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The climatic conditions in the North American Great Plains are highly variable,

characteristic of an inter-continental climate. Antecedent climate history has impacted the

flora of Great Plains grasslands, resulting in high species richness as well as dominance

by only a few grass species, such as Andropogon gerardii. While the productivity of A.

gerardii is well described, the individual physiological, and morphological characteristics

that confer species dominance over wide spatial gradients are not clearly understood.We

performed a literature search to assess intra-specific trait variability of A. gerardii from as

many locations as possible. Ultimately, only 13 locations in the Great Plains have reported

common plant functional traits (PFTs) for this species. To best represent site-specific

climate conditions, plant functional trait data (8 PFTs) were collected from literature

reporting ambient growing conditions, and excluded experimental manipulations. For

most PFTs, we found insufficient data to fully quantify the range of variation across

the geographical extent of A. gerardii dominance. This is surprising given that we

focused on the most abundant grass in one of the most well-studied regions globally.

Furthermore, trait data collected from our literature search showed a high degree of

variability, but no strong relationships were observed between mean trait values and

climate predictors. Our review of the literature on A. gerardii suggests a role for trait

variability as a mechanism enabling the dominance of this species across large regions

such as the Great Plains of North America.
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INTRODUCTION

Biomes are often spatially delineated with sharp boundaries and attributed functional properties
based on the primary vegetation represented (Bailey, 1998, 2005). These vegetation types are
comprised of species that likely exhibit variation in functional traits that may respond to
climatic gradients or change through time. Interspecific variation has been used as a proxy for
understanding climate change, because it represents how plant functional types and ecosystem
function may be altered (Ryan, 1991; Adler et al., 2006; Taylor et al., 2014). However, the focus on
mean-trait values in the literature suggests that the true magnitude of intraspecific trait variation
is commonly overlooked, and is rarely incorporated into climate and vegetation process models
(Lambert et al., 2011; Johnson et al., 2015; Funk et al., 2017), although intraspecific trait variability
appears promising for predicting species change (Lu et al., 2017). This is partly due to a lack
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of empirical work focusing on patterns of ecotypic and
intraspecific trait variation (Violle et al., 2012). Intraspecific trait
variation is the occurrence of a genotype expressing various
phenotypes in a given environment; it’s a combination of
genetic (i.e., evolution) and environmental factors reflected in
the variation within populations (forming ecotypes) (Valladares
et al., 2007, 2014; Turcotte and Levine, 2016; Barbour et al.,
2018). Measuring intraspecific trait variation allows for an in-
depth understanding of a species’ ability to respond and adapt
to environmental changes (Molina-Montenegro et al., 2018). In
this review, we focus on the average trait expression (reflected
in functional traits) change in a single species spanning a large
continental gradient. Our goal is to assess the degree to which
intraspecific trait variation in dominant species might contribute
to the functional responses of grassland ecosystems.

The Central and Great Plains region of the United States
experiences a continental climate of temperature extremes
and both intra- and inter-annual variability in precipitation
(Borchert, 1950; Weaver, 1968). A noteworthy characteristic of
the grasslands in this region is the high floristic richness (Collins
and Calabrese, 2012), yet dominance by a few C4 grass species
that encompass the majority of annual production (Dietrich and
Smith, 2016). A combination of site-level and regional landscape
heterogeneity contributes to genotypic and phenotypic diversity
within dominant species (Olsen et al., 2013). This allows for a
mosaic of different genotypes of dominant grass species to exist
across the Great Plains region.

Previous research has shown the occurrence of broad
genotypic and anatomical differences within species across
regional gradients in the United States (Avolio and Smith, 2013;
Olsen et al., 2013; McAllister et al., 2015). These differences may
arise from climatic events causing changes in populations of
dominant species (Hoover et al., 2014a, 2015; Hoffman et al.,
2018). Functional trait variability may also play a large role
in muting the negative impacts of large stress events, such as
drought, across a landscape. Therefore, an innate advantage of
increased resistance to stress events exists, and high functional
trait variability may decrease the likelihood of species loss on a
regional scale (Smith and Knapp, 1999).

