al., 2015;
Beck et al., 2018). Whilst this two-step approach is relatively easy
to implement and builds on approaches that palaeoecologists
already use to summarise multivariate stratigraphic data, it
is best thought of as modelling changes in abundance or
relative composition at the community level. It is less well
suited to unpicking taxon-specific trends however, because the
ordination step combines individual species information into
latent variables (axes) that are linear combinations of all species
and it is these latent variables that are then modelled using
a GAM.
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5. CONCLUSIONS

Formal statistical estimation of trends in palaeoenvironmental
data has been hampered by the nature of the data that comprise
the time series; the uneven spacing of samples in time makes
it, if not impossible, difficult to fit classical statistical time
series models like ARIMA. This has led palaeoecologists and
palaeolimnologists to either ignore statistical estimation of trends
or fall back on basic statistical methods such as linear parametric
and non-parametric correlations or simple linear regression
models, where the assumptions of the method are often grossly
violated by the dependencies inherent to time series data. GAMs,
whilst similar to the popular LOESS smoother, provide a superior
alternative approach to trend estimation in palaeoenvironmental
time series. GAMs can estimate non-linear trends, provide
estimates of the magnitude of change as well as allow the
identification of periods of change, can account for the lack of
independence (either via autocorrelation processes or via the
fitting of a wiggly trend), and provide a formal framework for
statistical inference on each of these features.

In presenting the GAM with specific palaeoenvironmental
examples and addressing the issues that arise in
palaeoenvironmental time series, it is hoped that palaeoecologists
and palaeolimnologists will be motivated to give greater
consideration to the estimation of trends and the identification
of change in stratigraphic time series.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

The ideas expressed in this paper are the result of many
fruitful conversations with colleagues past and present at
the Environmental Change Research Centre, UCL, and
the University of Regina. In particular I am indebted to
Helen Bennion, Rick Battarbee, and Peter Leavitt for their
collaborations on projects over many years, and to David
Miller, Eric Pedersen, and Noam Ross, my GAM workshop
partners in crime. Without Simon Wood’s mgcv software and
his research on GAMs, the application of these models to palaeo
time series would not be as straight forward. This work was
supported by a Natural Sciences and Engineering Council of
Canada (NSERC) Discovery Grant to the author (RGPIN-2014-
04032).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2018.00149/full#supplementary-material

REFERENCES

Anchukaitis, K. J., and Tierney, J. E. (2013). Identifying coherent spatiotemporal

modes in time-uncertain proxy paleoclimate records. Clim. Dyn. 41,

1291–1306. doi: 10.1007/s00382-012-1483-0

Beck, K. K., Fletcher, M.-S., Gadd, P. S., Heijnis, H., Saunders, K. M., Simpson,

G. L., et al. (2018). Variance and Rate-of-Change as early warning signals

for a critical transition in an aquatic ecosystem state: a test case from

tasmania, australia. J. Geophys. Res. 123:2017JG004135. doi: 10.1002/2017JG0

04135

Bennion, H., Simpson, G. L., and Goldsmith, B. J. (2015). Assessing degradation

and recovery pathways in lakes impacted by eutrophication using the sediment

record. Front. Ecol. Evol. 3:94. doi: 10.3389/fevo.2015.00094

Bergmeir, C., Hyndman, R. J., and Koo, B. (2018). A note on the validity of cross-

validation for evaluating autoregressive time series prediction. Comput. Stat.

Data Anal. 120, 70–83. doi: 10.1016/j.csda.2017.11.003

Birks, H. J. B. (1998). Numerical tools in palaeolimnology—progress, potentialities,

and problems. J. Paleolimnol. 20, 307–332. doi: 10.1023/A:1008038808690

Birks, H. J. B. (2012a). “Introduction and overview of part III,” in Tracking

Environmental Change Using Lake Sediments, eds H. J. B. Birks, A. F. Lotter,

S. Juggins, and J. P. Smol (Dordrecht: Springer), 331–353.

Birks, H. J. B. (2012b). “Overview of numerical methods in palaeolimnology,” in

Tracking Environmental Change Using Lake Sediments, eds H. J. B. Birks, A. F.

