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Effective conservation capable of mitigating global biodiversity declines require thorough

knowledge on species distributions and their drivers. A species ecological niche

determines its geographic distribution, and species distribution models (SDMs) can be

used to predict them. For various reasons, e.g., the lack of spatial data on relevant

environmental factors, SDMs fail to characterize important ecological relationships.

We argue that SDMs do not yet include relevant environmental information, which

can be measured with remote sensing (RS). RS may benefit SDMs because it

provides information on e.g., ecosystem function, health and structure, complete

spatial assessment, and reasonable temporal repeat for the processes that determine

geographical distributions. However, RS data is still seldom included in such studies with

the exception of climate data. Here we provide a guide for researchers aiming to improve

their SDM studies, describing how they might include RS data in their specific study. We

propose how to improve models of species ecological niches, by including measures of

habitat quality (e.g., productivity), nutritional values, and seasonal or life-cycle events.

To date, several studies have shown that using ecologically-relevant environmental

predictors derived from RS improve model performance and transferability, and better

approximate a species ecological niche. These data, however, are not a panacea for

SDMs, as there are cases in which RS predictors are not appropriate, too costly, or

exhibit low predictive power. The integration of multiple environmental predictors derived

from RS in SDMs can thus improve our knowledge on processes driving biodiversity

change and improve our capacity for biodiversity conservation.

Keywords: ecological niche, species conservation, remote sensing, species distribution (niche) model, ecological

theory

Global environmental change drives biodiversity changes and declines, and the rearrangement
of biotic communities (Pereira et al., 2012; Dirzo et al., 2014). The effects of biodiversity declines
may lead to losses in the integrity and functioning of ecosystems and the services they provide,
thus potentially putting human well-being at risk (Cardinale et al., 2012). International mitigation
programs were established to systematically monitor spatial patterns of species distributions
(Schmeller et al., 2015). Species distribution models (SDMs) are empirical statistical approaches
that use environmental predictors to estimate the species niche, and from there extrapolate the
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extent of that niche in space to predict the species distribution
(Guisan and Zimmermann, 2000), and have become an
important tool in conservation science, planning, and
management (Elith and Leathwick, 2009; Pecl et al., 2017).

The choice of environmental predictors is fundamental for
SDMs; yet, such selection still remains a main source of
debate (Synes and Osborne, 2011). Predictors should measure
the processes that link environmental conditions to species
occurrence, and match the spatial and temporal scales at
which such processes occur (Lechner et al., 2012). Therefore,
ecologically relevant predictors are capable of generating robust
and models transferable to other regions, time periods or
conditions. This is particularly relevant when these models are
to be used as a base for conservation planning, considering
the effects of global change. Predictors may also differ across
taxonomic groups, for example soil type might be good
predictors for plants, while forest fragmentation, or temperature
might be good predictors for animals (Bradley et al., 2012).

Remote sensing (RS) data allow measuring vegetation
condition (Turner et al., 2003), ecosystem productivity
(Running et al., 2004), seasonality (Reed et al., 1994), all
of which might be used in SDMs (He et al., 2015). These
measurements are now available over time series (e.g.,
Landsat time series; Kennedy et al., 2014), thus expanding
the possibilities to model species distributions over time.
Upcoming sensors are expected to provide even better
and more diverse measurements at finer spatial, temporal
and spectral resolutions (e.g., Sentinel satellites; Berger and
Aschbacher, 2012). The integration of such remotely sensed
information in SDMs can lead to global mapping of biodiversity
change (Ferrier, 2011), and thus aim at effective conservation
actions (Rose et al., 2015).

Although the use of RS in SDMs is widely advocated and
applied (Bradley and Fleishman, 2008; Cord et al., 2013),
we argue that it’s yet to be explored to its full potential.
Since the publication of these studies both RS and SDM
science has advanced substantially. On the RS side there have

been major developments over the last 10 years, namely the
continuation of missions and sensors for multispectral data
(Sentinel, Landsat 8), novel sensors that provide additional
data on ecosystem functioning which could explain geographic

distribution patterns (e.g., Flex; Coppo et al., 2017), and the
test studies for other upcoming missions (e.g., Guanter et al.,
2015; Lee et al., 2015; Stavros et al., 2017; EnMAP, HyspIRI,
GEDI). Further data became more easily accessible, in analysis-
ready products, and with higher temporal frequency. On the
SDM side new algorithms were developed, algorithms were tested

for performance and tools were developed to aid researchers on
algorithm selection, as well as on getting a better understanding

of the ecological meaning of model outputs. Also on the
biological data side, many more records were digitized, there was
an emergence of citizen science platforms to collect data, and
global analyses for multiple taxonomic groups became possible.
In this paper we present our perspective on these advances and

provide examples on how the last 10 years of RS and SDM have
merged and where could they go into the future.

