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A Systematic Review on the Effects
of Plant-Feeding by Omnivorous
Arthropods: Time to Catch-Up With
the Mirid-Tomato Bias?

Adriana Puentes*, J6rg G. Stephan and Christer Bjérkman

Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden

Zoophytophagous (omnivorous) predators provide valuable pest control services, and
offer an advantage over strict carnivores as plant-feeding enables survival during prey
shortage. This putative advantage can potentially be their downside, as plant-feeding
may entail damage that negatively affects plant growth/yield (i.e., the cost arising from of
omnivore plant-feeding). Yet, benefits conferred by predatory services are usually thought
to counterbalance any impact of plant damage. In this systematic review, our goal was to
determine how often levels of omnivore damage and its consequences for plants (costs)
are considered or quantified. We provide a synthesis of publication trends and findings
on omnivore plant-feeding levels, plant injury variables, actual (if quantified) and potential
effects on growth/yield, the type of study (lab, greenhouse) and the plants/omnivores
most often examined. Our search revealed that measures of omnivore plant-feeding
are occasionally reported, but seldom are the direct consequences of such damage
also considered. Omnivore plant-feeding were reported in 57% of studies (53 of 93
full-text examined); within these, the majority (>80%) indicated moderate to high levels
of plant-feeding. However, only 22% of reports (15 of 69) quantified the effects of
omnivore-inflicted damage on plant performance. Of these 15 reports, a greater number
found negative consequences for plants compared to those showing no effect (8 vs. 4; 3
with both), with consequences for yield relative to growth being more often evaluated (6
vs. 2). Overall, fruit/leaf injuries relative to stem/flower-feeding were most often examined,
and lab/greenhouse experiments predominated. Tomatoes (Solanum lycopersicum) and
the mirid Nesidiocoris tenuis were the most common species studied (34 and 14 reports,
respectively). Our results indicate that costs to plants of omnivore-inflicted damage are
often neglected. We argue that predatory benefits need to be simultaneously considered
with plant-feeding effects to appropriately evaluate pest control services. Publication
trends suggest that more studies are evaluating costs to plants, but a paradigm shift
is still needed. Furthermore, we found that our understanding of plant-feeding and its
effects is disproportionally based on studies examining tomato plants and its omnivorous
biocontrol agents. To confirm the generality of findings thus far, other plant omnivore
systems should be further considered.

Keywords: biocontrol, omnivore, phytozoophagy, plant indirect defense, plant-feeding, plant injury, tri-trophic
interactions, zoophytophagy
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Plant Costs of Omnivore-Inflicted Damage

INTRODUCTION

Prey and plant-feeding omnivorous arthropods are increasingly
being recognized as providers of valuable and effective pest
control services (Albajes and Alomar, 1999; Perdikis et al., 2011;
lo\gren etal., 2012; Zappala et al., 2013; Pérez-Hedo and Urbaneja,
2015; Beitia et al.,, 2016; van Lenteren et al., 2018a). Several
species of omnivorous predators have proven to be key biocontrol
agents of economically-important herbivores, for example in
tomato, sweet pepper, and willow crops (Dalin et al., 2011; Calvo
et al,, 2012; Messelink et al, 2015) and show great promise
even for potential invading pests (Pérez-Hedo et al., 2017).
One of their main advantages as an alternative or complement
to other natural enemies, is that plant-feeding enables their
establishment and maintenance before pest infestation or during
prey shortage. Consequently, the effects associated with the use
of plant-food for omnivore performance/preference and prey
suppression have received much attention (Naranjo and Gibson,
1996; Coll and Ruberson, 1998; Sanchez et al., 2004; Lundgren,
2009; Stenberg et al., 2011; Maselou et al., 2014; Perdikis and
Arvaniti, 2016; Liman et al,, 2017). Indeed, plant-feeding has
well-documented positive effects on omnivore development,
longevity and fecundity (reviewed by Eubanks and Styrsky,
2005), resulting in larger predator populations and stronger
herbivore suppression (e.g., Eubanks and Denno, 2000).

On the other hand, direct interaction of omnivorous predators
with plants and the consequences of their phytophagy/herbivory
for plant performance have received less attention. The
predatory services provided by omnivores are often thought to
counterbalance any potential plant damage (Coll and Guershon,
2002; Castané et al., 2011). However, herbivory entails a cost to
plants, for example in the form of loss of photosynthetic capacity
(Nabity et al., 2008), mobilization/use of resources for damage
repair or compensatory responses (e.g., new or larger leaves;
Strauss and Agrawal, 1999), or for inducing defenses (chemical,
physical etc.; Heil and Baldwin, 2002; Cipollini et al., 2014). In
order for the net outcome of omnivore-mediated protection to
serve in favor of plants, benefits should outweigh the costs of
plant-food use (Heil, 2008). Benefits to plants are those conferred
by the decrease in prey numbers resulting from direct predation
by omnivores, and the subsequent reduction in pest-inflicted
damage. The cost to plants of such predatory services include
any direct negative effects arising from omnivore plant-feeding
and the damage they inflict. For example, omnivore feeding
damage can result in leaf deformations, necrosis and/or fruit
abortion, which can in turn affect plant growth and yield (Raman
et al,, 1984; Castané et al, 2011; Adar et al, 2015; Bhatt and
Patel, 2018). Thus, to evaluate the “net result” (advantageous,
neutral or detrimental) of omnivore-mediated plant protection,
assessment of both plant benefits and costs is necessary. Yet,
predatory benefits are seldom simultaneously considered with
the direct consequences of omnivore-inflicted damage to plants
(Puentes and Bjorkman, 2017). Indirect assessment of costs to
plants are common and involve descriptions of crop injury,
omnivore feeding preferences, or are even dismissed if there are
no obvious signs of plant damage (Castané et al., 2011; Hamdi
et al., 2013; Adar et al., 2015). Thus, costs to plants have often

