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Efforts to better understand patterns of animal behaviour have often been restricted by

several environmental, human and experimental limitations associated with the collection

of animal behavioural data. The introduction of new bio-logging technology has offered

an alternative means of recording animal behaviour continuously and is being used

in an increasing number of studies. Accurately calibrating these bio-loggers, however,

still remains a challenge in many cases. Using lions as an example species, we test

how audio recordings from animal-borne acoustic sensors can improve calibration and

behaviour classification. Through a collaborative effort between computer scientists,

engineers, and zoologists, custom designed acoustic bio-loggers were fitted to eight

lions and recorded audio simultaneously with accelerometer and magnetometer data.

Audio recordings were then used as the source of ground truth to train random forest

classification models as well as to provide additional predictor variables for behaviour

classification. We demonstrated near-perfect classification performance for five lion

behaviour classes when all component variables were combined, with an average per-

class precision of 98.5%. Using accelerometer features only, the audio-trained classifier

predicted behaviours with an average per-class precision of 94.3%. On-animal audio

recordings are therefore able to provide a valuable source of ground-truth for calibrating

bio-loggers while also offering additional predictive features for increasing the accuracy of

behaviour classification. This technological innovation has wide ranging application and

provides a useful tool for behavioural ecologists wishing to collect fine scale behavioural

data for animal research and conservation.
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INTRODUCTION

Remote data logging, also referred to as bio-logging or bio-
telemetry, has evolved rapidly with new available technologies.

Initially, studies focusing on animal spatial ecology were
revolutionised by the introduction of GPS tracking methods
in the 1980’s which provide accurate and long-term location
information at varying resolutions (Rutz and Hays, 2009). More
recently, there has been a shift in focus to providing behavioural
information in conjunction with location data using similar
archival data-loggers in order to better understand the drivers
of animal behaviour. To achieve this, a substantial collaborative
effort between zoologists, computer scientists, and engineers
has been required. The resulting technological advances have
transformed the field of behavioural ecology with an increasing
number of studies now relying on animal attached sensors to
record behaviour (Brown et al., 2013). This rapid transition likely
resulted from the need to overcome a number of difficulties
associated with direct observation. These difficulties may include
biases suffered as a result of observer presence (Caine, 1990;
Gutzwiller et al., 1994) or the inability continuously to observe
the focal animal if it is an elusive species, or a species that occurs
in inaccessible habitats. In addition, direct observations require
considerable time and effort on the part of the observer and
thus can be heavily influenced by human physical limitations

(Cagnacci et al., 2010).
While bio-loggers provide a solution to most of these

challenges, they also have several drawbacks of their own. Firstly,
the size of such devices may limit their use on smaller animals
where it is not feasible to design a unit that weighs <2% of
the animal’s body mass. This is necessary to prevent behavioural
changes and increases in energy expenditure (Cooke et al., 2004).
Secondly, in most cases, researchers are still required to spend
time in the field observing the study animal in order to calibrate
the data generated by the bio-logger. This is commonly done
using video cameras held by the observer with subsequent video
labelling that can be matched to the corresponding bio-logger
data by time stamps (Kawabata et al., 2014; McClune et al., 2014;
Lush et al., 2015; Wang et al., 2015). Thirdly, and perhaps a
more fundamental problem is that many types of bio-loggers do
not achieve desirable results in discerning between behaviours.
Recent studies still fail to differentiate accurately between more
than three basic activities (Grünewälder et al., 2012; Lush et al.,
2015; Wang et al., 2015).