Lotter, S. Juggins, and J. P. Smol (Dordrecht: Springer), 19–92.

Blaauw, M., and Heegaard, E. (2012). “Estimation of Age-Depth relationships,”

in Tracking Environmental Change Using Lake Sediments, eds H. J. B.

Birks, A. F. Lotter, S. Juggins, and J. P. Smol (Dordrecht: Springer),

379–413.

Brassell, S. C. (1993). “Applications of biomarkers for delineating marine

paleoclimatic fluctuations during the pleistocene,” in Organic Geochemistry:

Principles and Applications, eds M. H. Engel and S. A. Macko (Boston, MA:

Springer), 699–738.

Chu, G., Sun, Q., Li, S., Zheng, M., Jia, X., Lu, C., et al. (2005). Long-

chain alkenone distributions and temperature dependence in lacustrine

surface sediments from china. Geochim. Cosmochim. Acta 69, 4985–5003.

doi: 10.1016/j.gca.2005.04.008

Cleveland, W. S. (1979). Robust locally weighted regression

and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836.

doi: 10.1080/01621459.1979.10481038

Craven, P., and Wahba, G. (1978). Smoothing noisy data with spline functions.

Numerische Mathematik 31, 377–403. doi: 10.1007/BF01404567

D’Andrea, W. J., Huang, Y., Fritz, S. C., and Anderson, N. J. (2011).

Abrupt holocene climate change as an important factor for human

migration in west greenland. Proc. Natl. Acad. Sci. U.S.A. 108, 9765–9769.

doi: 10.1073/pnas.1101708108

Duchon, J. (1977). “Splines minimizing rotation-invariant semi-norms in Sobolev

spaces,” in Constructive Theory of Functions of Several Variables. Lecture Notes

in Mathematics, Vol. 571, eds W. Schempp and K. Zeller (Berlin; Heidelberg:

Springer), 85–100. doi: 10.1007/BFb0086566

Dutilleul, P., Cumming, B. F., and Lontoc-Roy, M. (2012). “Autocorrelogram

and periodogram analyses of palaeolimnological Temporal-Series from lakes

in central and western north america to assess shifts in drought conditions,” in

Tracking Environmental Change Using Lake Sediments (Dordrecht: Springer),

523–548. doi: 10.1007/978-94-007-2745-8\_16

Epperson, J. F. (1987). On the Runge example. Am. Math. Month. 94, 329–341.

doi: 10.2307/2323093

Fahrmeir, L., and Kneib, T. (2008). “On the identification of trend and correlation

in temporal and spatial regression,” in Recent Advances in Linear Models and

Related Areas, eds Shalabh and C. Heumann (Heidelberg: Physica-Verlag HD),

1–27. doi: 10.1007/978-3-7908-2064-5_1

Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. (2013). Regression: Models, Methods

and Applications. Berlin; Heidelberg: Springer.

Gautheir, T. D. (2001). Detecting trends using spearman’s rank correlation

coefficient. Environ. Forensics 2, 359–362. doi: 10.1080/713848278

Glew, J. R., Smol, J. P., and Last, W. M. (2001). “Sediment core collection and

extrusion,” in Tracking Environmental Change Using Lake Sediments: Basin

Analysis, Coring, and Chronological Techniques, eds W. M. Last and J. P. Smol

(Dordrecht: Springer), 73–105.

Frontiers in Ecology and Evolution | www.frontiersin.org 19 October 2018 | Volume 6 | Article 149

https://www.frontiersin.org/articles/10.3389/fevo.2018.00149/full#supplementary-material
https://doi.org/10.1007/s00382-012-1483-0
https://doi.org/10.1002/2017JG004135
https://doi.org/10.3389/fevo.2015.00094
https://doi.org/10.1016/j.csda.2017.11.003
https://doi.org/10.1023/A:1008038808690
https://doi.org/10.1016/j.gca.2005.04.008
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1007/BF01404567
https://doi.org/10.1073/pnas.1101708108
https://doi.org/10.1007/BFb0086566
https://doi.org/10.1007/978-94-007-2745-8\T1\textbackslash {}_16
https://doi.org/10.2307/2323093
https://doi.org/10.1007/978-3-7908-2064-5_1
https://doi.org/10.1080/713848278
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Simpson Modelling Palaeoecological Time Series