been considered of lesser or negligible importance relative to
the predatory services provided by omnivorous predators (Dalin
et al,, 2011; Bhatt and Patel, 2018).

Accounting for the consequences of plant-feeding is critical
given that omnivorous predators can exhibit a diversity of
habits ranging from zoophytophagous (mostly prey food,
occasional plant-feeding) to phytozoophagous (mostly plant
food complemented with prey). For instance, for several
zoophytophagous biocontrol agents, plant-feeding does not
always decrease when prey is abundant; indicating that
phytophagy may be obligatory rather than facultative (Gillespie
and McGregor, 2000; Castané et al., 2011; Aubry et al., 2017).
Even within conspecific populations can there be considerable
genetic variation in diet preference, with some genotypes
specializing on plant resources and others relying mostly on prey
(Dumont et al., 2017). Other recent studies have also shown that
omnivore plant-feeding can result in similar effects as herbivore
damage (Puentes and Bjorkman, 2017) and even induce plant
defenses, thus affecting subsequent interactions (Pappas et al.,
2015; Naselli et al., 2016; Bouagga et al., 2018a). Therefore, to
minimize risks and maximize benefits of services provided by
omnivorous predators, a direct evaluation of costs to plants is
necessary.

What evidence is there available for evaluating the extent
of plant damage caused by omnivorous predators and its
consequences for plant performance? To date, only a review
by Castané et al. (2011) has partly addressed this important
question. Their review focuses on reported levels and types of
damage to vegetable crops caused by four zoophytophagous
species of mirid predators. While some studies reporting
the consequences of plant-feeding are mentioned, the review
is centered on the circumstances (e.g., predator-prey ratios,
predator developmental stage, and stylet morphology) resulting
in crop damage and its potential economic (yield loss)
consequences. We thus, lack a synthesis and evaluation of the
evidence that is available for assessing the direct impact on plants
of omnivore-inflicted damage.

In this systematic review, our goal was to compile and
summarize findings on the levels of plant-feeding by omnivorous
predators and the consequences (costs) for plants. We herein
refer to plant costs or cost to plants as any direct effect on their
performance (growth, reproduction, crop yield) arising from
omnivore plant-feeding. Costs can be null if no effect on plant
performance is found. More specifically, we addressed how often
levels of omnivore damage and costs to plants are considered or
quantified, the plant parts consumed or fed upon by omnivores
and the accompanying plant damage variables measured, the
actual (if quantified) and potential effects on plant performance
of such damage, the type of study (lab, greenhouse, field, etc.)
and the plant-omnivore combination for which this information
is most commonly reported. In addition, we present overall
publication trends for papers studying omnivorous predators,
and conduct a comparison within this search of the number of
studies reporting, or not, measures of plant-feeding or damage
by omnivores. Our systematic review, together with an overview
of publication trends, will allow us to determine the extent
of neglect of plant costs and examine if their assumed minor
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importance relative to predatory benefits is supported. Note
that our review does not aim to evaluate the net result of
simultaneously considering omnivore-provided plant protection
services and omnivore-inflicted plant damage. Thus, we do not
answer whether the overall outcome of biocontrol is positive,
negative or neutral for specific plant-omnivore systems. Our
systematic review examines the available literature on direct
costs of omnivore phytophagy, but we do not quantitatively
compare these results to previously known or estimated benefits
for specific omnivore species.

METHODS

Literature Search

We performed a systematic literature search, following the
steps outlined by Khan et al. (2003), to evaluate the evidence
available for determining how much plant damage is usually
inflicted by omnivorous predators and its consequences for
plant performance. We used Clarivate Analytics’ Web of Science
platform, and searched in the Web of Science™ core collection
using the “field = topic” search field, which searches for terms
in the title, abstract or keywords. The document type was
limited to Article and Review, all languages, using their Science
Citation Index Expanded (SCI-EXPANDED, 1945-present). We
were interested in finding publications that examined any form of
plant feeding/damage/injury by omnivorous predators, and that
potentially examined the consequences of such damage. Thus, the
following terms were used in our search:

[(“omnivor*” OR “zoophytophag™” OR “phytozoophag” OR
“prey- and plant-feed™” OR “plant- and prey-feed*” OR “plant-
feeding predator*” OR “plant and prey” OR “prey and plant”
OR “plant bug*” OR “omnivor* predator” OR “omnivor*
bodyguard” OR “omnivor* arthropod™” OR “omniv* pest™”)
AND (“plant damage” OR “damage to plant®™” OR “crop
damage*” OR “plant-feeding” OR “plant injur*” OR “injury”
OR “damage” OR “phytophagy” OR “plant food” OR “sucking”
OR “pierc*” OR “sap-sucking” OR “cost to plant*” OR “plant
lesion*” OR “negative effect on plant*” OR “plant performance”
OR “plant fitness”)].