The majority of bio-loggers used in animal behaviour
studies generally rely on one or a combination of
three microelectromechanical systems (MEMS) sensors:
accelerometer, magnetometer and a gyroscope. An accelerometer
measures the acceleration forces of the body to which it is
attached (Albarbar et al., 2009) while a magnetometer measures
magnetic field strength and direction (Herrera-May et al., 2016).
Gyroscopes, although not as common, are used to measure
angular rate of rotation (Piyabongkarn et al., 2005). In some
cases, animal borne video cameras have been included to provide
ground truth for directly calibrating accelerometer data but only
provide visual validation for short periods due to the high power
and data storage requirements for recording video (Watanabe

and Takahashi, 2013; Volpov et al., 2015; Pagano et al., 2017).
Audio recording can also be used to collect behavioural
information as shown by Insley et al. (2008) on fur seals and
Lynch et al. (2013) on deers. These studies inferred animal
behaviour by visually reviewing spectrographic patterns but did
not incorporate any statistical learning for automatic behaviour
classification. To our knowledge, the use of audio recordings
as a method of calibrating on-board movement sensors as an
alternative to video footage and direct observation has not been
tested. In this study, we present a novel method for calibrating
bio-logger signals using simultaneously captured on-collar audio
recordings from a custom designed bio-logger. In so doing,
we provide suggested improvements to the issues surrounding
bio-logger calibration and behaviour differentiation. We further
demonstrate near-perfect (>99%) classification accuracy when
we combine audio features with other sensor data, especially for
behaviours which are typically misclassified usingmotion sensors
alone (e.g., drinking water). Thus, capturing synchronised audio
and multi-sensor data has not only the potential to provide
detailed ground-truth, but also provides extremely accurate
automatic behaviour classification.

MATERIALS AND METHODS

Study Site
The study took place on the privately-owned Bubye Valley
Conservancy (BVC). The BVC is ∼ 3,400 km2 and is located
in the lowveld region of southern Zimbabwe between latitudes
21.209 and 21.851◦ South, and longitudes 29.798 and 30.521◦

East. We focused on the south-western section of BVC where an
ongoing lion research project has been conducted since 2009. For
a full description of the study site see du Preez et al. (2014).

Bio-loggers
Bio-loggers were custom designed through a collaborative
research partnership between zoologists, computer scientists,
and engineers with the overall objective of developing a device
capable of recording lion behaviour continuously and accurately.
The loggers were manufactured to attach onto existing lion
tracking collars produced by Africa Wildlife Tracking (AWT),
Pretoria, South Africa and measured ∼ 50 × 20 × 30mm with
a mass of <150 g (Figure 1). Each unit comprised a triaxial
accelerometer and magnetometer, with both sensors sampling at
32Hz per axis and a mono-electret microphone sampling audio
at 16 kHz with an 8-bit resolution. The microphone circuit used
a compander to provide dynamic gain adjustment where more
amplification is made when the ambient audio is quiet. Custom
firmware was written for an 8-bit AVR microcontroller which
also included a low-power 802.15.4 radio unit which was used
for time-synchronising the bio-logger to a base station upon
deployment. Data was logged to a 32 gigabytemicro-SD card. The
bio-logger was powered by 3 CR123A lithium cells and encased
in an epoxy resin reinforced housing, with a hydrophobic vent for
the microphone. Table 1 shows the relative current draw for each
particular sensor, including the cost of logging to the SD card. As
can be seen, the audio sensor consumes nearly 100 times as much
power as the accelerometer, and this is mainly due to the cost of
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FIGURE 1 | Image showing bio-logger bolted on to the GPS collar fitted to a

lioness.

TABLE 1 | Current draw and estimated lifetime using different sensors.

Active Sensor Total current draw (mA) Estimated lifetime (days)

Accelerometer only 0.35 535

Magnetometer only 0.50 375

Microphone only 26.0 7

storing the audio data into the SD card, as 16 kilobytes needs to
be written per second, compared with 96 bytes per second for the
accelerometer or magnetometer.

Ethical Statement
This study was carried out in accordance with the
recommendations of the Use of Animals in Research, ASAB/ABS.
The protocol was approved by the University of Oxford Animal
Welfare and Ethical Review Board and the University Veterinary
Services Department. Project staff were qualified to capture and
handle the study animals by attendance at Zimbabwe’s Physical
and Chemical Capture of Wild Animals Course and held valid
drugs licenses (Dangerous Drugs License No. 2014/16). The
animals were captured with permission from the landowner and
conservancy management.