Golding, N., and Purse, B. V. (2016). Fast and flexible Bayesian species

distribution modelling using gaussian processes. Methods Ecol. Evol. 7,

598–608. doi: 10.1111/2041-210X.12523

Handcock, M. S., Meier, K., and Nychka, D. (1994). Kriging and splines: an

empirical comparison of their predictive performance in some applications:

comment. J. Am. Stat. Assoc. 89, 401–403. doi: 10.2307/2290838

Hastie, T., and Tibshirani, R. (1986). Generalized additive models. Stat. Sci. 1,

297–310.

Hastie, T. J., and Tibshirani, R. J. (1990). Generalized Additive Models. Boca Raton,

FL: Chapman & Hall/CRC.

Juggins, S., and Telford, R. J. (2012). “Exploratory data analysis and data display,” in

Tracking Environmental Change Using Lake Sediments (Dordrecht: Springer),

123–141. doi: 10.1007/978-94-007-2745-8\_5

Kammann, E. E., and Wand, M. P. (2003). Geoadditive models. J. R. Stat. Soc. 52,

1–18. doi: 10.1111/1467-9876.00385

Kimeldorf, G. S., and Wahba, G. (1970). A correspondence between bayesian

estimation on stochastic processes and smoothing by splines. Ann. Math. Stat.

41, 495–502.

Magee, L. (1998). Nonlocal behavior in polynomial regressions. Am. Stat. 52,

20–22. doi: 10.2307/2685560

Mann, M. E. (2004). On smoothing potentially non-stationary climate time series.

Geophys. Res. Lett. 31:L07214. doi: 10.1029/2004GL019569

Mann, M. E. (2008). Smoothing of climate time series revisited. Geophys. Res. Lett.

35:L16708. doi: 10.1029/2008GL034716

Marra, G., andWood, S. N. (2012). Coverage properties of confidence intervals for

generalized additive model components. Scand. J. Stat. Theory Appl. 39, 53–74.

doi: 10.1111/j.1467-9469.2011.00760.x

McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models, 2nd Edn. Boca

Raton, FL: CRC Press.

Mills, T. C. (2006). Modelling current trends in Northern Hemisphere

temperatures. Int. J. Climatol. 26, 867–884. doi: 10.1002/joc.1286

Mills, T. C. (2007). A note on trend decomposition: the “classical” approach

revisited with an application to surface temperature trends. J. Appl. Stat. 34,

963–972. doi: 10.1080/02664760701590418

Mills, T. C. (2010). “Skinning a cat”: alternative models of

representing temperature trends. Climat. Change 101, 415–426.

doi: 10.1007/s10584-010-9801-1

Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. J. Am.

Stat. Assoc. 83, 1134–1143. doi: 10.1080/01621459.1988.10478711

PAGES 2K Consortium (2013). Continental-scale temperature variability during

the past two millennia. Nat. Geosci. 6, 339–346. doi: 10.1038/ngeo1797

Pinheiro, J. C., and Bates, D.M. (2000).Mixed-Effects Models in S and S-PLUS. New

York, NY: Springer Science & Business Media.

Pya, N. (2017). Scam: Shape Constrained Additive Models. Available online at:

https://CRAN.R-project.org/package=scam

Pya, N., andWood, S. N. (2015). Shape constrained additive models. Stat. Comput.

25, 543–559. doi: 10.1007/s11222-013-9448-7

Pya, N., andWood, S. N. (2016). A note on basis dimension selection in generalized

additive modelling. ArXiv e-prints. arXiv:1602.06696.

R Core Team (2018). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing. Available online at: https://

www.R-project.org/

Rasmussen, C. E., and Williams, C. K. I. (2006). Gaussian Processes for Machine

Learning. Cambridge: MIT Press.

Reiss, P. T., and Ogden, R. T. (2009). Smoothing parameter selection for a class

of semiparametric linear models. J. R. Stat. Soc. B Stat. Methodol. 71, 505–523.

doi: 10.1111/j.1467-9868.2008.00695.x

Runge, C. (1901). äber empirische funktionen und die interpolation zwischen

äquidistanten ordinaten. Zeitschrift fur Angewandte Mathematik und Physik 46,

224–243.