The search was refined by excluding several Web of Science
categories (see “Supplementary material”) and it was last
updated on July 10th, 2018. The process yielded 381 papers to
be screened for relevance based on title and abstract (conducted
by the author AP). Studies that qualified as relevant were
those that indicated that some form of plant-feeding, damage
or injury by one or several omnivorous predators had been
measured. Studies examining phytophagous/herbivorous insects
(even phytophagous plant bugs, e.g., Lygus spp.), ant-plant
mutualisms, and other non-arthropod species (e.g., wild boars)
were excluded. After this process, 76 of the 381 papers remained
for full-text scrutiny. While conducting full-text evaluation of
these 76 studies (conducted by all authors), we found additional
references within these studies that were relevant to our question.
A total of 16 additional publications were added to our original
search results. During the review process of the paper, a
reviewer suggested an additional article for inclusion in the
review. Thus, we conducted full-text examination for a total

of 93 papers (see Flow diagram; Figure 1). After evaluation
of full-texts, 40 studies were excluded since these did not
actually measure any form of plant-feeding or damage. Many
of these studies presented an omnivorous predator perspective,
for example examining preferences for certain plant-emitted
odors, or comparing performance when fed prey- vs. plant-food
(see “Supplementary material” for a detailed list of full-text
examined studies).

Summary and Classification of Relevant
Studies

The remaining 53 studies (Figurel) were organized in a
summary table (Table 1) that included Omnivore species (with
Order and Family), Study type (Lab, Field, Greenhouse, Growth
chamber), Plant species (with common name), Plant damage
variable which was used in the study to evaluate the extent of
omnivore plant damage (e.g., leaf or fruit injury), Plant-feeding
level by the omnivorous predator reported in the study (Zero to
High), Actual (potential) effect on plant (Actual effect if reported

Studies
found in
Web of Exclusion of records by an
Science additional nested search
using — using synonyms for Damage
synonyms to the plant (excluded=3532)
for:
Omnivore
(N=3913)
Exclusion of records that:
A 4 * Did not investigate
Screening omnivorous arthropods
Records | __—# ¢ Did notindicate
(Abstracts) measuring some form of
(N=381) plant damage/feeding

(Records excluded=305)

Inclusion of articles:
* References found within
v original search articles

Full-text * Suggested by reviewer
assessment (Records included=17)
of articles Exclusion of articles that:
(N=76+17 '

-93) * Did not actually measure
some form of omnivore
plant damage/feeding
(Records excluded=40)

v
Inclusion of
studies in
quantitative
synthesis
(N=53)

FIGURE 1 | Flow diagram of the selection process used in the systematic
review.
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by study; Potential: evaluation conducted by authors of potential
effect based on damage variable and extent of omnivore-
plant feeding) and Reference (authors, year). A more detailed
explanation of some of the classification variables follows.

The summary table category Plant damage variable comprised
any measure of plant-feeding or damage by the omnivore. For
example, fruit or leaf injury in the form of number of necrotic
rings, punctures, scars, or leaf area damaged. Fruit injury also
implied dimples, pits, deformations, open fruits or number
of fruits injured. Frequency of leaf or fruit-feeding indicated
how often predators probed or fed on plant tissue, or how
many individuals engaged in this behavior. Time spent on these
activities referred to how much of the omnivore activity budget
was dedicated to plant feeding. In Table 1, plant damage variables
were expressed in a concise form, while in Table S1 a more
detailed description of how damage was measured can be found.

The summary table category Plant-feeding level was evaluated
by the authors based on actual reports within each study of
statistically significant (P < 0.05) differences among treatments
for the damage variables examined or damage observations
conducted. For example, Calvo et al. (2009) examined the
cumulative number of necrotic rings on tomato leaves across
15 weeks, and found statistically significant differences among
treatments with densities of 0, 1 and 4 Nesidiocoris tenuis
individuals. Differences in number of necrotic rings among
treatments were large (over 40% for all treatment comparisons)
with greater densities leading to more rings; thus, omnivore
plant-feeding level was expressed as high for this study. Our
classification of plant-feeding level was based on the differences
in damage reported by each study, and ranged from zero
to high using the following criteria: Zero, no evidence of
plant-feeding; Low, level of plant-feeding differed roughly by
<20% among treatments (e.g., plant-feeding frequency in the
presence or absence of prey, time spent feeding on the plant
vs. other activities, number of leaf/fruit injuries compared to
controls); Moderate: level of plant-feeding differed roughly by
about 20-40% among treatments; High, level of plant-feeding
differed roughly by more than 40% among treatments. In some
instances, several sub-experiments were conducted with different
omnivorous species (i.e., more than one specific omnivore-plant
species pair per study), or differences in levels of damage among
treatments varied depending on plant damage variable (i.e., one
omnivore-plant pair can offer multiple reports of an effect on
a plant trait); thus, a range of plant-feeding levels are reported
were appropriate. It is also important to note that many studies
were not directly designed for assessing levels of omnivore plant
damage, and our evaluation provides an indication of how much
feeding can occur based on the treatments/experimental setting
used in each study. We offer suggestions on how to design
experiments aimed specifically at examining levels of omnivore
plant-feeding and its consequences in section Future prospects.