Improving Models of Species Ecological
Niches
Soberón (2007) proposes that, to realistically reflect the ecology of
a species and the spatial scale at which different processes occur,
the model that describes its niche should have abiotic variables
depicted at low spatial resolution and biotic variables at high
spatial resolution, both interacting dynamically. Thus selecting
the best RS predictors to model animal species distribution varies
if the goal is to understand how abiotic interactions determine
a species niche (Grinnellian niche) or how biotic interactions
influence it (Eltonian niche). There is growing evidence that land
cover classes generally lead to models unsuitable for prediction
(Cord et al., 2014), particularly so when used as proxies for
habitat quality or resource availability (Bradley and Fleishman,
2008; Vallecillo et al., 2009), although this also depends on the
thematic detail of the land cover maps (Cord et al., 2014). Since
Bradley and Fleishman (2008), several studies were conducted
that took advantage of the existing RS data. Novel approaches
have shown progress toward understanding species responses to
abiotic conditions such as climate (Austin and van Niel, 2011),
nutritional value (Sheppard et al., 2007) or food resources (Coops
et al., 2009), and seasonal variation (Leitão et al., 2010).

Several RS datasets are currently available that could measure
several niche axes of species, namely: (i) habitat quality—
condition of a habitat type, (ii) nutritional value—food resources
available, and (iii) seasonality and life-cycle—temporal variability
in habitat due to seasons or individuals, populations and species
life-cycles (Gounand et al., 2018). We chose these three niche
axes because they capture the most commonly studied aspects of
species distribution models and can be more directly measured
by RS. In Table 1 we provide examples that either illustrate
instances where RS variables have been used to describe these
niche axes in animal SDMSDMs studies, or literature where these
variables have been suggested as good proxies to do so. Where
we are unaware of a study that uses RS variables, we propose a
variable (set of variables) and provide the reference describing
the variable itself.

Uncritical use of categorical predictors in SDMs has been
discouraged (Elith and Leathwick, 2009). Instead, predictors
such as vegetation condition and properties (Zimmermann
et al., 2007), phenology (Osborne et al., 2001; Leitão et al.,
2010) or structure (Bradbury et al., 2005) could be more
informative because they may explain availability of resources,
shelter, etc. (Coops et al., 2009; Santos et al., 2016). These,
together with databases like e.g., PanTHERIA (Jones et al., 2009),
COMADRE (Salguero-Gómez et al., 2016), or COMPADRE
(Salguero-Gómez et al., 2015) that include a description of
species traits could provide good links to what constitutes a
species habitat. Adding information on habitat fragmentation
could also be an improvement; and there are many metrics
available in the ecological literature (Moilanen and Hanski, 2001;
Kindlmann and Burel, 2008). Abiotic climatic data can explain a
species distribution because climate parameters like temperature
and precipitation directly drive physiological processes, such
as thermoregulation, and thus affect a species geographic
distribution (Kearney and Porter, 2009). Also, given that
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TABLE 1 | Potential RS variables for describing three axes of a species ecological niche: habitat quality, nutritional value, and seasonality and life cycle.

Environmental drivers RS predictors Habitat quality Nutritional value Seasonality/life cycle Selected references

SOIL

Soil type Spectral features*, such as reflectance in the

absorption region of specific constituent

minerals, etc.

3 3 Guanter et al., 2015

Soil moisture Spectral indices* (e.g., NDWI) or

transformations (e.g., wetness); data from the

SMOS Earth Explorer

3 3 Papes et al., 2012

CLIMATE

Temperature Thermal data* (LST) 3 3 Cord and Rödder, 2011

Precipitation Cloud cover*; precipitation data derived from

CHIRPS

3 3 3 Wilson and Jetz, 2016

VEGETATION

Vegetation structure Laser scanning metrics* (e.g., tree height,

canopy height, canopy vertical structure, etc.);

parameters derived from RTM

3 3 Bradbury et al., 2005

Vegetation condition Spectral indices* (e.g., NDVI, EVI) or

transformations (greenness and brightness);

parameters derived from RTM

3 3 Santos et al., 2016

Productivity Biophysical parameters* (e.g., fPAR, LAI);

parameters derived from RTM

3 3 3 Coops et al., 2009

Plant stress Spectral indices* (e.g., PRI, EWT); fluorescence

data

3 3 3 Saatchi et al., 2008

Land surface phenology Phenological metrics from time series* (e.g.,

start/length of the growing season,

senescence, etc.)