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression.

Cambridge: Cambridge University Press.

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to

non-parametric regression curve fitting. J. R. Stat. Soc. B Stat. Methodol. 47,

1–52.

Smol, J. P. (2008). Pollution of Lakes and Rivers: A Paleoenvironmental Perspective.

Oxford: Blackwell Pub.

Smol, J. P., Birks, H. J. B., Lotter, A. F., and Juggins, S. (2012). “The march towards

the quantitative analysis of palaeolimnological data,” inTracking Environmental

Change Using Lake Sediments, eds H. J. B. Birks, A. F. Lotter, S. Juggins, and J.

P. Smol (Dordrecht: Springer), 3–17.

Tian, J., Nelson, D. M., and Hu, F. S. (2011). How well do sediment indicators

record past climate? An evaluation using annually laminated sediments. J.

Paleolimnol. 45, 73–84. doi: 10.1007/s10933-010-9481-x

Toney, J. L., Huang, Y., Fritz, S. C., Baker, P. A., Grimm, E., and Nyren, P. (2010).

Climatic and environmental controls on the occurrence and distributions of

long chain alkenones in lakes of the interior united states. Geochimica et

Cosmochimica Acta 74, 1563–1578. doi: 10.1016/j.gca.2009.11.021

Wahba, G. (1983). Bayesian “confidence intervals” for the Cross-Validated

smoothing spline. J. R. Stat. Soc. B Stat. Methodol. 45, 133–150.

Wahba, G. (1990). Spline Models for Observational Data. Philadelphia, PA: SIAM.

Wang, Y., Naumann, U., Wright, S. T., and Warton, D. I. (2012). Mvabund– an

R package for model-based analysis of multivariate abundance data. Methods

Ecol. Evol. 3, 471–474. doi: 10.1111/j.2041-210X.2012.00190.x

Warton, D. I. (2011). Regularized sandwich estimators for analysis of high-

dimensional data using generalized estimating equations. Biometrics 67,

116–123. doi: 10.1111/j.1541-0420.2010.01438.x

Warton, D. I., Blanchet, F. G., O’Hara, R. B., Ovaskainen, O., Taskinen, S., Walker,

S. C., et al. (2015). So many variables: joint modeling in community ecology.

Trends Ecol. Evol. 30, 766–779. doi: 10.1016/j.tree.2015.09.007

Warton, D. I., Wright, S. T., and Wang, Y. (2012). Distance-based multivariate

analyses confound location and dispersion effects. Methods Ecol. Evol. 3,

89–101. doi: 10.1111/j.2041-210X.2011.00127.x

Wood, S. N. (2003). Thin plate regression splines. J. R. Stat. Soc. B Stat. Methodol.

65, 95–114. doi: 10.1111/1467-9868.00374

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter

estimation for generalized additive models. J. Am. Sta. Assoc. 99, 673–686.

doi: 10.2307/27590439

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal

likelihood estimation of semiparametric generalized linear models. J. R. Stat.

Soc. B Stat. Methodol. 73, 3–36. doi: 10.1111/j.1467-9868.2010.00749.x

Wood, S. N. (2017).Generalized Additive Models: An Introduction with R, 2nd Edn.

Boca Raton, FL: CRC Press.

Wood, S. N., Pya, N., and Säfken, B. (2016). Smoothing parameter and model

selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563.

doi: 10.1080/01621459.2016.1180986

Yee, T. W., and Mitchell, N. D. (1991). Generalized additive models in plant

ecology. J. Veget. Sci. 2, 587–602. doi: 10.2307/3236170

Zink, K.-G., Leythaeuser, D., Melkonian, M., and Schwark, L. (2001).

Temperature dependency of long-chain alkenone distributions in recent to

fossil limnic sediments and in lake waters11Associate editor: J. b. fein.