The summary table category Actual (potential) effect on plant
is comprised first of any actual effect on plant growth (e.g.,
reductions in total height, shoot growth, leaf numbers) and yield
quality (fruit blemishes) or quantity (fruit numbers or weight)
reported by the study. If no actual effect was reported by the
study, we conducted an evaluation of potential effects on plant

growth or yield based on the damage variable examined and
extent of omnivore-plant feeding reported for each case. For
example, if an omnivore fed on flowers or fruits at very high
levels, there could potentially be negative effects for reproduction
or crop yield. Levels of omnivore damage, and whether it was
a reproductive or a trait affecting growth, were used to provide
a suggestion for potential consequences of such plant-feeding.
For studies examining induction of plant defenses following
omnivore-plant feeding, a potential effect for the plant was
indicated as a “Cost of induction.” Inducing defenses can involve
resources being diverted or allocated away from other functions
such as growth, and instead invested in defense. However, the
cost of such resource allocation can range from low to high,
and varies depending on the plant trait and species (Heil and
Baldwin, 2002; Cipollini et al., 2014; Ziist and Agrawal, 2017).
Our evaluation of costs are meant as suggestions of potential
cost to the plants, and these require further investigation. We
also included information on omnivorous predator feeding mode
(e.g., pierce-sucking, chewing), and prey species provided in the
study, but chose to present a simplified version of the table in the
main manuscript. See Table S1 for a more detailed classification
of each study.

Publication Trends

To examine if consideration of plant costs has changed through
time, we conducted a comparison of number of publications
per year between studies examining omnivorous predators only,
and those also considering some form of plant-feeding/damage.
From the search described above, we extracted the number of
papers per year resulting from the first level search. In other
words, those with only synonyms of omnivores (before the AND
connector). We then proceeded to run again the nested second
level search (after the AND connector, those with synonyms
for plant damage) to also extract number of publications per
years, and compared results from the two searches. Secondly, we
conducted a comparison of publications per year for those studies
found to be potentially relevant to our question (93 studies, full-
text examined) and those actually included in the systematic
review (53 studies). For both comparisons, the number of
studies were log transformed in order to illustrate proportional
relationships.

RESULTS

Our systematic search yielded 381 publications that included
terms associated with “omnivorous predator” and “plant-
feeding” or “plant damage.” A total of 93 papers were full-text
examined and 53 of these remained after this process (Figure 1).
We used these 53 papers to address how often the extent of plant-
feeding by omnivorous predators and its consequences for plants
are considered or quantified.

Levels of Omnivore Plant-Feeding, Effects
on Plants and Most Common Species
Among the 53 studies examined, some papers presented more
than one omnivore-plant relationship (each is considered a
report, and hereafter referred to as such) and some examined
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more than one plant damage variable (hereafter referred to
as cases). Thus, sums of reports (69 omnivore-plant reports
in total; sum of rows in TableS1) and sums of cases (79
cases examining a specific type of plant variable, excluding
“Unknown” in Plant feeding level; Table S1) exceeded the total
number of studies. Among the 69 reports, two of the studied
omnivore species did not successfully establish (Plant feeding
level: “Unknown”; Table 1). For 13 additional reports, no plant-
feeding/damage variable was directly examined (Plant feeding
level: “Not measured”; Table 1), but plants were exposed to
omnivores and allowed to inflict damage. Of the remaining 54
reports, 6 recorded no observations of plant damage, while 13
recorded high levels of omnivore plant-feeding (Plant-feeding
level: “Zero” and “High,” respectively; Table 1, Figure 2A). When
considering all levels, the majority (31 out of 54) reported at least
moderate levels of plant-feeding (Table 1).

Among those reports exposing plants to omnivores and
reporting non-zero plant-feeding, only 15 times were the
consequences of damage in terms of growth or yield actually
measured (Actual effects in bold; Table 1). Of these 15 reports,
a greater number found negative consequences for plants
compared to those reporting a lack of effect (8 and 4 reports,
respectively and 3 reports with both; Table1). Of these 8
reporting detrimental effects, 6 found negative effects on yield
quantity or quality, while 2 report negative effects on growth
(Table 1).

In terms of the plant damage variables examined, we found
both direct and indirect measures of plant-feeding. Indirect
measures included time spent probing or plant-feeding by
the omnivore, and frequency of individuals engaging in such
behavior (Table S1). Direct measures included different forms
of plant injury, with feeding punctures and necrotic rings often
quantified, while amount of tissue area damaged was rarely
estimated (Table S1). Overall, the majority of cases evaluated
fruit or leaf injuries relative to stem- or flower-feeding (Table 1).
But among those cases quantifying negative effects on plants
(Actual effects in bold; Table 1), examination of fruit injuries
were most common relative to leaf injuries (Table 1).