Data Collection
In November 2014, we captured eight lions (five males and
three females) that had been previously fitted with standard
AWT satellite GPS collars. For a full description of the capture
method see du Preez et al. (2015). Once the animals had been
immobilized, the bio-loggers were bolted on to the existing
GPS collars and started recorded audio (8 bit, 16 kHz mono)
and three-dimensional accelerometer and magnetometer data
(32Hz) continuously until the batteries failed between 4 and 10
days later. Lions were recaptured ∼ 1 month after initial capture
and the loggers removed for data extraction.

Data Management
In total, 80 predictor variables were calculated from the three
accelerometer and magnetometer axes (40 variables for each
component) for each 1 s window of data (Table 2). Many of the

TABLE 2 | Predictor variables calculated over each second of data, used for RF

classification.

Component Feature Definition Number of

variables

Accelerometer

and

magnetometer

Average axes values Mean for X,Y,Z axes 6

Variance in each axis Variance for X,Y,Z axes 6

Pitch Ratio between X,Y, and Z

axes

2

Roll Angle between Y and Z axes 2

Overall dynamic body

acceleration

Sum of the dynamic

acceleration values for X,Y,

and Z axes

2

Standard deviation of

magnitude

Standard deviation of the

square root of the sums of

squares of values in X,Y,

and Z axes

2

Fast fourier

transformations

Energy level in 8 × 4Hz

frequency bins for each axis

48

Peak frequencies Frequency bin with

maximum energy level for

each axis

6

Peak amplitudes Power of frequency bin with

maximum energy level for

each axis

6

Audio Mean energy Mean energy in 24

frequency bands between

20Hz and 8KHz using

Gabor filter bank

24

Energy variance Variance in energy in 24

frequency bands between

20Hz and 8KHz using

Gabor filter bank

24

predictor features chosen for the movement sensor data have also
been used in other studies (Gerencser et al., 2013; Wang et al.,
2015). In addition to these features, 48 predictor variables were
calculated from the corresponding audio recordings creating
a combined feature set of 128 variables (see Table 2 for a
description of each feature). Energymean and variance were used
as audio variables as they represent the zeroth and first order
statistical moments of power in the 24 frequency bands as is often
used in speech recognition (Kos et al., 2013). The energy mean
captures whether a tone is present or not over a window, while
energy variance better captures impulsive sounds such as foot
falls during running.

For each individual lion, random sections of audio recordings
were labelled manually into one of five behavioural states (fast,
slow, stationary, eat, and drink) by two lion ecologists with a
minimum of 2 years of experience working on lions. We grouped
running and trotting together as “fast” behaviour while walking
was classed as “slow” behaviour. We were able to distinguish
between these two behavioural states by the sound and pace of the
lion’s footfalls. Eating behaviour was discernible by the sound of
chewing and bone crunching along with aggressive vocalisations
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that are often associated with group feeding. Drinking events
were recognized by the sound of lapping water with regular
swallowing (Samples of these audio recordings can be found
in the Supplementary Material). We labelled a total of 20.5 h
of audio which was then matched to logger measurements by
corresponding time stamps. This resulted in a total labelled
dataset of 73930 samples each 1 s long.We randomly subsampled
this dataset to 16223 1 s samples by balancing across behavioural
state and individual where possible to ensure that each individual
and behaviour were sufficiently represented (Table 3). Poor
representation of certain behavioural classes has been shown
to reduce classification performance (Grünewälder et al., 2012).
Additionally, class imbalances can result in a bias toward the
over-represented classes (Stumpf and Kerle, 2011).

Statistical Learning to Predict Behaviour
We used the Random Forest (RF) classification method
developed by Breiman (2001) to infer behaviour from bio-
logger measurements. This method is advantageous as it is
computationally fast, robust to outliers and noise and also
offers variable importance estimates for classification (Breiman,
2001). The analysis was done using the random forest package
(Breiman, 2001) in the R statistical program (R Core Team,
2016), within the R studio integrated development environment
(R Studio Team, 2016). For all models, we set the number
of trees (ntree) to 1,000 and used the recommended value
(
√

Number of variables) for the number of variables considered
at each split (mtry) which has been shown to yield optimal
performance (Díaz-Uriarte and Alvarez de Andrés, 2006).