The aim of this review is to measure within-region trait
variation from a dominant species found in the Great Plains
(temperate grassland; Figure 1). Focusing on several functional
traits commonly used in the literature (specific leaf area,
water potential, photosynthesis, stomatal conductance, above-
ground productivity (individual and g/m2), and below-ground
biomass (individual and g/m2), we have summarized the
variability of functional traits within the species Andropogon
gerardii Vitman. A. gerardii is a perennial C4 grass that
has significant genotypic and functional trait variability,
facilitating a broad distribution throughout the Central and
Great Plains. PFTs collected were analyzed to understand if
the variability in a given trait varies/relates to gradients in
multiple climate factors across this region, including mean
annual precipitation (MAP), mean annual temperature (MAT),
mean annual minimum temperature (MMinT), and mean
annual maximum temperature (MMaxT) from 1980–2015.
For example, we would expect biomass to vary across a

climate gradient because productivity positively increases in
this region with corresponding increases in precipitation and
temperature (Nippert et al., 2006; Hufkens et al., 2016).
Identifying trait variability within a single species may provide
insight for the potential role of adaptive trait variability
as a driver of population persistence across broad climatic
space.

LITERATURE SEARCH CRITERIA FOR
Andropogon gerardii PFTS

We conducted a literature search to collect specific PFT data from
a widely distributed grassland species: Andropogon gerardii,
attempting to lend insight into one of many potential reasons
for why some species achieve dominance over broad climatic
space. A. gerardii was chosen because it is a dominant species
in the tallgrass prairie and encompasses roughly 70% of the
total aboveground biomass in grasslands throughout the Great
and Central Plains region (Rogler, 1944; Weaver, 1968; Smith
et al., 2017). We selected 6 important functional traits that reflect
major axes of leaf economic variation and properties relevant
to ecosystem function. The PFTs included in the literature
search were specific leaf area (SLA), water potential (WPall; pre-
dawn and midday), photosynthesis (A), stomatal conductance
(gs), above-ground biomass (AGB), and below-ground biomass
(BGB). ABG and BGB data included biomass on an individual
and a per square meter basis. Starting with SLA, we searched
Google Scholar and Web of Science (which yielded identical
results) with the string [“Andropogon gerardii” AND (“LMA” OR
“SLA”) AND “Great Plains”], which produced 60 search results.
Only 12 of these studies (from 6 study sites) reported SLA. Similar
searches were performed for the less common functional traits.
SLA data was also collected from the TRY global database of
plant traits (Kattge et al., 2011), which mirrored previous search
parameters with greater success. This process resulted in a PFT
dataset collected from 36 separate studies, including data from
17 research locations in 7 states from 1984–2017 (Figure 1).
Our goal was to include data from across the U.S. Midwestern
region and to exclude redundant data that were from the same
projects, and only include “control” or “ambient” conditions.
Data collection from literature varied by state. Kansas and Illinois
contributed 59 data points (each point representing a single
datum), which is a substantial amount of the total dataset. In
order to determine differences in geographic location, statistical
analysis was conducted via ANOVA before and after the data
were normalized by natural log. MAP, MAT, MMinT, MMaxT
(mean from 1980–2015), and geographic location of each data
point was collected from PRISM (PRISM Climate Group, 2014)
and used as fixed variables while each PFT was used as response
variables. AICc model selection was also used to determine
the most impactful climate parameters in the model using the
“MuMIn” package (Barton, 2018), according to Grueber et al.
(2011). Analyses were conducted in the statistical program R
V3.4.3 (R Core Team, 2017). The geographic map (Figure 1)
was produced using the “raster” package in program R (Hijmans,
2017).
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FIGURE 1 | Site locations of gathered A. gerardii functional traits used in this study. The black contour line indicates the 90% percentile of the density of GBIF

occurrences. Source ID codes, locations, precipitation (A), and temperature (B) data are located in the Supplementary Material.