It is important to note that our search results included
several cases that examined the consequences of omnivore
plant-feeding for plant defense induction against herbivores.
A total of 15 cases examined induction of different defense
traits, subsequent performance or preference of herbivores and
parasitoid attraction (Actual effect: “Induced defense”; Table 1;
Figure 2B). These papers do not directly assess the effects on
plant growth or yield, but do show that omnivore feeding induces
defenses and this could entail a possible cost to plants (Potential
effect: “Cost of induction;” Table 1). The cost of inducing defenses
against herbivores, however, can vary depending on the plant
trait induced (chemical, physical, etc.) and the species in question
(Heil and Baldwin, 2002; Cipollini et al., 2014; Ziist and Agrawal,
2017). The presence or absence of costs following mirid-mediated
induction require actual estimation. Plant-damage variables
examined in these papers often included volatile emissions and
phytohormone profiling/activity (Table 1). For the remaining
cases that did not directly estimate consequences for plants nor
induced defense, we also assessed the potential effects of damage

on growth and/or yield (Potential effect in parentheses; Table 1).
Our evaluation was based on the damage variable examined and
extent of omnivore-plant feeding reported for each case (see
section Summary and Classification of Relevant Studies), but
require actual quantification.

All 69 reports were organized according to whether the study
examined traits associated with “Plant growth” (e.g., leaf/stem
injuries or feeding, reduced plant height), “Reproduction/yield”
(e.g., flower/fruit abortion, fruit distortion, fruit number), or
“Induced defense” (e.g., proteinase inhibitor expression, volatile
emissions) (Plant trait examined column; Table S1). Based
on this classification, we conducted a comparison of the
number of cases reporting an actual lack of effect (“None”;
Figure 2B), and an actual negative (reported by the study)
or potentially negative (evaluated by the authors) on these
plant traits (“Negative” and “Potentially negative”; Figure 2B).
We found that for both Reproduction/yield and Plant growth,
more cases show detrimental rather than no effects on such
traits (light gray “Negative” bars vs. dark gray “None” bars,
Figure 2B). Also, a greater number of cases evaluated actual
effects for Reproduction/yield traits than for Plant growth
traits (comparison of dark gray “None” bars between types
of traits, Figure 2B). We identified a total of 38 cases with
potential negative effects on plant traits (white “Potentially
negative” bars, Figure 2B; Table 1); i.e., those excluding “Zero”
in the Plant-feeding level column (6 cases; TableS1) as
well as those that examined “Induced defense” (15 cases;
Table S1) or “Actual effects” (20 cases; Table S1). Among
these cases where our evaluation indicated potential negative
consequences, plant growth traits were mostly examined relative
to reproduction/yield traits (comparison of white “Potentially
negative” bars between types of traits, Figure 2B).

Furthermore, a total of 17 out 31 reports presented omnivore
feeding for damage variables related to plant growth (e.g., stem
injury, leaf area damaged), while 8 out 31 reports for variables
associated with reproduction/yield (e.g., fruit-feeding punctures),
and 6 out of 31 reported on variables affecting both growth and
reproduction (Table 1).

Tomato plants (Solanum lycopersicum) and the omnivorous
predator N. tenuis were the most common species studied, with
34 and 14 reports (out of 69) examining these species, respectively
(Figures 3A,B). Cucumber plants (Cucumis sativus) and mirids
in the genus Macrolophus and Dicyphus were the next most
common species studied (Figures 3A,B). Levels of plant-feeding
for those omnivore species with more than one occurrence
were not consistent among cases, and ranged from zero to
high (Omnivore species and Plant-feeding levels; Table 1). Among
these omnivore species, plant-feeding was examined on several
plant species, except for N. tenuis which was almost exclusively
examined on tomatoes (Omnivore and Plant species; Table 1). For
those studies quantifying the consequences of damage to plants
(15 instances, in bold; Table 1), N. tenuis and Macrolophus spp.
plant-feeding often resulted in detrimental effects. Plant-feeding
by less-represented species, such as Campylomma verbasci and
Engytatus varians, resulted in no negative effects to plants
(Actual effects in bold; Table 1). Again, tomato plants were over-
represented among these 15 cases, with a few instances finding
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plant-feeding cases were excluded; Table 1).

Omnivore plant-feeding levels

FIGURE 2 | (A) Frequency of reports in 53 studies, which recorded plant-feeding by omnivorous predators ranging in levels from Zero to High (see Table 1;
“Unknown” and “Not measured” were excluded). (B) Frequency of cases in 53 studies for which none, actual or potential effects (None, Negative, and Potentially
negative in figure) were recorded or estimated for Plant growth and Reproduction/yield, and for which a potential Cost of Induction for Induced defense traits might
occur and needs to be quantified (see Methods section Summary and Classification of Relevant Studies and Results section Levels of Omnivore Plant-Feeding,
Effects on Plants and Most Common Species for details on the classification of reports). Only cases reporting damage are included (i.e., “Zero” and “Unknown”
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negative consequences for zucchini and sweet pepper plants
(Plant species and Actual effects; Table 1).

For each of the 53 studies examined, one or several
experiment types (Greenhouse, Field, Growth chamber, or Lab)
with omnivores were reported. Lab and greenhouse experiments
predominated with 34 and 25 occurrences respectively across all
reports, while field studies were few (6 cases, Table 1).