We carried out a 5-fold cross-validation to train and test
two RF models, one with all component features combined
and another with only accelerometer features. We compared
the behaviour classification performance of the models using
accuracy, precision and recall. Accuracy is a measure of overall
model performance and is defined as the proportion of correctly
classified data. Precision is defined as the proportion of correctly
predicted positive classifications for a particular behavioural state
while recall (also called sensitivity) refers to the proportion of
data of a particular behavioural state that is classified correctly
as positive (Sokolova and Lapalme, 2009; Bidder et al., 2014).
We used accuracy as the overall performance metric due to its
simplicity and the fact that it takes into account all classification

TABLE 3 | Summary of balanced dataset showing number of seconds for each

behaviour and individual.

Tag ID Sex Drink Eat Fast Slow Stationary Total

A1 Female 684 1,021 429 598 515 3,247

A3 Female 196 0 163 598 515 1,472

A4 Male 684 330 227 548 514 2,303

A8 Male 684 1,020 209 597 514 3,024

A9 Male 684 1,020 237 63 514 2,518

A10 Male 0 0 226 598 514 1,338

A11 Male 668 209 332 598 514 2,321

Total 3,600 3,600 1,823 3,600 3,600 16,223

outcomes (Bidder et al., 2014; Wang et al., 2015). To evaluate
prediction performance for each behavioural state, we used
precision as the main performance metric as it is most applicable
to biological inferences which generally rely on true positive
classifications, as was the case in this study (Bidder et al., 2014).
We included recall as recommended by Bidder et al. (2014) for
novel classification methods.

RESULTS

We collected a total of 44 lion-days of useable data from 7
individual lions. One female lion was excluded from the final
dataset as the magnetometer malfunctioned from the time of
deployment. Our final subsampled dataset consisted of 16,223
data points with an hour of data for each behavioural class except
“fast” for which we could only accumulate 1,823 s of data.

Behaviour Classification Performance
Combining all component features resulted in near perfect
classification performance with an average per-class precision of
98.5% (Table 4A). Drink, fast, slow and stationary behaviours
were predicted with ∼99% precision while eating was ∼3%
lower with a precision of 96.2%. Training the classifier using
accelerometer features only, resulted in an average per class
precision of 94.3% (Table 4B) with only eating behaviour being
predicted with <90% precision.

DISCUSSION

Recording the active behavioural states of African lions such
as running, drinking or eating by directly observing study
individuals can often be difficult as lions are mostly active at
night and can be challenging to follow in areas with thick

TABLE 4A | Confusion matrix of actual (rows) vs. predicted (columns) behaviours

for audio, accelerometer, and magnetometer features combined.

Behaviour Drink Eat Fast Slow Stationary Recall (%) Precision (%)

Drink 3,514 53 0 12 21 97.6 98.8

Eat 21 3,537 14 11 17 98.3 96.2

Fast 0 7 1,814 2 0 99.5 99.2

Slow 5 38 1 3,553 3 98.7 99.2

Stationary 15 40 0 3 3,542 98.4 98.9

TABLE 4B | Confusion matrix of actual (rows) vs. predicted (columns) behaviours

for accelerometer features only.

Behaviour Drink Eat Fast Slow Stationary Recall (%) Precision (%)

Drink 3,433 118 0 5 44 95.4 95.1

Eat 149 3,122 14 170 145 86.7 87.7

Fast 0 5 1,811 6 1 99.3 99.1

Slow 3 221 2 3,371 3 93.6 94.9

Stationary 26 94 0 0 3,480 96.7 94.7
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FIGURE 2 | Synchronised accelerometer data and audio spectrograms for each behavioural state. Lines and shaded regions on accelerometer plots represent mean

and standard deviation, respectively for each accelerometer axis.
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vegetation such as BVC. Adult lions, weighing in excess of 150 kg,
are capable of carrying bio-logging devices attached to collars
which can offer unique insights into their behavioural patterns.
Using custom-designed acoustic bio-loggers, we found that audio
can be used as an effective source of ground truth for training
accurate behaviour classification models.