PLANT FUNCTIONAL TRAITS REFLECT
ECOPHYSIOLOGICAL PROCESSES

Plant functional traits (PFTs) are commonly used to identify
species’ differences in growth, allocation, and competition in
relation to environmental effects to reflect plant economics
(Grime, 1979; Edwards et al., 2007; Guo et al., 2017;
Volaire, 2018). PFTs represent morphological and physiological
adaptations that often predict plant responses to biotic
(competition, herbivory, etc.), and abiotic factors (MAP, MAT,
etc.). PFT’s typically include whole-plant traits, tissue specific
traits (leaf, stem, and root), and physiological measurements
(photosynthesis, stomatal conductance, transpiration, and water
potential) (Pérez-Harguindeguy et al., 2013; Carmona et al.,
2016). For instance, PFTs have been used to predict how
individual A. gerardii and populations of other grassland species
will respond to projected drought conditions (Chapin et al., 2000;
Nippert et al., 2009; Volder et al., 2010; Liancourt et al., 2015;
Maréchaux et al., 2015; Skelton et al., 2015; De La Riva et al.,
2016).

The biological link between ecophysiology and environmental
factors aids in predicting how species will respond to climatic
changes (Nippert et al., 2011; Ocheltree et al., 2012; Hoover et al.,
2014b; Griffith et al., 2016); therefore, such traits reflect the ability
of a species, like A. gerardii, to respond to changing climatic
conditions that are found in the Great Plains (Grime, 2001;
McGill et al., 2006; Butterfield and Callaway, 2013; Losapio and
Schob, 2017). Andropogon gerardii in the Great Plains exhibits
many drought tolerant traits that allow either resistance and/or
resilience in response to the abiotic stressors such as increased
temperature and precipitation variability (Hoover et al., 2014b;
Hoover and Rogers, 2016). Traits that are commonly correlated

with drought tolerance include increased water-use efficiency
(WUE), decreased leaf area (LA), higher specific root length
(SRL), and lower turgor loss point (Eissenstat et al., 2000; Ripley
et al., 2007; Hameed et al., 2012; Bartlett et al., 2014). Drought
tolerant traits are likely not static in species with populations
that span regional gradients, as there is adaptive benefit for
greater trait variability in an environment that experiences high
climate variability (Chapin, 1980; Avolio and Smith, 2013; Funk
et al., 2017). For instance, WUE variability enables populations
to maintain relatively high fitness with varying levels of water
availability and mean temperatures (Briggs and Knapp, 2001;
Nippert et al., 2007). Nippert et al. (2007) showed physiological
trait variability for C4 grasses provided an advantage for fast
growth under favorable conditions and the ability to withstand
(resist) drought during poor (stressful) conditions (Briggs and
Knapp, 2001; Nippert et al., 2007). Trait variability may serve as a
climate buffering mechanism (Valladares et al., 2007), which may
be observable on the individual physiological scale (i.e., WUE),
but also in other PFTs at the regional scale.