Publication Trends for Studies Considering
Plant-Feeding/Damage by Omnivores

Our search on studies examining omnivores without
consideration for plant-feeding/damage (See Publication
trends in Methods) yielded a total of 3,913 papers between 1945
to present. The number of papers published shows an increasing
trend with years (Figure 4, green line). Very few records were
found before the 1960s, but a steep increase can be observed
from those years onward. Our search for studies examining
some form of plant-feeding by omnivores (nested in the search
above, see section Publication trends), yielded 381 records. A
growing number of studies appear to have been considering
plant damage by omnivores (Figure 4A, red line), but few papers
did so before the mid to late 1990s. The smoothers used for
the lines indicate that studies considering damage have been

increasing proportionally to studies addressing only omnivores
(Figure 4A).

For those 93 studies that we conducted full-text examination
of, the publication years ranged from 1957 to 2018 (Figure 4B,
green line). Few studies were published before the mid-1990s,
and most studies were published in the 2000s. For the 53
studies that we selected, which reported omnivore plant-feeding
levels and/or consequences of damage to plants, the range of
publication year was 1988-2018 (Table 1; Figure 4B, red line).
Of these 53 studies, only 7 were published before the year 2000
(Table 1), indicating that a consideration of omnivore plant
damage and its consequence for plants has occurred in more
recent years.

DISCUSSION

Summary of Main Findings

Our systematic review addressed how often consequences for
plants arising directly from the phytophagy of omnivorous
predators, and subsequently affecting plant performance, are
considered and/or quantified. We provide a synthesis of the
available evidence for assessing plant costs of omnivore-
inflicted damage in relation to reductions in plant growth or
reproduction/yield. Our search revealed that while some measure
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of plant-feeding is occasionally reported by studies examining
omnivorous predators, it is seldom that the direct consequences
of such damage for plants are also considered. Actual measures of
plant-feeding levels by omnivores were reported in 57% of studies
examined (53 of 93 full-text screened studies). Within these, 24
and 57% of the reports showed high or at least moderate levels
of plant-feeding by omnivores, respectively (Table 1; Figure 2A).
However, in only 22% of instances were effects of omnivore-
inflicted damage on plant performance quantified (15 out of
69 reports, Table 1; Figure 2B). Of these 15 reports, a greater
number found negative consequences for plants compared to
those reporting a lack of effect (8 and 4 reports, respectively and 3
reports with both; Table 1), with effects on yield quantity/quality
being more often evaluated than effects on growth (Table 1;
Figure 2B). The effects of omnivore plant-feeding described
in these cases suggest that dismissal of plant costs without
quantification is not warranted.

We also found that the majority of cases evaluated fruit
or leaf injuries relative to stem- or flower-feeding, and among
those cases quantifying negative effects on plants, assessment
of fruit injuries were most common relative to leaf injuries
(Table 1). Lab and greenhouse experiments predominated across
all reports, while field studies were few (Table 1). Furthermore,
we found a strong bias in the literature toward tomato
plants and omnivorous predator species in the mirid family
(Nesidiocoris, Macrolophus, Dicyphus spp.) used for biocontrol
of tomato pests (Figures 3A,B). Hence, the evidence available
for evaluating the extent of plant-feeding damage and its effects,
lacks representation from a variety of plant-omnivore systems.
Our examination of publication trends, however, suggests an
increasing awareness of omnivore plant-feeding effects with
more recent papers directly addressing this issue. We hope
this indicates an ongoing or upcoming paradigm shift, and
simultaneous consideration of benefits and costs of omnivorous
predatory services becomes standard practice. Below, we discuss
our findings in more detail and provide suggestions for future
work.

Extent of Plant-Feeding by Omnivorous

Predators

Our systematic search results showed that that the degree of
plant-feeding by omnivorous predators is reported every so
often, with its quantification being done directly or indirectly in
different ways. Out of the 93 studies we screened, 57% provided
some measure of how much plant-feeding the omnivore in
question engaged in. The selected 53 studies (Table 1) often had
an omnivore perspective, examining feeding preferences based
on different plant vs. food-prey availabilities, and its effect on
pest control or omnivore performance. Nonetheless, a few studies
(~1/5 of papers) did set out to directly quantify phytophagy
or plant damage by the omnivore in question. For example,
phytophagy by the mirid C. verbasci on apples (e.g., Aubry et al.,
2016), damage by N. tenuis to tomatoes (e.g., Calvo et al., 2009;
Arno¢ et al,, 2010), and damage by the predatory mite Euseius
scutalis to sweet peppers (Adar et al., 2015). To measure plant-
feeding, a range of different variables were reported, but leaf-

and fruit-feeding in contrast to stem- or flower-feeding, were
most often evaluated (Table 1). Indirect measures included time
spent probing or plant-feeding, and frequency of individuals
engaging in such behavior (e.g., Coll et al., 1997; Montserrat
et al., 2004; Han et al., 2015). Direct measures included different
forms of plant injury, with feeding punctures and necrotic
rings often quantified (Table S1), while amount of tissue area
damaged/consumed was rarely estimated (e.g., Moser et al., 2008;
Lundgren et al.,, 2010; Vangansbeke et al., 2014; Table S1). It,
thus, appears as if less effort has been placed on understanding
the plant-omnivore interaction, as exemplified by fewer studies
examining actual amounts of plant damage relative to crop
quality variables. Overall, these results reflect the traditional
greater interest in examining consequences of plant-feeding for
omnivore performance or predatory services, rather than its
effect on plants.