Six years ago Grünewälder et al. (2012) suggested that the
collection of behavioural observations for calibrating bio-logging
devices could be done remotely in the near future. Achieving
this objective, however, required the integration of technological
and zoological knowledge and skills both for the development
and data analysis phases, which was achieved through an
interdisciplinary research partnership. Our results indicate that
remotely collected audio recordings can be used as a reliable
source of ground truth for calibrating bio-loggers by matching
audio labels to logger data following logger retrieval and thereby
eliminate the need for calibration from direct observations
(Figure 2 illustrates how audio and movement sensor data are
synchronised).

It is useful to note that a relatively small number of ground
truth labels (1 h per behavioural state) were required to build
an accurate classifier, although it is important to ensure that all
behavioural classes are sufficiently represented in the training
dataset (Grünewälder et al., 2012). This requirement can be
fulfilled by continuously logging audio over several days which
increases the likelihood of recording rarer behavioural events.

The total of 44 lion-days of audio from 7 individuals provided
considerably more data for calibration of rarer behavioural
events (eat, drink, and fast) than could have been realistically
achieved using video footage recorded by an observer or a
video collar. In comparison, Pagano et al. (2017) recorded a
total of 140 h of video for accelerometer validation from 5 ice
bears fitted with video collars. Although visual determination
of animal behavioural states is likely to be more objective than
those which are determined audibly from sound recordings, we
found that in general, the behaviour of the study animal could
be determined easily from certain acoustic cues as outlined in
section Data management. Insley et al. (2008) who also made
use of an animal-borne acoustic recording device reported being
able to clearly differentiate between resting and other active
behaviours of northern fur seals. Similarly, Lynch et al. (2013)
list in detail, the audible behaviours that could be captured by
their animal-borne acoustic devices fitted to wild mule deer.
While most behaviours may be clearly discernible using this
method, short periods of ambiguous sound signals will likely be
recorded and, depending on the objective of the research, may
require concurrent observational data collection to confirm the
behavioural state (Lynch et al., 2013). In some cases, interference
from other sound sources may also make it difficult to determine
behaviour. Such interference may result from self-vocalisations,
vocalisations emitted by other species, anthropogenic sources
(e.g., vehicles) or environmental sources (e.g., wind and rain).
The use of this approach should also consider the acoustic
characteristics of the species of interest as the behaviour of certain
species may not be sufficiently audible, even at close range.

The results from the model built using the different
component datasets showed that audio and magnetometers can

also be used as additional sensor modalities for classification
with high model predictive performance when accelerometer,
magnetometer and audio features are combined. However,
due to the considerably higher power consumption of audio
recording and the battery capacity limits on current bio-
loggers, it is unlikely that continuously logging raw audio
would be a suitable sensor modality for long-term logger
deployments. However, scheduling (e.g., sampling for only a
few hours a day) could dramatically increase lifetime whilst
still providing a sufficiently representative training set. Despite
this drawback, we still demonstrated good model predictive
performance using the audio labels and accelerometer features
only. Thus, a small subset of animals can be equipped with
audio and motion loggers to provide ground-truth calibration
for a larger set of animals equipped only with motion
loggers.

While we have primarily highlighted the use of audio
for training behaviour classifiers, bio-loggers fitted with
microphones may also be useful tools for other study purposes
such as investigating how species respond to environmental
acoustic stimuli or exploring patterns of animal vocal behaviour
(Stowell et al., 2017; Wisniewska et al., 2018). The audio
recordings collected from our bio-loggers often revealed the
presence of other species (e.g., antelope and baboon alarm
calls) and in some cases also allowed for the identification
of captured prey species from the prey distress vocalisations.
Such contextual information could be particularly useful where
opportunities for visual observations are rare. Furthermore,
we were able to identify more than 300 roar events from the
5 male lions in this study. This data alone could be used to
assess vocalisation rates as well as provide insight into the
spatial patterns of vocalisations when combined with GPS collar
data.