3 3 3 Leitão et al., 2010

Nutrients Spectral features*, such as reflectance in

specific absorption features of nitrogen, etc.

3 3 Sheppard et al., 2007

Landscape configuration Landscape and surface metrics relating to

fragmentation, connectivity, heterogeneity,

texture*, etc.

3 3 Bellis et al., 2008

Habitat information Habitat type (LCC), fractional cover* of

functional types (trees, grass, etc.)

3 3 3 Wessels et al., 2004

DISTURBANCES

Disturbances Distance metrics* (e.g., to nearest road or

settlement); Change products from LCC or

fractional cover; Indices derived from time

series (e.g., DI)

3 Devictor et al., 2008

Human Impact Stable nighttime lights* derived from the DMSP,

land use intensity

3 Escobar et al., 2015

NDWI, Normalized Difference Water Index; SMOS, Soil Moisture Ocean Salinity; LST, Land Surface Temperature; CHIRPS, Climate Hazards group InfraRed Precipitation with Station

data; RTM, Radiative Transfer Models; NDVI, Normalized Difference Vegetation Index; EVI, Enhanced Vegetation Index; fPAR, fraction of Photosynthetically Active Radiation; LAI, Leaf

Area Index; PRI, Photochemical Reflectance Index; EWT, Equivalent Water Thickness; LCC, Land Cover Classification; DI, Disturbance Index; DMSP, Defense Meteorological Satellite

Program. *Denotes which variable is used in the selected reference.

predictors that more directly reflect the species ecology generate
transferable models (Austin, 2002), historical reconstructions or
extreme climatic events may provide unique real-life experiments
and opportunities to test the utility of predictors for model
transferability (Randin et al., 2006; Santos et al., 2017). All these
approaches can be applicable to RS predictors and integrated in
SDMs (Bellis et al., 2008).

In order to characterize habitat quality of a species it is
relevant to e.g., explore spectral indices that measure functional
aspects of ecosystems (Ustin et al., 2004; Pettorelli et al.,
2018), such as the depiction of productivity (e.g., through the
Normalized Difference Vegetation Index, NDVI; Santos et al.,

2016). Other properties like canopy water condition and soil
properties may also be measured by indices (Table 1). If one is
interested in adding information on vegetation structure, active
RS products like active airborne laser scanners (LiDAR) can be an
option (Vierling et al., 2008). LiDAR data can be used to measure
the vertical structure of vegetation, while satellite RADAR data
(from RADARSAT-1 and Sentinel-1) can retrieve vegetation
morphology or elevation. Vegetation structural measures can be
used directly used as predictors of suitable habitat for wildlife
species (Bradbury et al., 2005).

If the goal is to understand how nutritional quality affects
animal species distributions, then it is important to consider the
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FIGURE 1 | Temporal and spatial resolution of most common remote sensing sensors, and their applicability for generating predictor variables for several biological

taxa.

trophic level of the studied species. For example, RS measures
of productivity and pigment concentration may be indicators
of nutritional quality of plants (Field et al., 1995) or fruiting
events for herbivores (Sudbrink et al., 2003). Productivity may
also be approximated by fPAR, although forthcoming sensors
will be able to measure photosynthetic activity directly. Both
of these metrics could be a good proxy of nutritional value
for herbivores/granivores (Leitão et al., 2010). For carnivores,
productivity might indicate where their prey is and local studies
have demonstrated that it improves model performance (Santos
et al., 2016).

Finally, if one is interested in how species distributions’ may
vary seasonally and within a life cycle, time series data on fPAR,
vegetation fractional cover, NDVI and Enhanced Vegetation
Index (EVI), etc. are becoming more readily available (Bischof
et al., 2012). For example, migratory species respond to the
greening of the vegetation which determines their migratory
patterns (Post et al., 2003; Bischof et al., 2012). Cord and
Rödder (2011) demonstrated that the use of multi-temporal
RS predictors (EVI and Land Surface Temperature—LST—from
MODIS) improved the modeling of the distributions of eight
Mexican amphibian species with differing habitat preferences.
This is a very promising avenue as it allows modeling changes
in species distributions over time, and assessing how vegetation
phenology changes might affect habitat quality and migratory
and dispersal processes (Post et al., 2003).