TRAIT VARIATION IN Andropogon gerardii

Plant functional traits (PFTs) are known to differentiate between
species, due to their evolutionary history (Violle et al., 2012;
Cornwell et al., 2014; Valverde-Barrantes et al., 2017). However,
less work has focused on intraspecific trait variability across
large geographic scales. To emphasize this point, the dominant
Great Plains grass species (Andropogon gerardii) is arguably the
most well-studied dominant grass species in the Great Plains and
specific leaf area (SLA) is the most widely reported functional
trait, yet we only found 12 studies from 6 research locations
where PFT data were reported from natural populations without
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experimental manipulation. In fact, three traits accounted for
nearly half the data points in the study (Figure 2A), supporting
the clear need for greater reporting of PFT data within common
species that span large climate gradients (Figure 2B). Because
single PFT data are under-represented in the literature, we aimed
to incorporate multiple PFTs for A. gerardii to better understand
intraspecific trait variability.More specifically, this amalgamation
of PFTs may provide insight into the role of trait variability as a
driver of plant species functioning over large regional scales. We
assume that for a single species to extend over large geographic
regions such as the Great Plains, the species would inevitably
maintain a highly plastic phenotype at the population level which
may buffer the whole species from variable climate conditions
(Figure 2B). Figure 2C theorizes that populations from species
with increased trait variability permits survival across a greater
range of environmental conditions. For instance, if A. gerardii
populations were subjected to drought conditions, varying levels
of drought tolerance would be observed due to varying leaf water
potential at turgor loss point (Maréchaux et al., 2015). Phenotypic
variability has been observed to assuage effects from harsh abiotic
pressures, however this may only be realized in the short-term
(Becklin et al., 2016).

Long-term persistence of abiotic pressures will ultimately
cause population reductions, due to climatic conditions moving
out of the of historical climate parameters; this was observed in
the droughts of the1930’s (Romm, 2011; Becklin et al., 2016).
Evidence from rain manipulation experiments provides insight
into potential responses to climate extremes (Fay et al., 2002;
Knapp et al., 2002; Nippert et al., 2009). For instance, Hoover
et al. (2015), indicated that C4 grasses subjected to drought
conditions in the Colorado Plateau (35% reduction of annual
rainfall) were observed to maintain cover for the first year,
but decreased cover and increased mortality with prolonged
exposure. Climate buffering can also be observed in a similar
experimental design (rainfall manipulation) within the tallgrass
prairie. A. gerardii did not display the same negative responses as
other similar C4 grasses to increasing climate variability, instead
a relatively static response was observed (Fay et al., 2003; Avolio
and Smith, 2013).

Increased trait variability within a species may provide
physiological benefits in regions with high climate variability. A.
gerardii lacks highly specific growing conditions and exists across
broad geographic gradients in the U.S, including regions with
hot and dry climate conditions. We hypothesize that A. gerardii
and other generalists that dominate large geographic regions can
be represented in Figure 2B as the blue line, whereas species
that require more specific growing conditions are hypothetically
represented as the black line. The theoretical curves in Figure 1B

were created by using a low standard deviation (sd= 1; reflecting
∼68% of data explained) and a higher standard deviation (sd= 3;
reflecting an increased data distribution) assuming an underlying
normal distribution. Specialized species (black line) would not be
capable of expanding over large heterogeneous landscapes due
to the inability to withstand large fluctuations in temperature
or precipitation (Linder et al., 2018), which is represented by
a higher/narrower trait density (Figure 2B). Trait variability is
documented to lead toward a more stable system due to niche

stabilization which affects community composition, the function
of the ecosystem, and response to abiotic factors (Turcotte and
Levine, 2016).

The PFT data from Andropogon gerardii varied widely
between research sites, but without discernable trends due
to climate parameters like increasing precipitation and
temperature (locations and PFT types are found in the
Supplemental Material). For example, A. gerardii from Konza
Prairie (KS), exhibited photosynthetic rates that included both
the maximum and minimum of observed rates from all states
included in the literature search, with many data points falling
along the mean. Statistical results (ANOVA) show little to no
discernable trend in PFTs when considering climate conditions
at the geographic locations, which supports the concept of
intraspecific trait variation allowing a single species to occupy
such a large geographic range containing large precipitation
and temperature differences. Photosynthetic rates did not vary
by location, neither did stomatal conductance, SLA, or water
potential (P > 0.05). Only two PFTs were observed to statistically
vary by research location: above and below-ground biomass
(P < 0.05). This result may reflect the small sample size from
the literature as only 15 total data points were found for both
individual and square meter collection methods. AICc model
selection was performed on models containing all combinations
of the PRISM climate variables to find the best model (given
all variables) using the “model.sel” function, within the MuMIn
package (delta <2, Royall’s 1/8 rule, and cumulative sum of
model weights were used to identify uncertainty and differences
in the models). The full model including location, MAP, MAT,
MMinT, and MMaxT best explained the SLA results gathered
from the literature search (AICc = 974.6; weight = 0.939);
which was 23 times more likely to be the best explanation for
variation compared to the next model (AICc = 980.9; weight =
0.040) that did not include location as a parameter. Production
above/belowground can exhibit a positive relationship (Nippert
et al., 2006) with soil moisture and precipitation or relatively
no change (Zhou et al., 2009), providing potential for variation
across precipitation gradients within the Central and Great
Plains. No trends due to climate parameters were visible in
the analysis based on geographic location (Figure 1), but we
speculate that additional production data collected across
this regional gradient may result in a positive relationship
with regional precipitation gradients similar to results from
precipitation manipulation experiments (Fay et al., 2000,
2003).