Geochimica et Cosmochimica Acta 65, 253–265. doi: 10.1016/S0016-7037(00)0

0509-3

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Simpson. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 20 October 2018 | Volume 6 | Article 149

https://doi.org/10.1111/2041-210X.12523
https://doi.org/10.2307/2290838
https://doi.org/10.1007/978-94-007-2745-8\T1\textbackslash {}_5
https://doi.org/10.1111/1467-9876.00385
https://doi.org/10.2307/2685560
https://doi.org/10.1029/2004GL019569
https://doi.org/10.1029/2008GL034716
https://doi.org/10.1111/j.1467-9469.2011.00760.x
https://doi.org/10.1002/joc.1286
https://doi.org/10.1080/02664760701590418
https://doi.org/10.1007/s10584-010-9801-1
https://doi.org/10.1080/01621459.1988.10478711
https://doi.org/10.1038/ngeo1797
https://CRAN.R-project.org/package=scam
https://doi.org/10.1007/s11222-013-9448-7
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1111/j.1467-9868.2008.00695.x
https://doi.org/10.1007/s10933-010-9481-x
https://doi.org/10.1016/j.gca.2009.11.021
https://doi.org/10.1111/j.2041-210X.2012.00190.x
https://doi.org/10.1111/j.1541-0420.2010.01438.x
https://doi.org/10.1016/j.tree.2015.09.007
https://doi.org/10.1111/j.2041-210X.2011.00127.x
https://doi.org/10.1111/1467-9868.00374
https://doi.org/10.2307/27590439
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.2307/3236170
https://doi.org/10.1016/S0016-7037(00)00509-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Simpson Modelling Palaeoecological Time Series

APPENDIX 1—SIMULTANEOUS
INTERVALS

We proceed by considering a simultaneous confidence interval
for a function f (x) at a set of M locations in x; we’ll refer to
these locations, following the notation of Ruppert et al. (2003)
by

g = (g1, g2, . . . , gM)

The true function over g, fg, is defined as the vector of
evaluations of f at each of theM locations

fg ≡











f (g1)
f (g2)
...

f (gM)











and the corresponding estimate of the true function given by

the fitted GAM denoted by f̂g. The difference between the true
function and our unbiased estimator is given by

f̂g − fg = Cg

[

β̂ − β

û− u

]

,

where Cg is a matrix formed by the evaluation of the
basis functions at locations g, and the part in square
brackets is the bias in the estimated model coefficients, which
we assume to be mean 0 and distributed, approximately,
multivariate normal with mean vector 0 and covariance matrix
Vb

[

β̂ − β

û− u

]

approx.
∼ N (0,Vb) ,

where Vb is the Bayesian covariance matrix of the GAM
coefficients.

Now, the (1 - α)100% simultaneous confidence interval is

f̂g ±m1−α













ŝt.dev(f̂ (g1)− f (g1))

ŝt.dev(f̂ (g2)− f (g2))
...

ŝt.dev(f̂ (gM)− f (gM))













,

wherem1−α is the 1 - α quantile of the random variable

sup
x∈§

∣

∣

∣

∣

∣

f̂ (x)− f (x)

ŝt.dev(f̂ (x)− f (x))

∣

∣

∣

∣

∣

≈ max
1≤ℓ≤M

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

Cg

[

β̂ − β

û− u

])

ℓ

ŝt.dev(f̂ (gℓ)− f (gℓ))

∣

∣

∣

∣

∣

∣

∣

∣

∣

The sup refers to the supremum or the least upper bound; this is
the least value of X , the set of all values of which we observed
subset x, that is greater than all of the values in the subset. Often
this is the maximum value of the subset. This is what is indicated
by the right-hand side of the equation; we want the maximum
(absolute) value of the ratio over all values in g.

The fractions in both sides of the equation correspond
to the standardised deviation between the true function and
the model estimate, and we consider the maximum absolute
standardised deviation. We don’t usually know the distribution
of themaximum absolute standardised deviation but we need this
to access its quantiles. However, we can closely approximate the
distribution via simulation. The difference here is that rather than
simulating from the posterior of the model as we did earlier see
section 4.3, this time we simulate from the multivariate normal
distribution with mean vector 0 and covariance matrix Vb. For
each simulation we find the maximum absolute standardised
deviation of the fitted function from the true function over
the grid of x values we are considering. Then we collect all
these maxima, sort them and either take the 1 - α probability
quantile of the maxima, or the maximum with rank ⌈(1 −

α)/N⌉.
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