In addition to the damage variables examined, we also
evaluated the levels of plant-feeding reported in each study
and classified them between zero to high (Table 1; Figure 2A).
Only a small proportion of cases reported zero plant-feeding,
relative to the number of studies reporting low to high levels of
plant-feeding (Figure 2A). Except for one study (van Lenteren
et al., 2018b; Table 1), those reporting zero observations of
damage were evaluating predatory services of the omnivores in
question and not specifically examining plant injury. Ideally,
observations of “no damage” should be confirmed by studies
aimed at evaluating plant-feeding, and corroborated several times
before being considered general. Indeed, among those zero-
damage papers, two separate studies report the mirid Dicyphus
tamaninii as inflicting no damage to cucumber plants (Table 1).
However, when examining all 7 reports of plant-feeding by
D. tamaninii, we can see that 4 of them actually report high
levels (Table 1). This inconsistency in the levels of plant-feeding
reported is, in fact, observed for all the omnivore species with
more than one occurrence in the table (except for Frankliniella
occidentalis; Table 1). Thus, no particular omnivorous predator
stands out as frequently inflicting low or high levels of damage.

A lack of consistency in degree of plant-feeding can be
explained, in some cases, by the plant species examined. For
D. tamaninii, high levels of plant damage occur in tomato
and zucchinis, yet for other species like Macrolophus caliginous
reports of damage vary even within the same plant (Table 1).
Another plausible reason for such variation is differences among
studies, not only in terms of experimental conditions, but
also in omnivore population origin, prey presence/absence and
predator:prey ratios. For instance, it has been shown that
even within conspecific populations, omnivorous predators can
vary genetically in their zoophytophagous vs. phytozoophagous
status (Dumont et al., 2017). Even if the majority of studies
were lab/greenhouse experiments, authors do report natural
infestations or naturally-collected individuals for lab rearing,
thus population origin could be important in explaining
study variation across different locations. With regard to prey
presence/absence, we do summarize whether or not, and
which prey was offered to the omnivorous predator for each
case (Table S1). However, as our main question addresses the
consideration and estimation of plant costs, we were not directly
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interested in evaluating differences among studies with respect
to the prey offered. Castaié et al. (2011) provide an excellent
discussion on plant-feeding damage relative to predator:prey
ratios at least for D. tamaninii, D. hesperus, M. pygmaeus, and
N. tenuis.

Effects of Omnivore Plant-Feeding on Plant

Performance (Costs to Plants)

In order to determine whether predatory benefits of omnivorous
predators counterbalance plant damage, cost to plants arising
from the damage inflicted should be known (Heil, 2008). Such
costs encompass any negative effects stemming from omnivore
plant-feeding, such as decreases in growth, reproduction or
yield due for example to leaf deformations, fruit or flower
abortion (Castafié et al., 2011). Our results reveal that such
costs have been poorly studied, as they are to a large extent
neglected when examining plant-feeding by omnivores. Of those
reports evaluating plant-feeding/damage, only 22% quantified
the actual consequences of damage to plants (Table 1). Among
the cases within these reports, the majority show detrimental
effects relative to no effect for different plant traits (Figure 2B).
A greater number of these cases evaluated effects on yield quality
or quantity, while few examined effects on growth (Table 1).
As discussed for findings on plant damage variables, this likely
reflects a greater focus on examining effects stemming from
omnivore prey consumption relative to those effects stemming
from the direct plant-omnivore interaction. Of the 15 reports
evaluating plant costs, 4 cases reported no effect on yield and/or
growth (Table1). A lack of negative effects was found even
when omnivore plant-feeding levels were estimated as moderate
to high (e.g., Silva et al., 2017; Table 1), suggesting that costs
cannot be assumed based on plant-feeding levels. However, these
cases included species for which our search yielded only one
or two instances reporting plant-feeding, such as E. varians,
M. basicornis, and Campyloneuropsis infumatus. Thus, it is not
possible to determine whether these species often inflict high
levels of damage and the generality of non-detrimental effects for
plants.

Even though they were few, the studies finding actual negative
consequences for plants revealed that yield and growth can be
significantly affected by omnivore plant-feeding. Increases in
flower or fruit abortion, and reduced height and leaf number
were reported in cases examining effects on yield and growth,
respectively (Table 1). Consequences for growth were little
evaluated, but clearly deserve more attention, especially if leaf
area/number reductions are common as this can negatively affect
the photosynthetic capacity of plants (e.g., Wisdom et al., 1989;
Delaney and Higley, 2006). Among these studies reporting costs
(i.e., those finding a negative effect on reproduction/growth;
excluding those finding no effect), 5 different plant species were
represented (sweet pepper, apple, willows, tomato, and zucchini),
but 6 out of 11 reports evaluated effects on tomato plants.
Likewise, a total of 7 different omnivore species, all in the Miridae
except for E. scutalis in the Phytoseiidae, were represented. Yet,
N. tenuis and Macrolophus spp., common biocontrol agents of
tomato pests, were used in 6 out of 11 reports (Table 1). Reports

of negative plant effects for N. tenuis, and for other mirid species
are perhaps not as surprising, given that they have traditionally
varied in status as pests or predators (Lu et al., 2010; McColl
etal, 2011; Pérez-Hedo and Urbaneja, 2016). However, this bias
in the literature makes it difficult to assess generality of results
and importance of actual plant costs for other species.