The results from our literature review followed the ecological
hypotheses presented in Figure 2B. PFTs were normalized
(natural log) and combined to view large scale trends in
the data. A. gerardii follows very closely to the “generalists”
species parabola, meaning that PFTs are variable or plastic
across a broad range of environmental conditions (Figure 2C).
A. gerardii also expresses a low density of several PFTs,
which indicates that traits are not static, but variable. Plastic
PFTs allow A. gerardii the ability to respond positively in
a given population, which buffers the A. gerardii species as
a whole. This interpretation may contradict previously held
claims that A. gerardii will experience geographic shifts or
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FIGURE 2 | (A) Displays the number of sources found in each PFT, the data were then used to create the density plot in (B). (B) Portrays predictions of normalized

PFT data variability within a specialist species exhibiting low trait variability (Black; standard deviation = 1), generalists/high trait variability (Blue, standard deviation =

3), and the normalized data reported from the literature search is represented in red. (C) Illustrates how increasing PFT variability may result in increased buffering

(resilience) from environmental variability. Arcs and color describe the theoretical placement of a species on a continuum such that a low trait variability results in low

climate buffering (lighter color), and high trait variability facilitates higher climate buffering (darker color). Figures produced using the “ggplot2” package in program R

V3.4.3 (R Core Team, 2017).

experience large population reductions due to climate change
(Gray et al., 2014; Smith et al., 2017). Thus, more research
is required to understand the role that intraspecific variation
plays in the expansion and survival of A. gerardii in the Great
Plains.

FUTURE DIRECTIONS

The literature containing plant functional traits covers many
different types of ecosystems and hundreds of species (Pérez-
Harguindeguy et al., 2013), which have been emphasized in
climate change literature encompassing major biomes across
the world (Liancourt et al., 2015). Here, we used PFTs to
identify inherent trait variability within a single species, and
identify a potential role of adaptive variability as a driver of
species persistence across a regional climate gradient. Results
from this literature review suggest that the PFTs observed
in A. gerardii do not statistically differ (excluding AGB and

BGB) between locations measured (Figure 1). Findings from this
review underline the importance of adaptive trait variability to
permit greater phenotypic plasticity, which provides population
buffering for some species that exist across broad climate
gradients.

Moving forward, an increased focus from interspecific to
intraspecific species trait variation may provide a greater
understanding of how future climate variability will impact
native plant species that span large regional scales. More
specifically, A. gerardii is the quintessential prairie species;
yet an extensive examination of the literature showed a
relatively small number of sites reporting trait data. We
advocate for the development of a grass trait network to
examine the effect of climate change on specific dominant
species in grasslands worldwide. This network could follow the
framework created by Nutrient Network (NutNet; http://www.
nutnet.org) and Drought Network (DroughtNet; http://www.
drought-net.colostate.edu) to standardize measurements and
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procedures, and allow for more consistent interpretation of PFTs
response to changes in abiotic factors. Increased documentation
of spatial climate gradients and species distributions will
increase our understanding of the role of trait variability
in species resistance and resilience to future changes in the
environment.
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