In future, acoustic bio-loggers could be greatly enhanced
by intelligent on-board processing functions aimed at reducing
battery load by either limiting recording to sounds of interest
or by storing audio variables rather than raw audio samples.
Consideration must also be given to the mode of data retrieval
with wireless data transmission being a preferred option. These
advancements would be particularly beneficial to studies on
smaller species, where battery capacity is limited, and elusive
species, where logger retrieval is difficult.

Few published studies have reported the use of micro-
sensors to investigate aspects of lion behaviour (Wilson
et al., 2018) however, with advances in technology and
the development of interdisciplinary research partnerships,
opportunities to overcome previous study limitations have
arisen. Gao et al. (2013) suggested that one of the main
challenges associated with analysing accelerometer data from
wild animals is that there is often very little observational
data to generate an accurate behaviour classifier. We have
demonstrated how on-animal audio recordings can be
used to collect a large amount of ground truth data for
training accurate classifiers. Acoustic bio-loggers have wide-
ranging application and this work can inform the design and
development of future bio-loggers for other animal behaviour
studies.
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Kos, M., Kačič, Z., and Vlaj, D. (2013). Acoustic classification and segmentation

using modified spectral roll-off and variance-based features. Digit. Signal Proc.

23, 659–674. doi: 10.1016/j.dsp.2012.10.008

Lush, L., Ellwood, S., Markham, A., Ward, A. I., and Wheeler, P. (2015). Use of tri-

axial accelerometers to assess terrestrial mammal behaviour in the wild. J. Zool.

298, 257–265. doi: 10.1111/jzo.12308

Lynch, E., Angeloni, L., Fristrup, K., Joyce, D., and Wittemyer, G. (2013). The use

of on-animal acoustical recording devices for studying animal behavior. Ecol.

Evol. 3, 2030–2037. doi: 10.1002/ece3.608

McClune, D. W., Marks, N. J., Wilson, R. P., Houghton, J. D., Montgomery, I. W.,

McGowan, N. E., et al. (2014). Tri-axial accelerometers quantify behaviour in

the Eurasian badger (Melesmeles): towards an automated interpretation of field

data. Anim. Biotelemetry 2, 1–6. doi: 10.1186/2050-3385-2-5

Pagano, A. M., Rode, K. D., Cutting, A., Owen, M. A., Jensen, S., Ware, J. V.,

et al. (2017). Using tri-axial accelerometers to identify wild polar bear behaviors.

Endanger. Species Res. 32, 19–33. doi: 10.3354/esr00779

Piyabongkarn, D., Rajamani, R., and Greminger, M. (2005). The development of

a MEMS gyroscope for absolute angle measurement. IEEE Trans. Control Syst.

Technol. 13, 185–195. doi,: 10.1109/T. C. S. T.2004.839568

R Core Team (2016). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna. Available online at: https://

www.R-project.org/

R Studio Team. (2016). RStudio: Integrated Development for R. RStudio, Inc.,

Boston, MA Available online at: https://www.rstudio.com/

Rutz, C., and Hays, G. C. (2009). New frontiers in biologging science. Biol. Lett. 5,

289–292. doi: 10.1098/rsbl.2009.0089

Sokolova, M., and Lapalme, G. (2009). A systematic analysis of performance

measures for classification tasks. Inf. Process. Manag. 45, 427–437.

doi: 10.1016/j.ipm.2009.03.002

Stowell, D., Benetos, E., and Gill, L. F. (2017). On-bird sound recordings:

automatic acoustic recognition of activities and contexts. IEEE/ACM Trans.