Perspectives for Use of RS in SDMs
RS predictors should not be perceived as a panacea for SDMs,
as there are cases where such predictors are not appropriate,
too costly, or of low predictive power. In the case of species
with small ranges (e.g., amphibians with restricted distribution in
mountain tops) satellite data may not provide good coverage, and
acquisition and processing of airborne or drone hyperspectral
or laser scanning data might be too costly. Models for different

species likely require different predictors, for example, NDVI
might be a good predictor for herbivores (Kuemmerle et al.,
2014), but not for carnivores (Bradley et al., 2012). However,
for plants the choice of NDVI as a predictor is contested, some
authors argue that it should not be included as it is correlated with
plant productivity (Bradley et al., 2012), while others argue that
it is a measure of ecosystem functioning and therefore indicates
the relation between productivity and biodiversity. Further a
RS image is a snapshot and may not always precisely capture
the variability in niche conditions of a species. RS predictors
tend to be highly correlated and depending on the modeling
algorithm used, it may pick the “wrong” ones that lack ecological
significance (Dormann et al., 2013).

There are trade-offs between RS systems, as high resolution in
one dimension often comes at the cost of other dimensions; for
example, high temporally resolved MODIS data come at a coarse
spatial and moderate spectral resolution. It is also important to
acknowledge that an index from one sensor may not correspond
exactly to that same index from another sensor (see Figure 1).
For example, a model calibrated from one sensor’s NDVI is
not easily applied to NDVI from another sensor (Roy et al.,
2016). Efforts exist within the RS community to calibrate indices
across sensors for wider use (Roy et al., 2016), prompted by the
recent increase in availability of free and open access satellite
imagery (e.g., Sentinel, Landsat, SPOT). The next generation
sensors have reheated the effort toward harmonization and
intrinsic transferability of multi-sensor data (Wulder et al., 2015).
Similarly, consistency in time series within the same sensor needs
to be properly calibrated (van Leeuwen et al., 2006). Achieving
consistent environmental predictors would potentially allow a
generalized and transferable use and development of SDMs.

Novel RS products increase the array of possible predictors
to use in SDMs. Novel off-the-shelf RS products which relate to
ecosystem processes illustrate well an increasing communication
between what ecologists need and what the RS community
can provide (Buchanan et al., 2015). Space agencies and

Frontiers in Ecology and Evolution | www.frontiersin.org 4 January 2019 | Volume 7 | Article 9

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Leitão and Santos Remote Sensing Species Ecological Niches

satellite data providers increasingly deliver higher-level products
for use in SDMs and therefore minimize the requirement
of users to know the details about data processing. Recent
and forthcoming satellites, for example hyperspectral sensors
such as the Environmental Mapping and Analysis Program
(EnMAP) HyperSpectral Imager (HSI; Guanter et al., 2015) or
the Hyperspectral InfraRed Imager (HyspIRI; Lee et al., 2015)
will allow novel ways to measure physiological properties of
vegetation, such as water stress, cellulose or nitrogen contents, or
nutrient stress (Leitão et al., 2015). New sensors for chlorophyll
fluorescence, such as FLORIS onboard the planned FLEXmission
(Coppo et al., 2017), will be able to measure photosynthetic
activity directly. The planned BIOMASS radar mission (Le Toan
et al., 2011) aims at mapping forest biomass on a global scale.

SDM’s themselves include a set of limitations, such as
assuming equilibrium between the species and the environment,
failing to include the potential for evolutionary adaptation,
omitting species interactions and non-climatic constraints,
failing to allow for novel climates or conditions, etc. (Schwartz,
2012), but many of such limitations are beyond our proposal
to better integrate RS in SDM. In fact, RS can solve some of
the issues and others are SDM specific, and both disciplines
should converge in some aspects. For example, here we argue that
RS could provide a means to include non-climatic distribution
constraints, such as habitat or human impact (e.g., land use
intensity; Kleijn et al., 2009).

RS data are well suited to integration in SDMs to predict
the response of biodiversity to environmental drivers and
provide information to intergovernmental forums like the
Intergovernmental Panel on Climate Change (IPCC) and the
Intergovernmental Science-Policy Platform on Biodiversity and

Ecosystem Services (IPBES). RS for biodiversity has become
a priority and has been acknowledged by many international
efforts, e.g., Aichi Biodiversity Targets, Sustainable Development
Goals, Group on Earth Observation Biodiversity Observation
Network, and Essential Biodiversity Variables (Pereira et al.,
2013; Skidmore et al., 2015; Pettorelli et al., 2016). These are all
strong arguments for accepting the challenge of finding a set of
ecologically relevant RS predictors that may be used to globally
understand biodiversity change (Ferrier, 2011; Jetz et al., 2016).
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