Our evaluation of potential plant consequences (Potential
effects in parentheses; Table1) following omnivore plant-
feeding, points out that detrimental effects could be expected
for other important crops (e.g., cotton, corn) and non-mirid
species. Furthermore, among these studies, we found that
omnivore plant-feeding was mostly reported for plant damage
variables potentially affecting plant growth relative to those
affecting reproduction/yield (“Potentially negative” white bars,
Reproduction/yield vs. Plant growth, Figure2B). This is in
contrast to actual reports of negative effects for plants, where
reproduction/yield variables were in majority (“Negative” gray
bars, Reproduction/yield vs. Plant growth, Figure 2B). While
these studies do not directly quantify the negative consequences
of omnivore plant-feeding, they do provide valuable insight into
possible costs based on the range of plant damage variables
examined. For instance, some studies provide detailed estimates
of omnivore damage in the form of number and size of leaf-
and fruit-feeding punctures (Sengonca et al., 2004; Vangansbeke
et al,, 2014), amount of leaf-tissue damaged (Moser et al., 2008),
necrotic rings on stems and flower clusters (Sanchez, 2008),
among others (Table S1). These studies indicate that there is a
large potential for negative effects to occur from omnivore plant-
feeding, however, whether or not these are manifested needs to
be empirically investigated. We hope that our findings encourage
actual quantification of direct plant costs for these cases.

CONCLUSIONS

So, overall, what does the evidence say about the direct effects
of omnivore plant-feeding? The evidence, so far, says that the
impact of omnivore plant damage can be substantial and the
importance of costs to plants relative to predatory benefits
should not be neglected. A reduction in herbivore numbers is
of course desirable, of interest and should be examined from a
biocontrol perspective. However, with the little evidence available
on costs to plants we will be unable to appropriately evaluate
if omnivore-provided services often serve (or not) in favor
of plants. Even if costs are found to be null or low, such
knowledge is valuable and necessary, and we argue that costs
to plants should be increasingly considered together with the
predatory benefits provided by omnivores. Furthermore, not only
is available evidence scarce, but it is strongly overrepresented
by studies on tomato plants and omnivorous mirid predators.
These results likely mirror the large efforts placed in finding
pesticide-free pest management strategies in tomatoes, and in
understanding the predatory services provided by different mirid
species in this system (e.g., Urbaneja et al., 2012; Pérez-Hedo
and Urbaneja, 2016). This research has greatly advanced our
knowledge on the net outcome of biocontrol services and laid
the foundation for work in other systems. Nonetheless, this
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bias creates a confounding factor when examining literature
on effects of omnivore plant-feeding, as search results are
largely skewed toward specific species. This should, thus,
be considered when interpreting results from our systematic
review.

FUTURE PROSPECTS

Despite a generally low consideration of costs to plants in
the literature, publications trends did indicate a more recent
awareness of omnivore plant-feeding and its consequences for
plants. Indeed, we noticed that several recent papers highlighted
some of the knowledge gaps documented by our systematic
review (e.g., Hamdi et al., 2013; Aubry et al.,, 2016; Silva et al.,
2017; van Lenteren et al., 2018b) and we hope this is indicative
of an ongoing paradigm shift. We, thus, make a timely call for
future studies to include a more explicit quantification of costs
to plants, and to avoid assuming that they are outweighed by
benefits.

Our systematic search also yielded several very recent papers
examining the effects of omnivore plant-feeding on induction of
plant defenses (Pérez-Hedo et al., 2015b, 2018; Bouagga et al,,
2018c; Pappas et al., 2018b; Zhang et al., 2018). Results from these
studies present new exciting avenues for increasing the value of
omnivorous predators as biocontrol agents. It seems they are able
to provide more than predatory services, as their previous plant-
feeding can reduce subsequent herbivore performance and even
attract other natural enemies (Pappas et al., 2015; Pérez-Hedo
et al,, 2015a,b). Furthermore, they appear to perceive differential
volatile emissions from plants colonized vs. non-colonized by
beneficial defense-enhancing endophytic fungi; thus, enabling
stronger plant protection as both direct and indirect defenses
can be utilized (Pappas et al, 2018a). These novel findings,
however, have not addressed any potential costs arising from
defense induction (Table 1). That is, costs in terms of resources
being diverted away from other functions (such as growth) and
invested in defense following omnivore plant-feeding. Studies
examining induced defenses after herbivory have shown that
resource allocation costs can range from low to high, and vary
depending on plant species and trait (Ziist and Agrawal, 2017).
We thus, recommend greater consideration of such costs to
plants in future studies addressing induced defense.
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