Frontiers in Ecology and Evolution | www.frontiersin.org 7 October 2018 | Volume 6 | Article 171

https://www.frontiersin.org/articles/10.3389/fevo.2018.00171/full#supplementary-material
https://doi.org/10.1016/j.measurement.2008.12.002
https://doi.org/10.1371/journal.pone.0088609
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1186/2050-3385-1-20
https://doi.org/10.1098/rstb.2010.0107
https://doi.org/10.1016/S0003-3472(05)80741-9
https://doi.org/10.1016/j.tree.2004.04.003
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1016/j.anbehav.2014.10.025
https://doi.org/10.1016/j.biocon.2014.05.021
https://doi.org/10.1016/j.ecoinf.2012.09.003
https://doi.org/10.1371/journal.pone.0077814
https://doi.org/10.1371/journal.pone.0049120
https://doi.org/10.2307/4088502
https://doi.org/10.3390/s16091359
https://doi.org/10.3354/esr00050
https://doi.org/10.1242/jeb.108001
https://doi.org/10.1016/j.dsp.2012.10.008
https://doi.org/10.1111/jzo.12308
https://doi.org/10.1002/ece3.608
https://doi.org/10.1186/2050-3385-2-5
https://doi.org/10.3354/esr00779
https://www.R-project.org/
https://www.R-project.org/
https://www.rstudio.com/
https://doi.org/10.1098/rsbl.2009.0089
https://doi.org/10.1016/j.ipm.2009.03.002
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Wijers et al. Acoustic Sensors Improve Bio-logger Calibration

Audio Speech Lang. Process. 25, 1193–1206. doi: 10.1109/TASLP.2017.26

90565

Stumpf, A., and Kerle, N. (2011). Remote sensing of environment object-oriented

mapping of landslides using random forests. Remote Sens. Environ. 115,

2564–2577. doi: 10.1016/j.rse.2011.05.013

Volpov, B. L., Hoskins, A. J., Battaile, B. C., Viviant, M., Wheatley, K. E.,

Marshall, G., et al. (2015). Identification of prey captures in Australian fur

seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers:

field validation with animal-borne video cameras. PLoS ONE 10:e0128789.

doi: 10.1371/journal.pone.0128789

Wang, Y., Nickel, B., Rutishauser, M., Bryce, C. M., Williams, T. M., Elkaim,

G., et al. (2015). Movement, resting, and attack behaviors of wild pumas

are revealed by tri-axial accelerometer measurements. Mov. Ecol. 3, 1–12.

doi: 10.1186/s40462-015-0030-0

Watanabe, Y. Y., and Takahashi, A. (2013). Linking animal-borne video to

accelerometers reveals prey capture variability. Proc. Natl. Acad. Sci.U.S.A. 110,

2199–2204. doi: 10.1073/pnas.1216244110

Wilson, A. M., Hubel, T. Y., Wilshin, S. D., Lowe, J. C., Lorenc, M., Oliver, P., et al.

(2018). Biomechanics of predator - prey arms race in lion, zebra, cheetah and

impala. Nat. Publ. Gr. 554, 183–188. doi: 10.1038/nature25479

Wisniewska, D. M., Johnson, M. P., Teilmann, J., Siebert, U.,

Galatius, A., Dietz, R., et al. (2018). High rates of vessel noise

exposure on wild harbour porpoises (Phocoena phocoena) can

disrupt foraging. Proc. Biol. Sci. 285, 1–10. doi: 10.1098/rspb.20

17.2314

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The handling Editor declared a past collaboration with one of the authors,

DM.

Copyright © 2018 Wijers, Trethowan, Markham, du Preez, Chamaillé-Jammes,

Loveridge and Macdonald. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 October 2018 | Volume 6 | Article 171

https://doi.org/10.1109/TASLP.2017.2690565
https://doi.org/10.1016/j.rse.2011.05.013
https://doi.org/10.1371/journal.pone.0128789
https://doi.org/10.1186/s40462-015-0030-0
https://doi.org/10.1073/pnas.1216244110
https://doi.org/10.1038/nature25479
https://doi.org/10.1098/rspb.2017.2314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Listening to Lions: Animal-Borne Acoustic Sensors Improve Bio-logger Calibration and Behaviour Classification Performance
	Introduction
	Materials and Methods
	Study Site
	Bio-loggers
	Ethical Statement
	Data Collection
	Data Management
	Statistical Learning to Predict Behaviour

	Results
	Behaviour Classification Performance

	Discussion
	Data Availability
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


